
Chapter 2

Preliminaries

In this chapter, we introduce key preliminary material needed later. After some initial
notation, we define the domains (the symmetric hypercubes), probability measures
(the uniform and Chebyshev measures, respectively) and the Lebesgue–Bochner
spaces. We next formalize our main smoothness assumption: namely, holomorphy
in suitable (unions of) Bernstein polyellipses. We then introduce orthogonal poly-
nomial expansions and best s-term polynomials approximations, before discussing
sequence spaces and best s-term approximations of sequences. Finally, we conclude
by reviewing algebraic and exponential rates of convergence for best s-term polyno-
mial approximations, before a short discussion on lower and anchored sets.

2.1 Notation

We first introduce some notation. For d 2 N, we write Œd � D ¹1; : : : ; dº. We also
extend this to allow for d D1, in which case Œd � D N is the set of positive integers.
For d 2 N [ ¹1º, we write ej , j 2 Œd �, for the standard basis vectors, i.e., ej D
.ıjk/k2Œd�. Also for d 2 N [ ¹1º, we write Rd or Cd for the vector space of real
or complex vectors of length d . Note that when d D 1, Rd and Cd are the vector
spaces RN and CN of real- or complex-valued sequences indexed over N.

For 1 � p � 1, we write k�kp for the usual vector `p-norm and for the induced
matrix `p-norm. When 0 < p < 1, we use the same notation to denote the `p-
quasinorm. For 1 � p; q <1 we define the matrix `p;q-norm of an m � n matrix
G D .Gij /

m;n
i;jD1 as kGkqp;q WD

Pn
jD1.

Pm
iD1 jGij j

p/q=p , and similarly when p D1
or q D1.

Throughout this work, we consider sets of multi-indices. Let d 2 N. Then we
define the multi-index set F as the set of nonnegative multi-indices, i.e.,

F WD Nd
0 D

®
� D .�k/

d
kD1 W �k 2 N0

¯
; d <1: (2.1)

When d D 1, we consider multi-indices in NN
0 with at most finitely many nonzero

terms, i.e., we define

F WD
®
� D .�k/

1
kD1 2 NN

0 W j¹k W �k ¤ 0ºj <1
¯
; d D1: (2.2)

In either finite or infinite dimensions, we write 0 and 1 for the multi-indices consisting
of all zeros and all ones, respectively. Finally, the inequality � � � is understood
componentwise for any multi-indices � and �.
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2.2 Domains and function spaces

Let % D %.1/ be a probability measure on Œ�1; 1�. In this work, we focus on two main
examples, the uniform and Chebyshev (arcsine) measures. These are defined by

d%.y/ D 2�1 dy; and d%.y/ D
1

�
p
1 � y2

dy; y 2 U; (2.3)

respectively. See Chapter 11 for a short discussion on other domains and measures.
In finite dimensions, we let U D Œ�1; 1�d be the symmetric d -dimensional hyper-
cube and write y D .y1; : : : ; yd / 2 U for the variable in this domain. We define a
probability measure on U as the product measure

% D %.d/ WD %.1/ � � � � � %.1/:

In particular, the d -dimensional uniform and Chebyshev measures are given by

d%.y/ D 2�d dy and d%.y/ D
dY
kD1

1

�
q
1 � y2

k

dy; 8y 2 U;

respectively. In infinite dimensions, we consider the domain U D Œ�1; 1�N and write
y D .y1; y2; : : :/ 2 U for the variable in this domain. The Kolmogorov extension
theorem (see, e.g., [136, Section 2.4]) guarantees the existence of a tensor-product
probability measure on U, which we denote as

% D %.1/ D
Y
k2N

%.1/:

In either finite or infinite dimensions, for 1 � p � 1 we write Lp% .U/ for the corre-
sponding weighted Lebesgue spaces of complex scalar-valued functions over U and
k�kLp% .U/

for their norms.
Throughout, we let V be a separable Hilbert space over C (it presents few diffi-

culties to consider a complex field instead of the real field). We write h�; �iV and k�kV
for its inner product and norm. We define the weighted (Lebesgue-)Bochner space
L
p
% .UIV/ as the space consisting of (equivalence classes of) strongly %-measurable

functions f W U! V for which kf kLp% .UIV/ <1, where

kf kLp% .UIV/ WD

´ �R
U
kf .y/k

p

V
d%.y/

�1=p
1 � p <1;

ess supy2U kf .y/kV p D1:

Note that Lp% .U/ is a special case of Lp% .UIV/ corresponding to V D .C; j�j/.
When V is infinite dimensional, we usually cannot work directly with it. Hence,

we consider a finite-dimensional discretization

Vh � V : (2.4)



Holomorphy 13

Here h > 0 denotes a discretization parameter, e.g., the mesh size in the case of a
finite element discretization (as is common in parametric DEs). In the context of
finite elements, assuming (2.4) corresponds to considering so-called conforming dis-
cretizations. We let ¹'kºKkD1 be a (not necessarily orthonormal) basis of Vh, where
K D K.h/ D dim.Vh/. We write Ph W V ! Vh for the orthogonal projection onto
Vh and, for f 2 L2%.UIV/, we let Phf 2 L

2
%.UIVh/ be the function defined almost

everywhere as
.Phf /.y/ D Ph.f .y//; y 2 U: (2.5)

2.3 Holomorphy

Here we recall the definitions of holomorphy and holomorphic extension for Hilbert-
valued functions. We note that equivalent definitions are possible (see, e.g., [77,
Chapter 2]) and that the definition employed in this work is based on the notion of
the Gateaux partial derivative. For other details on differentiability of Hilbert-valued
functions we refer to [22, Chapter 17], and the references therein. Note the follow-
ing definitions apply in both the finite- (d 2 N) and infinite- (d D 1) dimensional
settings, where we recall that Œd � D N and Cd D CN when d D1.

Definition 2.1 (Holomorphy; finite- or infinite-dimensional case). Let d 2N [ ¹1º,
O � Cd be an open set and V be a separable Hilbert space. A function f W O ! V

is holomorphic in O if it is holomorphic with respect to each variable in O. That is to
say, for any z 2 O and any j 2 Œd �, the following limit exists in V :

lim
h2C
h!0

f .z C hej / � f .z/

h
2 V :

Let f W U ! V and U � O � Cd be an open set. If there is a function Qf W
O ! V that is holomorphic in O and for which Qf jU D f , then we say that f has a
holomorphic extension to O, or simply, that f is holomorphic in O. In this case, we
also define kf kL1.OIV/ WD k Qf kL1.OIV/ or, when V DC, simply kf kL1.O/. If O is
a closed set, then we say that f is holomorphic in O if it has a holomorphic extension
to some open neighborhood of O.

We are interested in approximating Hilbert-valued functions f WU! V that are
holomorphic in suitable complex regions containing U – specifically, regions defined
by Bernstein (poly)ellipses. When d D 1 the Bernstein ellipse of parameter � > 1 is
given by

E� D

²
1

2
.z C z�1/ W z 2 C; 1 � jzj � �

³
� C:

This is an ellipse with ˙1 as its foci and major and minor semi-axis lengths
1
2
.� ˙ ��1/. For d 2 N [ ¹1º, given � D .�j /

d
jD1 2 Rd with � > 1, we define
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the Bernstein polyellipse as the Cartesian product

E.�/ D E.�1/ � E.�2/ � � � � � Cd :

We denote the class of Hilbert-valued functions that are holomorphic in E.�/ with
norm at most one as

B.�/ D
®
f W U! V ; f holomorphic in E.�/; kf kL1.E.�/IV/ � 1

¯
: (2.6)

In infinite dimensions, we also consider a class of functions that are holomorphic in
a certain union of Bernstein polyellipses. Let 0 < p < 1, " > 0 and b D .bj /j2N 2

`p.N/. We define

R.b; "/ D
[´

E.�/ W � � 1;
1X
jD1

�
�j C �

�1
j

2
� 1

�
bj � "

µ
:

In analogy with B.�/, we write

B.b; "/ D
®
f W U! V ; f holomorphic in R.b; "/; kf kL1.R.b;"/IV/ � 1

¯
(2.7)

for the corresponding space of functions that are holomorphic in R.b; "/ with norm
at most one.

