
Chapter 3

Problem statement and main results

In this chapter, we first formally define the problem we aim to solve before stating our
main results. This work concerns algorithms for computing approximation of Hilbert-
valued functions from finitely many sample values. We define this concept formally
in a moment. For now, though, we consider that an algorithm must take a finite input
and produce a finite output. Hence, in order to discuss algorithms, we first need to
define what these finite inputs and outputs are in our setting.

3.1 Samples

Let f 2 L2%.UIV/ be the function we seek to approximate. Throughout this work,
we consider m sample points y1; : : : ; ym 2 U drawn randomly and independently
according to the probability measure %. Corresponding to each sample point, we con-
sider the noisy sample values

di D f .yi /C ni 2 Vh; i D 1; : : : ; m;

where n D .ni /miD1 2 Vm is an error term, referred to as the sampling error. Observe
that the samples values di are assumed to be elements of the finite-dimensional space
Vh. This is a natural assumption to make. Indeed, in the context of parametric DEs,
the value f .y/ (the solution of the DE with parameter value y) is typically computed
via a (finite element) discretization of the DE, thus yielding an element of Vh, which
is the corresponding discrete (finite element) space.

As a result of the assumption di 2 Vh, the error term ni encompasses the error
involved in approximating f .yi / 2 V by an element of Vh, e.g., the (finite element)
discretization error in the context of a parametric DE. Note that we do not specify
precisely how such an approximation is performed, nor how large an error this results
in. In other words, we consider the computation that evaluates f at yi as a black box.
A particular case of interest is when the di are the orthogonal projections of the exact
sample values f .yi /, i.e.,

di D Ph.f .yi //; i D 1; : : : ; m:

However, we do not assume this in what follows, since in practice the numerical
procedure that yields the di may not involve computing the projection Ph. Our goal
is to develop algorithms for which the error scales linearly in knk2IV , the norm of the
noise, thus accounting for any black box mechanism for computing the samples.
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Recall that we consider a basis ¹'kºKkD1 for Vh. We assume that the computation
that evaluates f .yi / produces the coefficients of the sample values di in this basis
(i.e., the finite element coefficients in the aforementioned example). Therefore, we
now write the sample values as

di D f .yi /C ni D

KX
iD1

dik'k; i D 1; : : : ; m; (3.1)

and consider the values dik 2 C as the data we obtain by sampling f .

3.2 Problem statement

We now formally define the input and output of the algorithm. The input of the
algorithm is the collection of sample points .yi /miD1 and the array of mK values
.di;k/

m;K
i;kD1

2 Cm�K defined by (3.1). We next define the output. To this end, we
first fix a multi-index set ƒ � F of size jƒj D N for some N � 1. This set defines
a polynomial space PƒIVh , as in (2.9), within which we shall construct the result-
ing polynomial approximation. Hence, we consider an approximation of the form
Of 2 PƒIVh given by

Of W y 7!

NX
jD1

 
KX
kD1

Ocjk'k

!
‰�j .y/; (3.2)

where Ocj;k 2 C for j 2 ŒN �, k 2 ŒK� and �1; : : : ; �N is some indexing of the multi-
indices in ƒ. In this way, we define formally the output of the algorithm as the array
of coefficients . Ocjk/

N;K
j;kD1

2 CN�K .
Finally, in order to define an algorithm we need one additional ingredient. Let

G D .h'j ; 'kiV /
K
j;kD1 2 CK�K (3.3)

denote the Gram matrix of the basis ¹'kºKkD1 � Vh. Note that G is self adjoint
and positive definite. However, G is only equal to the identity when ¹'kºKkD1 is
orthonormal. In what follows, we assume that it is possible to perform matrix-vector
multiplications with G . In other words, we have access to the function

TG W C
K
! CK ; x 7! Gx:

We also write F.G / for the maximum number of arithmetic operations and compar-
isons required to evaluate TG .x/ for arbitrary x. Note that F.G / � K2 in general.
However, this may be smaller when G is structured. For instance, in the case of a
finite element discretization, this computation can often be performed in O.K/ oper-
ations.
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Definition 3.1 (Algorithm for polynomial approximation of Hilbert-valued functions).
Letƒ� F of size jƒj DN be given, along with an indexing �1; : : : ;�N of the multi-
indices inƒ. An algorithm for polynomial approximation of Hilbert-valued functions
from sample values is a mapping

A W Um
�Cm�K

! CN�K ;
�
.yi /

m
iD1; .di;k/

m;K
i;kD1

�
7! . Ocjk/

N;K
j;kD1

;

for which the evaluation of A..yi /; .di;k// involves only finitely many arithmetic
operations (including square roots), comparisons and evaluations of the matrix-vector
multiplication function TG . If .dik/ is as in (3.1) for some f 2 L2%.UIV/, then the
resulting approximation Of of f is given by (3.2), where . Ocjk/ D A..yi /; .di;k//.
The computational cost of an algorithm A is the maximum number of arithmetic
operations and comparisons (including those used in the evaluation of TG ) used to
compute the output from any input.

