
Chapter 5

Numerical experiments

In this chapter, we present a number of numerical experiments to examine the practi-
cal performance of the previously developed algorithms.

5.1 Experimental setup

We first describe the experimental setup.

5.1.1 Hyperparameter values

The algorithms used in the main theorems (see Tables 4.2 and 4.3) are designed to
ensure the desired error bounds. In our numerical experiments, we deviate from these
values in a number of minor ways. However, our hyperparameter choices are still
closely based on theory. We now discuss the precise hyperparameter choices used in
the experiments. These choices are also summarized in Table 5.1.

First, we take the parameter � to be � D .
p
25m/�1. This differs somewhat

from the value � D .4
p
m=L/�1 used in the theoretical algorithms. The rationale

behind doing this is that L is, in practice, a polylogarithmic factor that arises from
the compressed sensing theory. It is well known that logarithmic factors appearing
in compressed sensing theory are generally quite pessimistic [8, 13, 61]. Therefore,
we avoid using L. The choice � D .5

p
m/�1 was obtained in [8, Appendix A] after

manual tuning.
As shown later, the primal-dual iteration converges subject to the condition

kAk
2
2 � .��/

�1. See Lemma 9.2. Since the error bound (9.2) scales linearly in ��1

and ��1, a standard choice for these parameters is

� D � D 1=kAk2: (5.1)

In Tables 4.2 and 4.3 we choose

� D � D .‚.n; d//�˛;

since the latter is an upper bound for kAk2, i.e., kAk2 � .‚.n; d//
˛ . See (10.9).

This bound is arguably quite crude. The reason for using it in our main theorems is to
avoid having to compute kAk2, since this generally cannot be done in finitely many
arithmetic operations. However, in our numerical experiments we simply use (5.1)
instead, as it is simpler and kAk2 can be efficiently approximated in practice.
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Parameter Value Notes
� .

p
25m/�1 Based on [8, Appendix A]

� kAk
�1
2 Based on Lemma 9.2

� kAk
�1
2 Based on Lemma 9.2

r e�1 Based on Theorem 9.4

T
l
2kAk2
r

m
Based on Theorem 9.4, assuming C D 1

s T
2kAk2

Based on Theorem 9.4

Table 5.1. Hyperparameter values used in the numerical experiments. The first three parameters
are used in both the unrestarted and restarted primal-dual iterations. The final three parameters
are used in the restarted scheme only.

For the restarting scheme, we also have the scale parameter 0 < r < 1, the con-
stant s > 0 and the number of inner iterations T . These parameters are inferred from
Theorem 9.4. This result shows that the error in the restarted primal dual iteration
after l restarts is bounded by

r lkbk2IV C
r

1 � r
�0; (5.2)

provided

T D

�
2C

r
p
��

�
; al D

1

2
�"lC1T; l D 0; 2; : : : :

Here, as discussed in Theorem 9.4, C > 0 is a numerical constant that arises from
the compressed sensing theory. This and the choice (5.1) leads immediately to the
following value for s:

s D
T

2kAk2
:

Unfortunately, the constant C is difficult to determine exactly (it is closely related
to the constant c? discussed in Remark 4.5). In our experiments, we simply pick the
value C D 1. This immediately yields

T D

�
2kAk2
r

�
:

Finally, to determine a value of r we consider the error bound (5.2). This argument is
based on [48]. After l restarts, the total number of iterations t D T l . Substituting the
value of T , we see that

r l D exp.log.r/t=T / D exp
�

log.r/
�
2kAk2
r

��1
t

�
: (5.3)
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Ignoring the ceiling function, it therefore makes sense to choose 0 < r < 1 to mini-
mize the function r 7! r log.r/. This attains its minimum value of �e�1 at r D e�1,
which is the value we now use.

