
Chapter 4

Construction of the algorithms

In this chapter, we describe the construction of the algorithms asserted in our main
results. These are based on techniques from compressed sensing [8, 13, 61] on the
premise that the polynomial coefficients of a holomorphic function are approximately
sparse. There are several main differences between standard compressed sensing and
what we develop below. First, following [2,7,8,37,119,121], we work in a weighted
setting in order to promote sparsity in lower or anchored sets (recall Section 2.7). Sec-
ond, following [52], we work with Hilbert-valued vectors, whose entries take values
in the Hilbert space V . Finally, so as to avoid unrealistic assumptions on the func-
tions being approximated, we use consider noise-blind decoders, as in [3]. See also
Remark 4.1.

4.1 Recovery via Hilbert-valued, weighted `1-minimization

We first require some additional notation. GivenN 2N we let VN be the vector space
of Hilbert-valued vectors of length N , i.e., v D .vi /NiD1 where vi 2 V , i D 1; : : : ;N .
Next, given ƒ � F and a vector of positive weights w D .w�/�2ƒ, where w > 0,
we define the weighted `pw.ƒIV/ space, 0 < p � 2, as the set of V -valued sequences
v D .v�/�2ƒ for which

kvkp;wIV WD
�X
�2ƒ

w2�p� kv�k
p

V

�1=p
<1:

Notice that `2w.ƒIV/ coincides with the unweighted space `2.ƒIV/.
Now, let ƒ � F be a finite multi-index set of size jƒj D N and consider the

ordering ƒ D ¹�1; : : : ; �N º. Note that we will, in practice, choose either ƒ D ƒHC
n;d

when d <1 or ƒ D ƒHCI
n when d D 1, where the order n is as described in the

corresponding theorem (Theorems 3.4–3.12). With this in mind, given f 2L2%.UIV/,
define

fƒ D
X
�2ƒ

c�‰� (4.1)

as the truncated expansion of f based on the index set ƒ and

cƒ D .c�j /
N
jD1 2 VN (4.2)

as the finite vector of coefficients of f with indices inƒ. As explained in Section 3.2,
our objective is, in effect, to approximate these coefficients.

32 Construction of the algorithms

We do this as follows. Given y1; : : : ;ym 2U, we define the normalized measure-
ment matrix

A D

�
‰�j .yi /
p
m

�m;N
i;jD1

2 Cm�N (4.3)

and the normalized measurement and error vectors

b D
1
p
m
.f .yi /C ni /

m
iD1 2 Vm

h ; e D
1
p
m
.ni /

m
iD1 2 Vm: (4.4)

Notice that any m � N matrix A D .aij /
m;N
i;jD1 extends to a bounded linear operator

VN ! Vm (or VN
h
! Vm

h
) in the obvious way, i.e.,

x D .xi /
N
iD1 2 VN

7! Ax D

NX
jD1

aijxj

!m
iD1

2 Vm:

For ease of notation, we make no distinction between the matrix A 2 Cm�N and the
linear operator A 2 B.VN ;Vm/ (or A 2 B.VN

h
;Vm

h
/) in what follows. Using this,

we obtain

Acƒ D
1
p
m
.fƒ.yi //

m
iD1 D

1
p
m
.f .yi //

m
iD1 �

1
p
m
.f .yi / � fƒ.yi //

m
iD1;

and therefore
Acƒ C e C e

0
D b; (4.5)

where
e0 D

1
p
m
.f .yi / � fƒ.yi //

m
iD1:

We have now formulated the recovery of cƒ as the solution of a noisy linear sys-
tem (4.5), where the noise term e C e0 encompasses both the noise e D .ni /miD1=

p
m

in the sample values and the error e0 due to the truncation (4.1) of the infinite expan-
sion (2.8) via the index set ƒ.