Remark 3.2. As formulated above, it is up to the user to choose a suitable multi-
index set ƒ. Fortunately, as we see in our main results below, this multi-index set is
given simply and explicitly in terms of m and another parameter � (a failure prob-
ability). In particular, no ‘oracle’ knowledge of the function being approximated is
required. Thus, one can also make the stronger assertion in what follows in which
the algorithm takes the same input, but outputs both the desired index set ƒ and the
polynomial coefficients. For ease of presentation, we shall not do this.

Remark 3.3. When d D 1 each sample point yi is an infinite sequence of real
numbers. It is implicit in Definition 3.1 that the algorithm only accesses finitely many
entries of this sequence. This does not cause any problems. As noted, the polyno-
mial approximation is obtained in the index set ƒ, which is a finite subset of F .
Hence, the multi-indices in ƒ are nonzero only in their first n entries, for some finite
n. Therefore, it is only necessary to access the first n entries of each sequence yi .
More concretely, in our main results below, the polynomial approximation in infinite
dimensions is obtained in a multi-index set ƒ D ƒHCI

n in which only the first n terms
can be nonzero, where n is an integer given explicitly in terms of m and �.

3.3 Main results

We now present the main results of this work. We reiterate at this stage that these
results are formulated for Chebyshev and Legendre polynomials. See Chapter 11 for
some further discussion on other polynomial systems.

As noted above, these results employ specific choices of the index set ƒ in
order to obtain the desired approximation rates. Specifically, in finite dimensions, we
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consider the hyperbolic cross index set

ƒ D ƒHC
n;d D

´
� D .�k/

d
kD1 2 Nd

0 W

dY
kD1

.�k C 1/ � n

µ
� Nd

0 : (3.4)

We term n the order of the hyperbolic cross. Note that it is common to consider (3.4)
as the hyperbolic cross of order n� 1. We use n here as it is slightly more convenient
for this work. When defined this way, ƒHC

n;d
is in fact the union of all lower sets (see

Definition 2.8) in d dimensions of size at most n (see, e.g., [8, Proposition 2.5]).
Thus, this set is a natural choice for polynomial approximation.

In infinite dimensions, we define the following index set

ƒ D ƒHCI
n D

´
� D .�k/

1
kD1 2 F W

nY
jD1

.�k C 1/ � n; �k D 0; k > n

µ
� F :

Similarly, the union of all anchored sets (Definition 2.8) of size at most n in infinite
dimensions is a subset of ƒHCI

n (see, e.g., [8, Proposition 2.18]). Note that ƒHCI
n is

isomorphic to ƒHC
n;n under the restriction map

� D .�k/
1
kD1 2 F 7! .�k/

n
kD1 2 Nd

0 :

For convenience, we now also define

N D ‚.n; d/ D

´
jƒHC
n;d
j d <1;

jƒHCI
n j D jƒ

HC
n;nj d D1;

(3.5)

as the cardinality of the index set employed. In general, the exact behaviour of‚.n;d/
is unknown. However, it admits a variety of different bounds. These are summarized
as follows for d <1:

N D jƒHC
n;d j � min

²
2n34d ; en2Clog.d/= log.2/;

n.log.n/C d log.2//d�1

.d � 1/Š

³
: (3.6)

The bounds are based on [32, 89]. See also [8, Lemmas B.3–B.5].
Finally, we also define

˛ D

´
1 Legendre;

log.3/= log.4/ Chebyshev;
(3.7)

and, given m � 3 and � 2 .0; 1/, L D L.m; d; �/ as

LD

´
log.m/ � .log.m/ �min¹log.m/Cd; log.ed/ � log.m/ºClog.��1// d <1;

log.m/ � .log3.m/C log.��1// dD1:

(3.8)



Main results 23

3.3.1 Algebraic rates of convergence, finite dimensions

Theorem 3.4 (Existence of a mapping; algebraic case, finite dimensions). Let d 2N,
¹‰�º�2Nd