2.4 Orthogonal polynomials, polynomial expansions and best s-term
polynomial approximation

Under mild assumptions on %.1/ (see, e.g., [106, Section 2.1] or [132, Section 2.2]),
there exists a unique orthonormal polynomial basis ¹‰�º�2N0 of L2%.Œ�1; 1�/, where

‰� D‰
.1/
� is a polynomial of degree �. For the measures (2.3), these are the Legendre

and Chebyshev polynomials, respectively. Given the corresponding tensor-product
measure % on U D Œ�1; 1�d , we construct an orthonormal basis

¹‰�º�2F � L
2
%.U/

of L2%.U/ via tensorization

‰�.y/ D
Y
k2Œd�

‰�k .yk/; y 2 U; � 2 F :

Note that ‰.1/0 D 1 since %.1/ is a probability measure. Therefore, since � 2 F has
only finitely many nonzero entries, in infinite dimensions this equivalent to

‰�.y/ D
Y

kW�k¤0

‰�k .yk/;

which is a product of finitely many terms.
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Let f 2 L2%.UIV/. Then it has the convergent expansion (in L2%.UIV/) given by

f D
X
�2F

c�‰�; c� WD

Z
U

f .y/‰�.y/ d%.y/ 2 V ; (2.8)

where the coefficients c� are elements of V . Now let S � F be a finite index set and

PS IV D
°X
�2S

c�‰� W c� 2 V
±
� L2%.UIV/: (2.9)

Then the L2.UIV/-norm best s-term polynomial approximation fs of f is defined
as

fs 2 argmin
®
kf � gkL2%.UIV/ W g 2 PS;V ; S � F ; jS j D s

¯
: (2.10)

Note that fs has the explicit expression

fs D
X
�2S�

c�‰�;

where S� � F , jS�j D s, is a set of consisting of the multi-indices of the largest s
values of the coefficient norms .kc�kV /�2Nd

0
. By Parseval’s identity, the error of this

approximation satisfies

kf � fskL2%.UIV/ D

sX
�…S�

kc�k
2
V : (2.11)

2.5 Sequence spaces and best s-term approximation of sequences

The expression (2.11) motivates studying s-term approximation of sequences of poly-
nomial coefficients. To do this, we now introduce some further notation.

Let ƒ � F denote a (possibly infinite) multi-index set. We write v D .v�/�2ƒ
for a sequence with V -valued entries v� 2 V . For 1 � p � 1, we define the space
`p.ƒIV/ as the set of those sequences v D .v�/�2ƒ for which kvkpIV <1, where

kvkpIV WD

´ �P
�2ƒ kv�k

p

V

�1=p
1 � p <1;

sup�2ƒ kv�kV p D1:

Note that `2.ƒIV/ is a Hilbert space with inner product

hu; vi2IV D
X
�2ƒ

hu�; v�iV :

On occasion, we will consider complex, scalar-valued sequences. In this case, V D

.C; j�j/ in the various definitions above. For ease of notation, we simply write `p.ƒ/,
k�kp , h�; �i2 and so forth in this case.
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Definition 2.2 (Sparsity). Letƒ� F and c D .c�/�2ƒ be a V -valued sequence. The
support of c is the set

supp.c/ D ¹� 2 ƒ W kc�kV ¤ 0º:

A sequence is s-sparse for some s 2 N0 satisfying s � jƒj if it has at most s nonzero
entries, i.e.,

jsupp.c/j � s:

Definition 2.3 (Best s-term approximation error). Let ƒ � F , 0 < p � 1, c 2
`p.ƒIV/ and s 2 N0 with s � jƒj. The `p-norm best s-term approximation error
of c is

�s.c/pIV D min
®
kc � zkpIV W z 2 `

p.ƒIV/; jsupp.z/j � s
¯
:

Let c D .c�/�2F be the coefficients of some function f 2 L2%.UIV/, as defined
in (2.8). Then, when p D 2, we have the following:

�s.c/2IV D kf � fskL2%.UIV/;

where fs is its best s-term polynomial approximation (2.10). Therefore, we can study
the error of fs by studying the quantity �s.c/2IV . For notational purposes, we denote
this quantity in terms of the coefficients c. However, on some occasions, this term is
expressed as �s.f /2IV instead.

2.6 Rates of best s-term polynomial approximation

As noted, best s-term polynomial approximation of holomorphic functions is a well-
studied subject, especially in the context of solutions of parametric DEs. See, e.g.,
[23–25, 27, 36, 42, 43, 75, 115, 139, 141] and, in particular, [41] and [8, Chapter 3]. In
this section, we recap two standard types of error decay rates for this approximation,
those of algebraic and exponential type, respectively. Note that these results are for
Chebyshev and Legendre polynomial approximations – the main focus of the work.
The latter type of decay rate holds in finite dimensions, while the former holds in
both finite and infinite dimensions. In this work, these error decay rates serve as the
optimal benchmark against which to compare the approximations computed from
sample values.

The following two results are standard, and have appeared in various different
guises in the aforementioned works.