Due to the discussion in Sections 2.5–2.7, we expect the coefficients cƒ to not
only be approximately sparse, but also well approximated by a subset of s coeffi-
cients whose indices define a lower or anchored set. In classical compressed sensing,
one exploits sparse structure via minimizing an `1-norm. To exploit sparse and lower
structure, we follow ideas of [2,7,8,37] and use a weighted `1-norm penalty. Specif-
ically, we now compute an approximate solution via the Hilbert-valued, weighted
Square-Root LASSO (SR-LASSO) optimization problem

min
z2VN

h

G .z/; G .z/ WD �kzk1;wIV C kAz � bk2IV : (4.6)

Here � > 0 is a tuning hyperparameter.

Reformulation as a matrix recovery problem 33

Remark 4.1. As an alternative to solve this Hilbert-valued compressed sensing prob-
lem, we could use a formulation based on a constrained basis pursuit or unconstrained
LASSO problem. However, we consider the SR-LASSO problem (4.6) instead. While
other approaches are arguably more common, based on [3] the SR-LASSO has the
desirable property that the optimal values of its hyperparameter � is independent of
the noise term (in this case e C e0). This is not the case for other formulations, whose
hyperparameters need to be chosen in terms of the (unknown) magnitude of the noise
in order to ensure good theoretical and practical performance (see, e.g., [13, Chapter
6]). This is particularly problematic in the setting of function approximation, where
such terms are function dependent (for instance, the term e0 depends on the expansion
tail f � fƒ) and therefore generally unknown. See [3] and [8, Section 6.6] for further
discussion.

Notice that (4.6) is solved over VN
h

not VN , since the latter would not be numer-
ically solvable in general. As we see below, it can be reformulated an optimization
problem over CN�K , where K D dim.Vh/. However, since the true coefficients of
f are elements of V and not Vh, this discretization inevitably results in an additional
error, which must also be accounted for in the analysis. This leads precisely to the
physical discretization error (term (iii) in Section 3.3.1).

Finally, we now also specify the weights. Following [2,7,37] (see also [8, Remark
2.14]), a good choice of weights (for promoting lower or anchored structure) is given
by the so-called intrinsic weights

w D u D .u�/�2ƒ; u� D k‰�kL1.U/; � 2 ƒ: (4.7)

In particular, for Chebyshev and Legendre polynomials these are given explicitly by

u� D k‰�kL1.U/ D

´Qd
jD1

p
2�j C 1; Legendre;

2k�k0=2; Chebyshev;

where k�k0 WD jsupp.�/j. Typically, we index these weights over the multi-indices
� 2 ƒ. However, we will, for convenience, often write wi instead of w�i in what
follows, where, as above, ¹�1; : : : ; �N º is an ordering of ƒ.

4.2 Reformulation as a matrix recovery problem and the mappings in
Theorems 3.4, 3.7 and 3.10

We now describe the mappings whose existence is asserted in Theorems 3.4, 3.7
and 3.10. These maps all arise via exact solutions of weighted SR-LASSO optimiza-
tion problems. However, since (4.6) yields a vector in VN

h
and the mappings should

yield outputs in CN�K , we first need to reformulate (4.6) using the basis ¹'iºKiD1
for Vh.

34 Construction of the algorithms

Notice first that any vector of coefficients c D .c�i /
N
iD1 2 VN

h
is equivalent to a

matrix of coefficients
C D .cik/

N;K
i;kD1

2 CN�K ;

via the relation

c�i D

KX
kD1

cik'k; i 2 ŒN �:

Next, observe that if g D
PK
kD1 dk'k 2 Vh then

kgkV D kdkG D
p
d�Gd ;

where d D .dk/KkD1 2 CK and G 2 CK�K is the Gram matrix for ¹'kºKkD1, given
by (3.3). Since G is positive definite, it has a unique positive definite square root
matrix G1=2. Hence, we may write

kgkV D kG
1=2dk2:

We now use some additional notation. Given 1 � p � 1 and 1 � q � 2, we define
the weighted `p;qw -norm of a matrix C D .cik/

N;K
i;kD1

2 CN�K as

kC kp;q;w D

NX
iD1

w
2�p
i

KX
kD1

jcikj
q

!p=q!1=p
:

Note that this is precisely the weighted `pw-norm of the vector of .kcikq/
N
iD1, where

ci D .cik/
K
kD1
2 CK is the i th row of C . Further, if p D q D 2, then this is just the

unweighted `2;2-norm of a matrix (which is simply its Frobenius norm). In this case,
we typically write k�k2;2.