0
� L2%.U/ be either the orthonormal Chebyshev or Legendre basis and

¹'kº
K
kD1

be a basis for Vh. Then for every m � 3, 0 < � < 1 and K � 1, there is a
mapping

M W Um
�Cm�K

! CN�K ;

where N D ‚.n; d/ is as in (3.5) with n D dm=Le and L D L.m; d; �/ as in (3.8),
with the following property. Let f 2 B.�/ for arbitrary � > 1, draw y1; : : : ; ym
randomly and independently according to % and let .dik/

m;K
i;kD1

2Cm�K be as in (3.1)
for arbitrary noise terms n D .ni /

m
iD1 2 V . Let . Ocjk/ D M..yi /; .dik// and define

the approximation Of as in (3.2) based on the index setƒDƒHC
n;d

. Then the following
holds with probability at least 1 � �. The error satisfies

kf � Of kL2%.UIV/ � c1 � �; kf �
Of kL1.UIV/ � c2 �

r
m

L
� �; (3.9)

for any 0 < p � 1, where

� WD C �
� m

c0L

�1=2�1=p
C
knk2IV
p
m
C kf �Ph.f /kL1.UIV/; (3.10)

c0; c1; c2 � 1 are universal constants and C D C.d; p; �/ depends on d , p and �
only.

We now make several remarks about this result. The same remarks apply (with
obvious modifications) to all subsequent results as well. First, notice how the index set
ƒ in which the approximation is constructed is given completely explicitly in terms
of m, d and �. Thus, as claimed in Remark 3.2, no ‘oracle’ information about the
function being approximated is required. Indeed, notice that the mapping described in
this theorem is universal in the sense that its applies equally to any function f 2B.�/

and any � > 1.
A key aspect of this theorem is the factor �, defined in (3.10), which determines

the error bounds (3.9). As claimed in Section 1.4, this incorporates three main key
errors arising in the approximation process.

(i) The approximation error. This is the algebraically decaying term in �:
namely, Eapp D C � .m=.c0L//

1=2�1=p . It is completely equivalent to the
best s-term approximation error bound in Theorem 2.4, except with s re-
placed by m=.c0L/.

(ii) The sampling error. This is the term Esamp D knk2IV=
p
m, where n D

.ni /
m
iD1 is as in (3.1). In other words, the effect of any errors in comput-

ing the sample values f .yi / enters linearly in the overall error bound.
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(iii) The physical discretization error. This is the term

Edisc D kf �Ph.f /kL1.UIV/:

It describes the effect of working in the finite-dimensional subspace Vh,
instead of the full space V . Critically, it depends on the orthogonal projec-
tion (best approximation) Ph.f / of f from Vh.

Notice that (i) also describes the sample complexity of the scheme. Indeed, Theo-
rem 3.4 asserts that there is a polynomial approximation that can be obtained from m

samples that attains the best s-term rate s1=2�1=p , where s D m=.c0L/ scales like m
up to the polylogarithmic factor L.

Theorem 3.4 asserts the existence of a mapping that takes samples values as its
input and produces the coefficients of a polynomial approximation attaining a desired
error bound as its output. The mapping, as we see later, arises as a minimizer of a
certain weighted `1-minimization problem. Thus, it is not an algorithm in the sense
of Definition 3.1. In the next two theorems we assert the existence of algorithms that
attain the same error, plus additional algorithmic error terms.

Theorem 3.5 (Existence of an algorithm; algebraic case, finite dimensions). Con-
sider the setup of Theorem 3.4. Then, for every t � 1, there exists an algorithm

At W U
m
�Cm�K

! CN�K ;

in the sense of Definition 3.1 such that the same property holds, except with (3.9)
replaced by

kf � Of kL2%.UIV/ � c1 �

�
� C

1

t

�
;

kf � Of kL1.UIV/ � c2 �

r
m

L
�

�
� C

1

t

�
;

where c1; c2 � 1 are as in (3.9) and � is as in (3.10). The computational cost of the
algorithm is bounded by

c3 �Œm �‚.n; d/ � dCt �.m �‚.n; d/ �KC.‚.n; d/Cm/�.F.G /CK//�.‚.n; d//
˛�;

(3.11)
where n D dm=Le is as in Theorem 3.4, ‚.n; d/ is as in (3.5), ˛ is as in (3.7) and
c3 > 0 is a universal constant.