5.1.2 Test functions

We consider four test functions. The first two are scalar-valued functions, given by

f1.y/ D exp

 
�
1

2d

dX
kD1

yk

!
; 8y 2 U; with d D 2; (5.4)

and

f2.y/ D exp

 
�
2

d

dX
kD1

.yk � wk/
2

!
; 8y 2 U;

with wk D
.�1/k

k C 1
; 8k 2 Œd � and d D 16:

(5.5)

These are standard test functions (see, e.g., [8, Appendix A.1]). The first function
varies very little with respect to y . Hence, it is expected to be very well approximated
by a sparse polynomial approximation. The second has more variation in y , therefore
we expect a larger approximation error.

We also consider two Hilbert-valued functions. These both arise as solutions of
the parametric elliptic diffusion equation

�r � .a.x;y/ru.x;y// D g.x/; 8x 2 D; y 2 U;

u.x;y/ D 0; 8x 2 @D; y 2 U;

which is a standard problem in the parametric PDE literature. We take the physical
domain D as

D D .0; 1/2:

For simplicity, we also choose
g.x/ D 10

to be constant. In this case, the solution map

U! V ; y 7! u.�;y/; V D H 1
0 .D/;

is a Hilbert-valued function with codomain being the Sobolev space H 1
0 .D/. We

consider two different setups, leading to smooth and less smooth Hilbert-valued func-
tions, which we denote as f3 and f4, respectively. The first is a simple two-dimen-
sional problem with lognormal diffusion coefficient:

f3 W d D 2; a.x;y/ D 5C exp.x1y1 C x2y2/: (5.6)
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For the second, we consider the diffusion coefficient from [5, equation (24)], modified
from an earlier example from [110, equation (5.2)], with 30-dimensional parametric
dependence and one-dimensional (layered) spatial dependence given by

f4 W dD30; a.x;y/ D exp

 
1C y1

�p
�ˇ

2

�1=2
C

dX
iD2

�i #i .x/ yi

!
;

�i WD.
p
�ˇ/1=2 exp

 
�.b i

2
c�ˇ/2

8

!
; #i .x/ WD

8<:sin
��
i
2

˘
�x1= p̌

�
i even;

cos
��
i
2

˘
�x1= p̌

�
i odd;

ˇcD1=8; p̌ D max¹1; 2ˇcº; ˇ D ˇc= p̌: (5.7)

5.1.3 Error metrics and finite element discretization

In our experiments, we consider the relative L2%.U/-norm error

kf � Of kL2%.U/

kf kL2%.U/
; (5.8)

for the scalar-valued functions f1 and f2 and the relative L2%.UIH
1
0 .D//-norm error

kf � Of kL2%.UIH10 .D//

kf kL2%.UIH10 .D//
; (5.9)

for the Hilbert-valued functions f3 and f4. To (approximately) compute this error we
use a high-order isotropic Smolyak sparse grid quadrature rule based on Clenshaw–
Curtis points. This rule is generated using the TASMANIAN software package [129].
We set the level of the quadrature rule in each experiment as large as possible within
the constraints of computational time and memory.

We now describe the discretization Vh for the Hilbert-valued functions f3 and
f4. This is obtained via the finite element method as implemented by Dolfin [95], and
accessed through the python FEniCS project [18]. We generate a regular triangulation
Th ofD composed of triangles T of equal diameter hT D h. We consider a conform-
ing discretization, which results in a finite-dimensional subspace Vh � V DH 1

0 .D/,
where Vh is the space spanned by the usual Lagrange finite elements ¹'iºKiD1 of order
k D 1. We rely on the Dolfin UnitSquareMesh method to generate a mesh with
33 nodes per side, corresponding to a finite element triangulation with K D 1089

nodes, 2048 elements and meshsize h D
p
2=32. See [5, 52] for further implementa-

tion details.
Explicit forms of the Hilbert-valued functions f3 and f4 are not available. There-

fore, computing the relative error requires first computing a reference solution. This is
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Figure 5.1. Approximation error versus iteration number for the function f1 from (5.4). This
figure shows the relative L2 errors of the polynomial approximations obtained from (left) the
iterates c.n/ and (right) the ergodic sequence Nc.n/. These approximations are constructed using
the Legendre polynomial basis andmD 250 sample points drawn randomly and independently
from the uniform measure. The index set ƒ D ƒHC

n;d
, where d D 2 and n D 184, which gives

a basis of cardinality N D jƒj D 997. We compare the primal dual iteration “PD” and the
restarted primal dual iteration “PDR” for various values of the tolerance �0. We also plot the
theoretical error curve (5.10), where t is the iteration number. The quadrature rule used to
compute the relative error is a sparse grid rule of level 11 consisting of M D 7169 points.