Now let z 2 VN
h

be arbitrary, Z 2 CN�K be the corresponding matrix and zi 2
CK be the i th row of Z . Then

kzk1;wIV D

NX
iD1

wikz�i kV D

NX
iD1

wikG
1=2zik2 D kZG

1=2
k2;1;w:

Similarly, letA D .aij /
m;N
i;jD1 2Cm�N and bD .bi /miD1 2 Vm

h
be as in (4.3) and (4.4),

respectively, and let B 2 Cm�K be the matrix corresponding to b. Then

kAz � bk
2
2IV D

mX
iD1

 NX
jD1

aij z�i � bi

2

V

D k.AZ �B/G1=2
k
2

2;2:

Therefore, we now consider the minimization problem

min
Z2CN�K

®
�kZk2;1;w C k.AZ �B/G

1=2
k2;2

¯
: (4.8)

The primal-dual iteration 35

• Let m, � and n be as given in the particular theorem and set ƒ D ƒHC
n;d

(Theorems 3.4 and 3.10) or ƒ D ƒHCI
n (Theorem 3.7).

• Set � D .4
p
m=L/�1, where L D L.m; d; �/ is as in (3.8).

• Let D D .dik/
m;K
i;kD1

2 Cm�K and Y D .yi /miD1 be an input, as in (3.1),
and set B D 1p

m
D.

• Let G , A and w be as in (3.3), (4.3) and (4.7), respectively.

• Define the output yC DM.Y ;D/ as the minimizer of (4.8) with smallest
`2;2-norm.

Table 4.1. The mappings M W Um �Cm�K ! CN�K used in Theorems 3.4, 3.7 and 3.10.

This is equivalent to (4.6) in the following sense. A vector Oc D . Oc�i /
N
iD1 2 VN

h
is a

minimizer of (4.6) if and only if the matrix yC D . Ocik/
N;K
i;kD1

2 CN�K with entries
defined by the relation

Oc�i D

KX
kD1

Ocik'k; i 2 ŒN �;

is a minimizer of (4.8).
With this in hand, we are now ready to define the mappings used in Theorems 3.4,

3.7 and 3.10. These are described in Table 4.1. Note that these are indeed well-defined
mappings, since the minimizer of (4.8) with smallest `2;2-norm is unique (this follows
from the facts that (4.8) is a convex problem, therefore its set of minimizers is a
convex set, and the function Z 7! kZk22;2 is strongly convex). This particular choice
is arbitrary, and is made solely so as to have a well-defined mapping. It is of no
consequence whatsoever in our analysis, since the various error bounds we prove
later hold for any minimizer of (4.8).

4.3 The primal-dual iteration

To derive the algorithms described in the other main theorems, we need methods for
approximately solving the optimization problems (4.6) and (4.8). We use the primal-
dual iteration [30] (also known as the Chambolle–Pock algorithm) to this end. We
first briefly describe the primal-dual iteration in the general case (see [30, 31, 31],
as well as [13, Section 7.5] for more detailed treatments), before specializing to the
weighted SR-LASSO problem in the next section.

Let .X; h�; �iX/ and .Y; h�; �iY/ be (complex) Hilbert spaces, g W X ! R [¹1º,
h W Y ! R [¹1º be proper, lower semicontinuous and convex functions and

36 Construction of the algorithms

A 2 B.X;Y/ be a bounded linear operator satisfying

dom.h/ \ A.dom.g// ¤ ;:

The primal-dual iteration is a general method for solving the convex optimization
problem

min
x2X
¹g.x/C h.A.x//º: (4.9)