The key element of this theorem is that the same error bound as in Theorem 3.4
is attained, up to an additional term. In particular, we have the three sources of errors
(i)–(iii), plus the following:

(iv) The algorithmic error. This is the error Ealg D 1=t committed by the algo-
rithm At in approximately computing the output of the mapping M in Theo-
rem 3.4. It is given in terms of the parameter t , which also enters linearly into
the computational cost estimate (3.11).
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Unfortunately, the 1=t decay rate of the algorithmic error is slow. Hence, it may be
computationally expensive to compute an approximation to within a desired error
bound. Fortunately, as we now explain, it is possible to improve it to e�t subject to an
additional technical assumption.

Theorem 3.6 (Existence of an efficient algorithm; algebraic case, finite dimensions).
Consider the setup of Theorem 3.4. Then for every t � 1 and �0 > 0 there exists an
algorithm

At;� 0 W U
m
�Cm�K

! CN�K ;

in the sense of Definition 3.1 such that the same property holds whenever �0 � �,
except with (3.9) replaced by

kf � Of kL2%.UIV/ � c1 � .� C �
0
C e�t /;

kf � Of kL1.UIV/ � c2 �

r
m

L
� .� C �0 C e�t /;

(3.12)

where c1; c2 � 1 are as in (3.9) and � is as in (3.10). The computational cost of the
algorithm is bounded by

c3 �Œm �‚.n; d/�dCt � .m �‚.n; d/�KC.‚.n; d/Cm/�.F.G /CK//�.‚.n; d//
˛�;

where n D dm=Le is as in Theorem 3.4, ‚.n; d/ is as in (3.5), ˛ is as in (3.7) and
c3 > 0 is a universal constant.

We refer to this as an “efficient” algorithm, since the parameter t enters linearly in
the computational cost but the algorithmic error scales like e�t . The main limitation
of this result is that the algorithm parameter �0 needs to be an upper bound for the
true error bound � in order for (3.12) to hold. This is a technical assumption for the
proof, and does not appear necessary in practice. We demonstrate this phenomenon
through numerical experiment in Chapter 5.

3.3.2 Algebraic rates of convergence, infinite dimensions

We now consider algebraic rates of convergence in the infinite-dimensional setting.
The next three results should be compared against the corresponding best s-term
approximation result, Theorem 2.5.

Theorem 3.7 (Existence of a mapping; algebraic case, infinite dimensions). Let
d D1, ¹‰�º�2Nd

0
�L2%.U/ be either the orthonormal Chebyshev or Legendre basis

and ¹'kºKkD1 be a basis for Vh. Then for every m � 3, 0 < � < 1 and K � 1, there is
a mapping

M W Um
�Cm�K

! CN�K ;
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where N D ‚.n; d/ is as in (3.5) with n D dm=Le, where L D L.m; d; �/ is as
in (3.8), with the following property. Let " > 0, 0 < p < 1 and b 2 `p.N/, b > 0,
be monotonically nonincreasing. Let f 2 B.b; "/, draw y1; : : : ; ym randomly and
independently according to % and let .dik/

m;K
i;kD1

2 Cm�K be as in (3.1) for arbitrary
noise terms n D .ni /miD1 2 V . Let . Ocjk/ DM..yi /; .dik// and define the approxima-
tion Of as in (3.2) based on the index set ƒ D ƒHCI

n . Then the following holds with
probability at least 1 � �. The error satisfies

kf � Of kL2%.UIV/ � c1 � �; kf �
Of kL1.UIV/ � c2 �

r
m

L
� �; (3.13)

where

� WD C �
� m

c0L

�1=2�1=p
C
knk2IV
p
m
C kf �Ph.f /kL1.UIV/; (3.14)

c0; c1; c2 � 1 are universal constants and C D C.b; ";p/ depends on b, " and p only.

Theorem 3.8 (Existence of an algorithm; algebraic case, infinite dimensions). Con-
sider the setup of Theorem 3.7. Then, for every t � 1, there exists an algorithm

At W U
m
�Cm�K

! CN�K ;

in the sense of Definition 3.1 such that the same property holds, except with (3.13)
replaced by

kf � Of kL2%.UIV/ � c1 �

�
� C

1

t

�
;

kf � Of kL1.UIV/ � c2 �

r
m

L
�

�
� C

1

t

�
;

where c1; c2 � 1 are as in (3.13) and � is as in (3.14). The computational cost of the
algorithm is bounded by

c3 �Œm�‚.n;1/�nCt �.m�‚.n;1/�KC.‚.n;1/Cm/�.F.G /CK//�.‚.n;1//
˛�;

where n D dm=Le is as in Theorem 3.7, ‚.n;1/ is as in (3.5), ˛ is as in (3.7) and
c3 > 0 is a universal constant.