usually done by using a finite element discretization with meshsize an order of mag-
nitude smaller than that used to compute the various approximations. However, our
main focus in these experiments is on the polynomial approximation and algorithmic
errors Eapp and Ealg. Since our theoretical results assert that the approximations are
robust to physical discretization error, we do not perform this additional (and costly)
computational step. Instead, we compute reference solutions using the same finite
element discretization as that used to construct the various approximations. In other
words, there is no physical discretization error present in these experiments.

5.2 Numerical results 1: The optimization error

Our first experiments, Figures 5.1–5.4, compare the behaviour of the unrestarted
primal-dual iteration to the restarted primal-dual iteration with several different values
of the tolerance parameter �0. In all cases, we observe a consistent improvement from
the restarted scheme. This is particularly noticeable for the functions f1 and f3, since
the underlying approximation error � is smaller in these cases. Recall that these func-
tions are well approximated by polynomials. As predicted by our theoretical results,
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Figure 5.2. Approximation error versus iteration number for the function f2 from (5.5). This
figure shows the relative L2 errors of the polynomial approximations obtained from (left) the
iterates c.n/ and (right) the ergodic sequence Nc.n/. These approximations are constructed using
the Legendre polynomial basis andmD 2000 sample points drawn randomly and independently
from the uniform measure. The index set ƒ D ƒHC

n;d
, where d D 16 and n D 16, which gives

a basis of cardinality N D jƒj D 8277. We compare the primal dual iteration “PD” and the
restarted primal dual iteration “PDR” for various values of the tolerance �0. We also plot the
theoretical error curve (5.10), where t is the iteration number. The quadrature rule used to
compute the relative error is a sparse grid rule of level 5 consisting of M D 51137 points.

re
la

tiv
e
L
2 %
.
U
I
H
1 0
.
D
/
/

er
ro

r

102

100

10�2

10�4

10�6

10�8

iterations
0 200 400 600 800 1000

er
go

di
c

se
qu

en
ce

re
la

tiv
e
L
2 %
.
U
I
H
1 0
.
D
/
/

er
ro

r

102

100

10�2

10�4

10�6

10�8

iterations
0 200 400 600 800 1000

Figure 5.3. Approximation error versus iteration number for the function f3 from (5.6). This
figure shows the relative L2 errors of the polynomial approximations obtained from (left) the
iterates c.n/ and (right) the ergodic sequence Nc.n/. These approximations are constructed using
the Legendre polynomial basis andmD 250 sample points drawn randomly and independently
from the uniform measure. The index set ƒ D ƒHC

n;d
, where d D 2 and n D 184, which gives

a basis of cardinality N D jƒj D 997. We compare the primal dual iteration “PD” and the
restarted primal dual iteration “PDR” for various values of the tolerance �0. We also plot the
theoretical error curve (5.10), where t is the iteration number. The quadrature rule used to
compute the relative error is a sparse grid rule of level 9 consisting of M D 1537 points.
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Figure 5.4. Approximation error versus iteration number for the function f4 from (5.7). This
figure shows the relative L2 errors of the polynomial approximations obtained from (left) the
iterates c.n/ and (right) the ergodic sequence Nc.n/. These approximations are constructed using
the Legendre polynomial basis andmD 1000 sample points drawn randomly and independently
from the uniform measure. The index set ƒ D ƒHC

n;d
, where d D 30 and n D 10, which gives

a basis of cardinality N D jƒj D 7841. We compare the primal dual iteration “PD” and the
restarted primal dual iteration “PDR” for various values of the tolerance �0. We also plot the
theoretical error curve (5.10), where t is the iteration number. The quadrature rule used to
compute the relative error is a sparse grid rule of level 3 consisting of M D 1861 points.

the error for the restarted scheme decays exponentially fast with respect to the num-
ber of iterations to this limiting accuracy. For example, in the case of f1 the restarted
scheme (with sufficiently small �0) achieves a relative error of less than 10�6 using
only 500 iterations. However, the unrestarted scheme only achieves an error of around
10�3 after 1000 iterations.