Under this setting the (Fenchel–Rockafeller) dual problem is

min
�2Y
¹g�.A��/C h�.��/º;

where g� and h� are the convex conjugate functions of g and h, respectively. Recall
that, for a function f W X ! R [¹1º, its convex conjugate is defined by

f �.z/ D sup
x2X

.Rehx; ziV � f .x//; z 2 X: (4.10)

The Lagrangian of (4.9) is defined by

L.x; �/ D g.x/C RehA.x/; �iY � h�.�/; x 2 dom.g/; � 2 dom.h�/; (4.11)

and L.x; �/D1 if x 62 dom.g/ or L.x; �/D�1 if � 62 dom.h�/. This in turn leads
to the saddle-point formulation of the problem

min
x2X

max
�2Y

L.x; �/:

The primal-dual iteration seeks a solution . Ox; y�/ of the saddle-point problem by solv-
ing the following fixed-point equation

Ox D prox�g. Ox � �A
�.y�//;

y� D prox�h�.y� C �A. Ox//;

where �; � > 0 are stepsize parameters and prox is the proximal operator, which is
defined by

proxf .z/ D arg min
x2X

²
f .x/C

1

2
kx � zk2X

³
; z 2 dom.f /:

To be precise, given initial values .x.0/; �.0// 2 X � Y the primal-dual iteration
defines a sequence ¹.x.n/; �.n//º1nD1 � X � Y as follows:

x.nC1/ D prox�g
�
x.n/ � �A�

�
�.n/

��
;

�.nC1/ D prox�h�
�
�.n/ C �A

�
2x.nC1/ � x.n/

��
:

(4.12)

The primal-dual iteration for the weighted SR-LASSO problem 37

4.4 The primal-dual iteration for the weighted SR-LASSO problem

We now apply this scheme to (4.6) and (4.8). We first describe an algorithm to approx-
imately solve the Hilbert-valued problem (4.6), before using the equivalence between
elements of VN

h
and CN�K to obtain an algorithm for approximately solving (4.8).

Consider (4.6). We define X D .VN
h
; h�; �i2IV /, Y D .Vm

h
; h�; �i2IV / and g W X !

R [¹1º, h W Y ! R [¹1º as the proper, lower semicontinuous and convex func-
tions

g.x/ D �kxk1;wIV ; h.y/ D ky � bk2IV ; x 2 VN
h ; y 2 Vm

h :

We first find the proximal maps of g and h�. Using (4.10), we see that

h�.�/ D sup
v2Vm

h

.Rehv; �iV � kv � bk2IV /

D Rehb; �iV C sup
v2Vm

h

.Rehv; �iV � kvk2IV /;

for all � 2 Vm
h

. From [22, Examples 13.3 and 13.4] it follows that

.k�kV /
�
D ıB ; B WD ¹� 2 Vm

h W k�k2IV � 1º;

where ıB is the indicator function of the set B , taking value ıB.�/ D 0 when � 2 B
andC1 otherwise. Hence,

h�.�/ D Rehb; �iV C ıB.�/: (4.13)

Using this, we obtain

prox�h�.�/ D arg min
z2Vm

h

²
�ıB.z/C � Rehb; ziV C

1

2
kz � �k

2
2IV

³
D arg min

zWkzk2IV�1

²
1

2
kz � .� � �b/k22IV

³
D projB.� � �b/;

where projB is the projection onto B , which is given explicitly by

projB.�/ D min
²
1;

1

k�k2IV

³
�:

On the other hand, applying the definition of the proximal operator to the function �g
with parameter � > 0, we deduce that

.prox�g.x//i D prox�wi�k�kV .xi /; i D 1; : : : ; N; where x D .xi /NiD1 2 VN
h :