In finite dimensions, the computational cost estimate (3.11) is somewhat difficult
to interpret, since its behaviour depends on the relative sizes ofm and d . Fortunately,
in infinite dimensions we can give a more informative assessment. Suppose, for sim-
plicity, that K is fixed (for example, K D 1 in the case of a scalar-valued function
approximation problem). Then the computational cost is bounded by

c �m �‚.n;1/ � nC cK � t �m �‚.n;1/
˛C1;
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where c > 0 is a universal constant cK > 0 is a constant depending on K only.
Recall from (3.5) that ‚.n;1/ D jƒHCI

n j D jƒ
HC
n;nj. Now, when d D n and n is suf-

ficiently large, the minimum in (3.6) is attained by the second term en2Clog.n/= log.2/.
Substituting this into the above expression and recalling that n D dm=Le, where
L D L.m;1; �/, we deduce that the computational cost is bounded by

cK � t �m � g.m/
.˛C1/ log.4g.m//= log.2/; g.m/ WD

�
m

log.m/ � .log3.m/C log.��1//

�
:

Since m � 3 by assumption, we have log.m/ � 1 and therefore g.m/ � m. Hence,
this admits the slightly looser upper bound

cK � t �m
1C.˛C1/ log.4m/= log.2/:

We deduce that the computational cost (for fixed K and t ) is subexponential in m.
Further, if we choose t D m1=p�1=2 in accordance with the algebraically decaying
term in (3.14), then we conclude the following: it is possible to approximate a holo-
morphic function of infinitely many variables with error decaying algebraically fast
inm via an algorithm whose computational cost is subexponential inm. Whether this
can be reduced to an algebraic cost is an open problem.

Theorem 3.9 (Existence of an efficient algorithm; algebraic case, infinite dimen-
sions). Consider the setup of Theorem 3.7. Then, for every t � 1 and �0 > 0 there
exists an algorithm

At;� 0 W U
m
�Cm�K

! CN�K ;

in the sense of Definition 3.1 such that the same property holds whenever �0 � �,
except with (3.13) replaced by

kf � Of kL2%.UIV/ � c1 � .� C �
0
C e�t /;

kf � Of kL1.UIV/ � c2 �

r
m

L
� .� C �0 C e�t /;

where c1; c2 � 1 are as in (3.13) and � � �0 is as in (3.14). The computational cost
of the algorithm is bounded by

c3 �Œm�‚.n;1/�nCt �.m�‚.n;1/�KC.‚.n;1/Cm/�.F.G /CK//�.‚.n;1//
˛�;

where n D dm=Le is as in Theorem 3.7, ‚.n;1/ is as in (3.5), ˛ is as in (3.7) and
c3 > 0 is a universal constant.

3.3.3 Exponential rates of convergence, finite dimensions

Finally, we consider exponential rates of convergence in finite dimensions. The fol-
lowing results should be compared against Theorem 2.6.
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Theorem 3.10 (Existence of a mapping; exponential case, finite dimensions). Let
d 2 N, ¹‰�º�2Nd

0
� L2%.U/ be either the orthonormal Chebyshev or Legendre basis

and ¹'kºKkD1 be a basis for Vh. Then for every m � 3, 0 < � < 1 and K � 1, there is
a mapping

M W Um
�Cm�K

! CN�K ;

where N D ‚.n; d/ is as in (3.5) with

n D

´
d
p
m=Le Legendre;

dm=.2dL/e Chebyshev;
(3.15)

and L as in (3.8), with the following property. Draw y1; : : : ;ym randomly and inde-
pendently according to %. Then, with probability at least 1 � �, the following holds.
Let f 2 B.�/ for arbitrary � > 1, .dik/

m;K
i;kD1

2 Cm�K be as in (3.1) for arbitrary

noise terms n D .ni /
m
iD1 2 V , . Ocjk/

N;K
j;kD1

D M..yi /
m
iD1; .dik/

m;k
i;kD1

/ and define the

approximation Of as in (3.2) based on the index set ƒ D ƒHC
n;d

. Then the error satis-
fies

kf � Of kL2%.UIV/ � c1 � �; kf �
Of kL1.UIV/ � c2 �

r
m

L
� �; (3.16)

for any

0 < 
 < .d C 1/�1

 
dŠ

dY
jD1

log.�j /

!1=d
;

where

� WD C �

8̂<̂
:

exp
�
�


2

�
m
c0L

� 1
d

�
Chebyshev

exp
�
�

�
m
c0L

� 1
2d

�
Legendre

C
knk2IV
p
m
C kf �Ph.f /kL1.UIV/;

(3.17)
c0; c1; c2 � 1 are universal constants and C D C.d; 
; �/ depends on d , 
 and �
only.