An important takeaway from these experiments is the insensitivity of the algo-
rithm to the parameter �0. Our theoretical results only show exponential convergence
(with respect to iteration number) when �0 � �, where � is a certain upper bound for
the error. This appears unnecessary in practice. For instance, in Figures 5.2 and 5.4
we expect the underlying error � to be roughly 10�2 in magnitude, since this is the
limiting error achieved by the unrestarted scheme. Yet setting �0 D 10�10 has no
noticeable effect on the performance of the restarted scheme. Moreover, for �0 2
¹10�4; 10�6; 10�8; 10�10º the results are nearly identical in both Figures 5.2 and 5.4,
and hence the plot lines are overlaid in the case of the restarted scheme.

Another noticeable feature of these experiments is the close agreement between
the theorized rate of exponential decay of the restarted scheme, which is given by the
right-hand side of (5.3) and what is observed in practice. Since the value r D e�1 is
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Figure 5.5. (left) Approximation error and (right) average run time versus number of samples
m for the function f1 from (5.4). This figure shows the relative L2 errors of the polynomial
approximations obtained from the ergodic sequence Nc.n/. These approximations are constructed
using the Legendre polynomial basis and various sets of m sample points drawn randomly and
independently from the uniform measure for each trial. The index setƒ D ƒHC

n;d
, where d D 2

and n D 184, which gives a basis of cardinality N D jƒj D 997. We use the restarted primal
dual iteration “PDR” with �0 D 10�8, and display the average error over 50 trials measured in
the sample mean in blue and the corrected sample standard deviation after a log transformation
in shaded blue, see [8, Appendix A.1.3] for more details. The quadrature rule used to compute
the relative error is a sparse grid rule of level 11 consisting of M D 7169 points.

used in these experiments, in Figures 5.1–5.4 we also plot the function

exp.�ct/; c WD d2ekAk2e
�1 (5.10)

versus the iteration number t . This theoretical curve exactly predicts the observed rate
of exponential decay of the restarted schemes.

Finally, in all four figures we also show the error of the (restarted) primal-dual
iterates, as well as the ergodic sequences. Despite the theoretical results only hold-
ing for the latter, we see similar error decay for the iterates. In fact, the iterates give
slightly better performance in the case of the unrestarted scheme. As expected, the
ergodic sequence reduces the variation in the error for the restarted scheme. More-
over, plotting the ergodic sequence we can see more clearly the benefit of using
restarts over not restarting.

5.3 Numerical results 2: Approximation error and run time

In the second set of experiments, our aim is to study the approximation error ver-
sus the number of samples m. Having compared different solvers in the previous
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Figure 5.6. (left) Approximation error and (right) average run time versus number of samples
m for the function f2 from (5.5). This figure shows the relative L2 errors of the polynomial
approximations obtained from the ergodic sequence Nc.n/. These approximations are constructed
using the Legendre polynomial basis and various sets of m sample points drawn randomly and
independently from the uniform measure for each trial. The index setƒDƒHC

n;d
, where d D 16

and n D 16, which gives a basis of cardinality N D jƒj D 8277. We use the restarted primal
dual iteration “PDR” with �0 D 10�4, and display the average error over 50 trials measured in
the sample mean in blue and the corrected sample standard deviation after a log transformation
in shaded blue, see [8, Appendix A.1.3] for more details. The quadrature rule used to compute
the relative error is a sparse grid rule of level 5 consisting of M D 51137 points.

experiments, we now limit our attention to the restarted primal-dual iteration. The
only modification we make is to introduce a stopping criterion for the number of
restarts. Specifically, given a tolerance �0, we halt the iteration if the difference be-
tween two consecutive iterates is less than 5 � �0. Specifically, if

k Qc.l/ � Qc.l�1/k2 � 5 � �
0;

in the scalar-valued case or

k Qc.l/ � Qc.l�1/k2IV � 5 � �
0;

in the Hilbert-valued case, where Qc.l/ is the output of the restarted primal-dual iter-
ation after l restarts, then we halt and take Qc.l/ as the polynomial coefficients of the
resulting approximation.