38 Construction of the algorithms

Algorithm 1: primal-dual-wSRLASSO – the primal-dual iteration for the
weighted SR-LASSO problem (4.6)

inputs : measurement matrix A 2 Cm�N , measurements b 2 VN
h

, positive
weights w D .wi /NiD1, parameter � > 0, stepsizes �; � > 0,
maximum number of iterations T � 1, initial values c.0/ 2 VN

h
,

�.0/ 2 Vm
h

output : Nc D primal-dual-wSRLASSO.A;b;w; �; �; �; T; c.0/; �.0//, an
approximate minimizer of (4.6)

initialize: Nc.0/ D 0 2 VN
h

1 for n D 0; 1; : : : ; T � 1 do
2 p D .pi /

N
jD1 D c

.n/ � �A��.n/

3 c.nC1/ D
�

max¹kpikV � ��wi ; 0º
pi
kpikV

�N
iD1

4 q D �.n/ C �A.2c.nC1/ � c.n// � �b

5 �.nC1/ D min
°
1; 1
kqk2IV

±
q

6 Nc.nC1/ D n
nC1
Nc.n/ C 1

nC1
c.nC1/

7 end
8 Nc D Nc.T /

Moreover, a simple adaptation of [22, Example 14.5] with the k�kV -norm gives

prox�k�kV .x/ D max¹kxkV � �; 0º
x

kxkV
; 8x 2 Vh n ¹0º:

Hence,

prox�g.x/ D
�

max¹kxikV � ��wi ; 0º
xi

kxikV

�N
iD1

; x D .xi /
N
iD1 2 VN

h n ¹0º:

With this in hand, we are now ready to define the primal-dual iteration for (4.6). As
we see later, the analysis of convergence for the primal-dual iteration is given in terms
of the ergodic sequence

Nc.n/ D
1

n

nX
iD1

c.i/; n D 1; 2; : : : ;

where c.i/ 2 VN
h

is the primal variable obtained at the i th step of the iteration. Hence,
we now include the computation of these sequences in the primal-dual iteration for
the weighted SR-LASSO problem (4.6), and take this as the output. The resulting
procedure is described in Algorithm 1.

The primal-dual iteration for the weighted SR-LASSO problem 39

Algorithm 2: primal-dual-wSRLASSO-C – the primal-dual iteration for
the weighted SR-LASSO problem (4.8)

inputs : measurement matrix A 2 Cm�N , measurements B 2 Cm�K ,
positive weights w D .wi /NiD1, Gram matrix G 2 CK�K ,
parameter � > 0, stepsizes �; � > 0, maximum number of
iterations T � 1, initial values C .0/ 2 CN�K , „.0/ 2 Cm�K

output : C D
primal-dual-wSRLASSO-C.A;b;w;G ; �; �; �; T;C .0/;„.0//,
an approximate minimizer of (4.8)

initialize: C .0/ D 0 2 CN�K

1 for n D 0; 1; : : : ; T � 1 do
2 P D .pik/

N;K
j;kD1

D C .n/ � �A�„.n/

3 for i D 1; : : : ; N do
4 pi D .pik/

K
kD1

5
�
c
.nC1/

ik

�K
kD1
D max¹kG1=2pik2 � ��wi ; 0º

pi
kG1=2pik2

6 end
7 C .nC1/ D

�
c
.nC1/

ik

�N;K
i;kD1

8 Q D „.n/ C �A.2C .nC1/ � C .n// � �B

9 „.nC1/ D min
²
1; 1

kQG1=2k2;2

³
Q

10 C .nC1/ D n
nC1

C .n/ C 1
nC1

C .nC1/

11 end
12 C D C .T /

Having done this, we next adapt Algorithm 1 in the way mentioned previously to
obtain an algorithm for (4.8). This is given in Algorithm 2.

Remark 4.2. Note that even though the square-root matrix G1=2 is used in Algo-
rithm 2, this matrix does not need to be computed. Indeed,

kG1=2dk2 D
p
d�Gd ; d 2 CK ;

and for a matrix C 2 CN�K , we have

kCG1=2
k2;2 D

vuut NX
iD1

kG1=2cik
2
2 D

vuut NX
iD1

c�i Gci ;

where ci 2 CK is the i th row of C . In particular, computing kG1=2dk involves

40 Construction of the algorithms

at most c.F.G / C K/ arithmetic operations, and computing kCG1=2k2;2 involves
cm.F.G /CK/ arithmetic operations, for some universal constant c > 0.