Theorem 3.11 (Existence of an algorithm; exponential case, finite dimensions). Con-
sider the setup of Theorem 3.10. Then, for every t � 1, there exists an algorithm

At W U
m
�Cm�K

! CN�K ;

in the sense of Definition 3.1 such that the same property holds, except with (3.16)
replaced by

kf � Of kL2%.UIV/ � c1 �

�
� C

1

t

�
;

kf � Of kL1.UIV/ � c2 �

r
m

L
�

�
� C

1

t

�
;
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where c1; c2 � 1 are as in (3.16) and � is as in (3.17). The computational cost of the
algorithm is bounded by

c3 �Œm �‚.n; d/�nCt �.m �‚.n; d/�KC.‚.n; d/Cm/�.F.G /CK//�.‚.n; d//
˛�;

where n is as in (3.15),‚.n;d/ is as in (3.5), ˛ is as in (3.7) and c3 > 0 is a universal
constant.

Theorem 3.12 (Existence of an efficient algorithm; exponential case, finite dimen-
sions). Consider the setup of Theorem 3.10. Suppose that there is a known upper
bound �0 � �, where � is as in (3.17). Then, for every t � 1 and �0 > 0 there exists an
algorithm

At;� 0 W U
m
�Cm�K

! CN�K ;

in the sense of Definition 3.1 for which the same property holds whenever �0 � �,
except with (3.16) replaced by

kf � Of kL2%.UIV/ � c1 � .� C �
0
C e�t /;

kf � Of kL1.UIV/ � c2 �

r
m

L
.� C �0 C e�t /;

where c1; c2 � 1 are as in (3.16) and � is as in (3.17). The computational cost of the
algorithm is bounded by

c3 �Œm �‚.n; d/ � nCt �.m �‚.n; d/ �KC.‚.n; d/Cm/�.F.G /CK// � .‚.n; d//
˛�;

where n is as in (3.15),‚.n;d/ is as in (3.5), ˛ is as in (3.7) and c3 > 0 is a universal
constant.

As before, suppose thatK is fixed and, since we consider exponential rates, that d
is also fixed. Then, using the third estimate in (3.6), we deduce that the computational
cost of this algorithm is bounded by

cK;d �
�
m � n2 � .log.n//d�1 C t �m �

�
n � .log.n//d�1

�˛C1�
:

Using the crude bound n � m, we obtain the bound

cK;d �
�
t �m˛C2.log.m//.d�1/.˛C1/

�
:

Thus, for fixed t , the computational cost is polynomial inm asm!1. In particular,
with the efficient algorithm of Theorem 3.12 (subject to the caveat that an upper
bound for the error is known) we deduce the following: in fixed dimension d , it is
possible to approximate a holomorphic function with error decaying exponentially
fast inm via an algorithm whose computational cost is polynomial inm. Whether the
polynomial growth rate described above is sharp is an open problem.



30 Problem statement and main results

Remark 3.13. There is a subtle difference between the algebraic and exponential
results. The former are nonuniform in the sense that a single draw of the sample points
y1; : : : ; ym is sufficient for recovery of a fixed function f with high probability up
to the specified error bound. The latter are uniform, since a single draw of the sample
points y1; : : : ; ym is sufficient for recovery of any function with high probability
up to the specified error bound. The reason for this difference stems from bounding
a discrete error term (8.10), which is a random variable depending on f and the
sample points. In the algebraic case, in order to obtain the desired algebraic exponent
1=2 � 1=p we bound this term with high probability for each fixed f . See Step 4 of
the proof of Theorem 8.2. This renders the ensuing result nonuniform. Conversely, in
the exponential case (where the appearance of small algebraic factors is not a concern,
since they can be absorbed into the exponentially decaying term) we bound this term
with probability one for any f . See Step 4 of the proof of Theorem 8.4. Note that
one could also derive uniform guarantees in the algebraic case by considering a fixed
value of p and letting M and A depend on p, or by considering a restricted range
0 < p � p� < 1. Both strategies involve a larger value of n, with its size depending
on p or p�. See [8, Section 7.6.2] for further discussion.