In the following experiments, we perform multiple trials for each value of m. For
each trial, we generate a set of sample Monte Carlo points y1; : : : ;ym, then compute
the relative error (5.8) or (5.9) of the approximation using a sparse grid quadrature as
before. Having done this, we then compute the sample mean and (corrected) sample
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Figure 5.7. Approximation error versus number of samples m for the function f3 from (5.6).
This figure shows the relative L2 errors of the polynomial approximations obtained from the
ergodic sequence Nc.n/. These approximations are constructed using the Legendre polynomial
basis and various sets ofm sample points drawn randomly and independently from the uniform
measure for each trial. The index set ƒ D ƒHC

n;d
, where d D 2 and n D 184, which gives a

basis of cardinality N D jƒj D 997. We compare the restarted primal dual iteration “PDR”
with �0 D 10�8 with the average performance over 50 trials measured in the sample mean in
blue and the corrected sample standard deviation after a log transformation in shaded blue,
see [8, Appendix A.1.3] for more details. The quadrature rule used to compute the relative error
is a sparse grid rule of level 11 consisting of M D 7169 points.

standard deviation after a log transformation. See [8, Appendix A.1.3] for further
discussion and rationale behind this computation.

The results for the four functions f1, f2, f3, f4 are shown in Figures 5.5–5.8.
Figure 5.5 shows the average approximation error and run times for f1. As discussed,
this function is expected to be well approximated by polynomials. In accordance,
the error decreases rapidly, achieving roughly 10�7 relative L2 error when m � 200.
This is in broad agreement with the exponential decay rate of the error shown in our
main theorems. In Figure 5.6 we consider the more challenging, higher-dimensional
function f2, plotting the average approximation error and run time. Here, as expected,
the error decreases significantly more slowly. Both figures exhibit a linear scaling of
the run time with the number of samplesm. This is consistent with our analysis, since
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Figure 5.8. Approximation error versus number of samples m for the function f4 from (5.7).
This figure shows the relative L2 errors of the polynomial approximations obtained from the
ergodic sequence Nc.n/. These approximations are constructed using the Legendre polynomial
basis and various sets ofm sample points drawn randomly and independently from the uniform
measure for each trial. The index set ƒ D ƒHC

n;d
, where d D 30 and n D 10, which gives a

basis of cardinality N D jƒj D 7841. We compare the restarted primal dual iteration “PDR”
with �0 D 10�4 with the average performance over 50 trials measured in the sample mean in
blue and the corrected sample standard deviation after a log transformation in shaded blue,
see [8, Appendix A.1.3] for more details. The quadrature rule used to compute the relative error
is a sparse grid rule of level 3 consisting of M D 1861 points.

each algorithm iteration involves dense matrix-vector multiplications with an m �N
matrix. Also, comparing Figures 5.5 and 5.6 when m D 250, we notice the run time
is roughly 16 times larger for the latter. This is also in agreement with our analysis.
Indeed,N � 1000 in Figure 5.5 whileN � 8000 in Figure 5.6. However, the number
of inner iterations T D d2kAk2=re is roughly twice as large in Figure 5.6, where
kAk2 � 13 whenm D 250, as it is in Figure 5.5, where kAk2 � 7. The combination
of these two factors accounts for the roughly 16-fold increase in run time.

Figure 5.7 displays the performance of the restarted scheme on the Hilbert-valued
function f3. Here we also observe rapid decrease in the error with respect to increas-
ing number of samplesm, with relative L2 error approximately 10�6 whenm� 200.
Finally, Figure 5.8 shows the results for the less smooth high-dimensional Hilbert-
valued function f4. For this function, we expect slower decrease in the error with
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respect to m, which is reflected in this set of results. Nonetheless, despite its high
dimensionality (d D 30) we still achieve two digits of relative accuracy using only
m � 1000 samples.