To conclude this section, we now state and prove a lemma on the computational
cost of Algorithm 2. This will be used later when proving the main theorems.

Lemma 4.3 (Computational cost of Algorithm 2). The computational cost of Algo-
rithm 2 is bounded by

c � .m �N �K C .mCN/ � .F.G /CK// � T;

where c > 0 is a universal constant.

Proof. We proceed line-by-line. Line 2 involves a matrix-matrix multiplication and
matrix subtraction, for a total of at most

c �m �N �K (line 2)

arithmetic operations for some universal constant c. Now consider lines 3–5. By the
previous remark, we may calculate kG1=2pik2 D

p
p�i Gpi using one multiplication

with the matrix G , one inner product of vectors of length K and one square root
(recall from Definition 3.1 that we count square roots as arithmetic operations). This
involves at most c � .F.G /CK/ arithmetic operations. Hence, the cost of line 5 is at
most

c � .F.G /CK/ (line 5);

for a possibly different universal constant c. Therefore, the total cost of lines 3–5 is

c � .F.G /CK/ �N (lines 3–5):

Line 7 involves no arithmetic operations and line 8 involves at most

c �m �N �K (line 8)

operations. Consider line 9. Because of the previous remark, the computation of the
term kQG1=2k2;2 can be performed in at most c �m � .F.G /CK/ operations (since
Q is of size m �K). Hence, line 9 involves at most

c �m � .F.G /CK/ (line 9)

operations. Finally, line 10 involves at most

c �N �K (line 10)

operations. After simplifying, we deduce that lines 2–10 involve at most

c � .m �N �K C .K C F.G // � .N Cm// (lines 2–10)

operations. The result follows by multiplying this by the number of iterations T .

The algorithms in Theorems 3.5, 3.8 and 3.11 41

Algorithm 3: construct-A – constructing the measurement matrix (4.3)

inputs : sample points y1; : : : ;ym 2 Ud , finite index set
ƒ D ¹�1; : : : ; �N º � F

output : A D construct-A..yi /miD1; ƒ/ 2 Cm�N , the measurement
matrix (4.3)

initialize: C .0/ D 0 2 CN�K

1 k D max¹j W .�i /j ¤ 0; i D 1; : : : ; N; j D 1; : : : ; dº
2 n D max¹.�i /j W i D 1; : : : ; N; j D 1; : : : ; nº
3 for i D 1; : : : ; m do
4 Set z D .zj /kjD1 D ..yi /j /

k
jD1

5 bij D ‰j .zi /, i D 1; : : : ; k, j D 0; : : : ; n,
6 for j D 1; : : : ; N do
7 aij D

Qn
lD1 bl;.�j /l

8 end
9 end

10 A D 1p
m
.aij /

m;N
i;jD1

4.5 The algorithms in Theorems 3.5, 3.8 and 3.11

We are now almost ready to specify the algorithms used in Theorems 3.5, 3.8 and
3.11. Notice that Algorithms 1 and 2 require the measurement matrix A as an input.
Hence, we first describe the computation of this matrix for Chebyshev and Legendre
polynomials. This is summarized in Algorithm 3. Notice that line 5 of this algorithm
involves evaluating the first k one-dimensional Chebyshev or Legendre polynomials.
This can be done efficiently via the three-term recurrence relation, as explained in the
proof of the following result.

Lemma 4.4 (Computational cost of Algorithm 3). The computational cost of Algo-
rithm 3 is bounded by

c �m � .nCN/ � k;

where c > 0 is a universal constant and k and n are as in lines 1 and 2 of the algo-
rithm.