Theorem 2.4 (Algebraic rates of convergence; finite-dimensional case). Let 0 < p �
1 and f 2 B.�/ for some � > 1. Let c D .c�/�2Nd

0
be as in (2.8). Then, for every

s � 1 there are sets S1; S2 � F , jS1j; jS2j � s, such that

kf � fS1kL2%.UIV/ � C � s
1=2�1=p; kf � fS2kL1.UIV/ � C � s

1�1=p; (2.12)
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where fSi D
P
�2Si

c�‰� for i D 1; 2 and C D C.d;p;�/ > 0 depends on d , p and
� only.

Theorem 2.5 (Algebraic rates of convergence; infinite-dimensional case). Let 0 <
p < 1, " > 0, b D .bj /j2N 2 `

p.N/ and f 2 B.b; "/, where B.b; "/ is as in (2.7).
Then, for every s � 1 there are sets S1; S2 � F , jS1j; jS2j � s, such that

kf � fS1kL2%.UIV/ � C � s
1=2�1=p; kf � fS2kL1.UIV/ � C � s

1�1=p; (2.13)

where fSi D
P
�2Si

c�‰� for i D 1; 2 and C D C.b; "; p/ > 0 depends on b, " and
p only.

Observe that the curse of dimensionality is not avoided in the constant C.d;p;�/
in (2.12), but it is avoided in the rate. Conversely, (2.13) holds in infinite dimensions.

We next state a result on exponential convergence in finite dimensions. Such rates
have been established in various different works (see, e.g., [23,24,41,115,141]). The
following result is a minor modification of [8, Theorem 3.25], in which we allow
arbitrary s � 1 at the expense of a constant C in the error bound.

Theorem 2.6 (Exponential rates of convergence; finite-dimensional case). Let f 2
B.�/ for some � > 1 and c D .c�/�2Nd

0
be as in (2.8). Then, for every s � 1 there is

a set S � F , jS j � s, such that

kf � fSkL2%.UIV/ � kf � fSkL1.UIV/ � C � exp
�
�
s1=d

�
; (2.14)

for all

0 < 
 < .d C 1/�1

 
dŠ

dY
jD1

ln.�j /

!1=d
; (2.15)

where fS D
P
�2S c�‰� and C D C.d; 
; p; �/ > 0 is a constant depending on d ,


 , p and � only.

In Appendix A we show how these three theorems can be obtained as immediate
consequences of several more general results.

Remark 2.7. It is possible to improve the rate (2.14) by removing the .d C 1/�1

factor in (2.15) [141]. The difficulty in doing this is that such rates are not necessarily
attained in lower sets (this is, however, true if � is sufficiently large – see [8, Lemma
7.20]). As we discuss next, lower sets are a crucial ingredient in our analysis. Fortu-
nately, the rates described in Theorem 2.6 can always be attained in lower sets.

2.7 Lower and anchored sets

Our objective in this work is to construct a polynomial approximation that attains
error bounds that are similar to those of the best s-term approximation fs , for any
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holomorphic function f . Hence, ideally, we would have access to the multi-index
set S corresponding to the largest s coefficients of f (measured in the V -norm).
As discussed, this is not possible in general, since the only information we have
about f is its values at a finite number of sample points. Another problem is that
such coefficients could occur at arbitrarily large multi-indices, thus necessitating a
search over infinitely many multi-indices. Fortunately, it is well known that near-best
s-term polynomial approximations can be constructed using sets of multi-indices with
additional structure. These are lower sets (used in the finite-dimensional case) and
anchored sets (used in the infinite-dimensional case). Classical references for lower
and anchored sets include [50, 90, 96, 138]. More recently, these structures have been
used extensively in the construction of interpolation, least-squares and compressed
sensing schemes for polynomial approximation with desirable sample complexity
bounds (see, e.g., [8] and references therein).

Definition 2.8. A set ƒ � F is lower if the following holds for every �;� 2 F :

.� 2 ƒ and � � �/) � 2 ƒ:

A set ƒ � F is anchored if it is lower and if the following holds for every j 2 N:

ej 2 ƒ) ¹e1; e2; : : : ; ej º � ƒ:

Lower sets are typically used in finite-dimensional settings, with anchored sets
being employed in infinite dimensions. They are key concepts that we exploit in this
work. To underscore their usefulness, we remark in passing that the rates articulated
in not just Theorem 2.6, but also Theorems 2.4 and 2.5, can all be attained using s-
term approximations in lower or anchored sets, subject to some modifications. See
Appendix A.