Proof. Consider line 5 of the algorithm. Evaluation of the first k C 1 Chebyshev
or Legendre polynomials can be done via the three-term recurrence relation. In the
Chebyshev case, this is given by

‰0.z/ D 1; ‰1.z/ D
p
2z; ‰jC1.z/ D 2z‰j .z/ � cj‰j�1.z/; j D 1; : : : ; k;

42 Construction of the algorithms

• Let m, �, n and t be as given in the particular theorem and set:

– ƒ D ƒHC
n;d

(Theorems 3.4 and 3.10) or ƒ D ƒHCI
n (Theorem 3.7),

– � D .4
p
m=L/�1, where L D L.m; d; �/ is as in (3.8),

– � D � D .‚.n; d//�˛ , where‚.n; d/ and ˛ are as in (3.5) and (3.7),
respectively,

– T D d2.‚.n; d//˛te.

• Let D D .dik/
m;K
i;kD1

2 Cm�K and Y D .yi /miD1 be an input, as in (3.1),
and set B D 1p

m
D.

• Compute A D construct-A.Y ; ƒ/.

• Let G and w be as in (3.3) and (4.7), respectively.

• Define the output C D A.D/, where

A.D/ D primal-dual-wSRLASSO-C
�
A;B;w;G ; �; �; �; T; 0; 0

�
Table 4.2. The algorithms A W Um �Cm�K ! CN�K used in Theorems 3.5, 3.8 and 3.11.

where cj D 1 if j � 1 and 1=
p
2 otherwise, and in the Legendre case, it is given by

‰0.z/D1; ‰1.z/ D
p
3z;

‰jC1.z/D

p
j C 3=2

j C 1

�
2j C 1p
j C 1=2

z‰j .z/�
jp

j � 1=2
‰j�1.z/

�
; j D2; : : : ; k;

(recall that these polynomials are normalized with respect to their respective proba-
bility measures). Hence, the computational cost for line 5 is bounded by c � n � k. The
computational cost for lines 6–8 is precisely N � .k � 1/. Hence, the computational
cost for forming each row of A is bounded by c � .n � k C N � k/. The result now
follows.

With this in hand, we are now ready to specify the algorithms used in Theo-
rems 3.5, 3.8 and 3.11. These are given in Table 4.2.

4.6 An efficient restarting procedure for the primal-dual iteration and
the algorithms used in Theorems 3.6, 3.9 and 3.12

While the primal-dual iteration converges under very general conditions, it typically
does so very slowly, with the error in the objective function decreasing like O.1=n/,

An efficient restarting procedure 43

Algorithm 4: primal-dual-rst-wSRLASSO – the restarted primal-dual
iteration for the weighted SR-LASSO problem (4.6)

inputs : measurement matrix A 2 Cm�N , measurements b 2 VN
h

, positive
weights w D .wi /NiD1, parameter � > 0, stepsizes �; � > 0,
number of primal-dual iterations T � 1, number of restarts R � 1,
tolerance �0 > 0, scale parameter 0 < r < 1, constant s > 0, initial
values c.0/ D 0 2 VN

h
�.0/ D 0 2 Vm

h
.

output : Qc D primal-dual-rst-wSRLASSO.A;b;w; �; �; �; T;R; �0; r; s/,
an approximate minimizer of (4.6)

initialize: Nc.0/ D 0 2 VN
h

, "0 D kbk2IV
1 for l D 0; : : : ; R � 1 do
2 "lC1 D r."l C �

0/

3 al D s"lC1
4 Qc.lC1/ D al � primal-dual-wSRLASSO.A;b=al ;w; �; �; �; T; Qc.l/=al ; 0/
5 end
6 Qc D Qc.R/

where n is the iteration number. To obtain exponential convergence (down to some
controlled tolerance) we employ a restarting procedure. This is based on recent work
of [47, 48].

Restarting is a general concept in optimization, where the output of an algorithm
after a fixed number of steps is then fed into the algorithm as input, after suitably scal-
ing the parameters of the algorithm [122–124]. In the case of the primal-dual iteration
for the weighted SR-LASSO problem, this procedure involves three hyperparameters:
a tolerance �0 > 0 and scale parameters 0 < r < 1 and s > 0. After applying one step
of the primal-dual iteration (Algorithms 1 or 2) yielding an output c.1/, it then scales
this vector and the right-hand side vector b by an exponentially decaying factor al
(defined in terms of �0, r and s), before feeding in these values into the primal-dual
iteration as input.

We explain the motivations behind the specific form of the restart procedure for
the primal-dual iteration later in Section 9.2. For now, we simply state the resulting
procedures in the case of the weighted SR-LASSO problems (4.6) and (4.8). These
are given in Algorithms 4 and 5, respectively. With these in hand, we can also give
the algorithms used in Theorems 3.6, 3.9 and 3.12. See Table 4.3.

Note that these algorithms involve a number c?, which is a universal constant. It is
possible to provide a precise numerical value of this constant by carefully tracking the
constants in several of the proof steps. Since doing so is not especially illuminative,

44 Construction of the algorithms

Algorithm 5: primal-dual-rst-wSRLASSO-C – the restarted primal-dual
iteration for the weighted SR-LASSO problem (4.8)

inputs : measurement matrix A 2 Cm�N , measurements B 2 CN�K ,
positive weights w D .wi /NiD1, Gram matrix G 2 CK�K ,
parameter � > 0, stepsizes �; � > 0, number of primal-dual
iterations T � 1, number of restarts R � 1, tolerance �0 > 0, scale
parameter 0 < r < 1, constant s > 0, initial values
C .0/ D 0 2 CN�K , „.0/ D 0 2 Cm�K

output : zC D
primal-dual-rst-wSRLASSO-C.A;b;w;G ; �; �; �; T;R; �0; r; s/,
an approximate minimizer of (4.8)

initialize: zC .0/ D 0 2 CN�K , "0 D kBG1=2k2I2

1 for l D 0; : : : ; R � 1 do
2 "lC1 D r."l C �/

3 al D s"lC1

4 zC .lC1/ D

al � primal-dual-wSRLASSO-C.A;B=al ;w;G ; �; �; �; T; zC .l/=al ; 0/
5 end
6 zC D zC .R/

we forgo this additional effort. Instead, we now give a little more detail on this con-
stant.

Remark 4.5. From (10.10) we see that

c? D 3296
p
c0;

where c0 is the universal constant that arises in (3.10). As shown in the proof of Theo-
rem 8.2, the constant c0 needs to be chosen sufficiently large so that the measurement
matrixA satisfies the so-called weighted RIP. In particular, it is related to the univer-
sal constant c > 0 defined in Lemma 8.1. See, in particular, (8.2). A numerical value
for this constant can indeed be found using results shown in [37]. With this in hand,
one can then keep track of the constant c0 in the proof of Theorem 8.2 to find its
numerical value. This discussion also highlights why tracking the value of c? is not
particularly illuminative. Indeed, it is well known that universal constants appearing
in RIP estimates in compressed sensing are generally very pessimistic [8, 13, 61].

An efficient restarting procedure 45

• Let m, �, n, t and �0 be as given in the particular theorem and set:

– ƒ D ƒHC
n;d

(Theorems 3.6 and 3.12) or ƒ D ƒHCI
n (Theorem 3.9),

– � D .4
p
m=L/�1, where L D L.m; d; �/ is as in (3.8),

– � D � D .‚.n; d//�˛ , where‚.n; d/ and ˛ are as in (3.5) and (3.7),
respectively,

– T D d.‚.n; d//˛c?e, where c? is a universal constant,

– R D t

– r D e�1

– s D .‚.n;d//˛T
2

• Let D D .dik/
m;K
i;kD1

2 Cm�K and Y D .yi /miD1 be an input, as in (3.1),
and set B D 1p

m
D.

• Compute A D construct-A.Y ; ƒ/.

• Let G , A and w be as in (4.3), (3.3) and (4.7), respectively.

• Define the output zC D A.D/, where

A.D/Dprimal-dual-rst-wSRLASSO-C.A;B;w;G;�; �;�;T;R;�; r; c/

Table 4.3. The algorithms A W Um �Cm�K ! CN�K used in Theorems 3.6, 3.9 and 3.12.

