Chapter 7

Hilbert-valued compressed sensing

In this chapter, we develop Hilbert-valued compressed sensing theory. Here, rather than the classical setting of a vector in \mathbb{C}^N , one seeks to recover a Hilbert-valued vector in \mathcal{V}^N . This was considered in [52] in the for the classical sparsity model with ℓ^1 -minimization. We now consider the more general weighted sparsity model and weighted ℓ^1 -minimization. This model was first developed in [121] in the scalarvalued case. See also [2, 37] and [8, Chapter 6]. Note that in this chapter, we shall write \mathcal{V} rather than \mathcal{V}_h , as is done in (4.6). Since \mathcal{V} is arbitrary, all the results shown below will also apply in the case of \mathcal{V}_h .

7.1 Weighted sparsity and weighted best approximation

Let $\Lambda \subseteq \mathcal{F}$ and $\boldsymbol{w} = (w_{\boldsymbol{v}})_{\boldsymbol{v} \in \Lambda} > \boldsymbol{0}$ be positive weights. Given a set $S \subseteq \Lambda$, we define its weighted cardinality as

$$|S|_{\boldsymbol{w}} := \sum_{i \in S} w_i^2.$$

The following two definitions extend Definitions 2.2 and 2.3 to the weighted setting.

Definition 7.1 (Weighted sparsity). Let $\Lambda \subseteq \mathcal{F}$. A \mathcal{V} -valued sequence $c = (c_{\nu})_{\nu \in \Lambda}$ is *weighted* (k, w)-sparse for some $k \ge 0$ and weights $w = (w_{\nu})_{\nu \in \Lambda} > 0$ if

$$|\operatorname{supp}(\boldsymbol{c})|_{\boldsymbol{w}} \leq k,$$

where supp $(z) = \{ v : ||z_v||_{\mathcal{V}} \neq 0 \}$ is the *support* of z. The set of such vectors is denoted by $\Sigma_{k,w}$.

Definition 7.2 (Weighted best (k, w)-term approximation error). Let $\Lambda \subseteq \mathcal{F}$, 0 , <math>w > 0, $c \in \ell^p_w(\Lambda; \mathcal{V})$ and $k \geq 0$. The ℓ^p_w -norm weighted best (k, w)-term approximation error of c is

$$\sigma_k(\boldsymbol{c})_{p,\boldsymbol{w};\boldsymbol{\mathcal{V}}} = \min\{\|\boldsymbol{c}-\boldsymbol{z}\|_{p,\boldsymbol{w};\boldsymbol{\mathcal{V}}}: \boldsymbol{z}\in\Sigma_{k,\boldsymbol{w}}\}.$$

Notice that this is equivalent to

$$\sigma_k(\boldsymbol{c})_{p,\boldsymbol{w};\boldsymbol{\mathcal{V}}} = \inf\{\|\boldsymbol{c} - \boldsymbol{c}_S\|_{p,\boldsymbol{w};\boldsymbol{\mathcal{V}}} : S \subseteq \Lambda, \ |S|_{\boldsymbol{w}} \le k\}.$$
(7.1)

Here and elsewhere, for a sequence $c = (c_{\nu})_{\nu \in \Lambda}$ and a set $S \subseteq \Lambda$, we define c_S as the sequence with ν th entry equal to c_{ν} if $\nu \in S$ and zero otherwise.

7.2 The weighted robust null space property

For the rest of this chapter, we consider the index set $\Lambda = \{1, ..., N\}$ for some $N \in \mathbb{N}$. Our analysis of the weighted SR-LASSO problem is presented in terms of the so-called weighted robust null space property. Let $\boldsymbol{w} > \boldsymbol{0}$ and k > 0. A bounded linear operator $\boldsymbol{A} \in \mathcal{B}(\mathcal{V}^N, \mathcal{V}^m)$ has the *weighted robust Null Space Property (rNSP)* over \mathcal{V} of order (k, \boldsymbol{w}) with constants $0 < \rho < 1$ and $\gamma > 0$ if

$$\|\boldsymbol{x}_{S}\|_{2;\mathcal{V}} \leq \frac{\rho \|\boldsymbol{x}_{S^{c}}\|_{1,\boldsymbol{w};\mathcal{V}}}{\sqrt{k}} + \gamma \|\boldsymbol{A}\boldsymbol{x}\|_{2;\mathcal{V}}, \quad \forall \boldsymbol{x} \in \mathcal{V}^{N}.$$

for any $S \subseteq [N]$ with $|S|_{\boldsymbol{w}} \leq k$.

Importantly, the weighted rNSP implies distance bounds in the ℓ_w^1 - and ℓ^2 -norms. The following lemma is standard in the scalar case (see, e.g., [8, Lemma 6.24]). We omit the proof of its extension to the Hilbert-valued case, since it follows almost exactly the same arguments.

Lemma 7.3 (Weighted rNSP implies $\ell_{\boldsymbol{w}}^1$ and ℓ^2 distance bounds). Suppose that $A \in \mathcal{B}(\mathcal{V}^N, \mathcal{V}^m)$ has the weighted rNSP over \mathcal{V} of order (k, \boldsymbol{w}) with constants $0 < \rho < 1$ and $\gamma > 0$. Let $\boldsymbol{x}, \boldsymbol{z} \in \mathcal{V}^N$. Then

$$\begin{aligned} \|z - x\|_{1,w;\mathcal{V}} &\leq C_1(2\sigma_k(x)_{1,w;\mathcal{V}} + \|z\|_{1,w;\mathcal{V}} - \|x\|_{1,w;\mathcal{V}}) \\ &+ C_2\sqrt{k}\|A(z - x)\|_{2;\mathcal{V}}, \\ \|z - x\|_{2;\mathcal{V}} &\leq \frac{C_1'}{\sqrt{k}}(2\sigma_k(x)_{1,w;\mathcal{V}} + \|z\|_{1,w;\mathcal{V}} - \|x\|_{1,w;\mathcal{V}}) \\ &+ C_2'\|A(z - x)\|_{2;\mathcal{V}}, \end{aligned}$$

where the constants are given by

$$C_1 = \frac{(1+\rho)}{(1-\rho)}, \quad C_2 = \frac{2\gamma}{(1-\rho)}, \quad C_1' = \left(\frac{(1+\rho)^2}{1-\rho}\right) \quad and \quad C_2' = \left(\frac{(3+\rho)\gamma}{1-\rho}\right).$$

Lemma 7.3 can be used to show distance bounds for exact minimizers of the Hilbert-valued weighted SR-LASSO problem

$$\min_{\boldsymbol{z}\in\mathcal{V}^{N}}\mathscr{G}(\boldsymbol{z}), \quad \mathscr{G}(\boldsymbol{z}):=\lambda \|\boldsymbol{z}\|_{1,\boldsymbol{w};\mathcal{V}}+\|\boldsymbol{A}\boldsymbol{z}-\boldsymbol{b}\|_{2;\mathcal{V}}.$$
(7.2)

Fortunately, it also implies bounds for approximate minimizers, such as those obtained by a finite number of steps of the primal-dual iteration.

Lemma 7.4 (Weighted rNSP implies error bounds for inexact minimizers). Suppose that $A \in \mathcal{B}(\mathcal{V}^N, \mathcal{V}^m)$ has the weighted rNSP over \mathcal{V} of order (k, w) with constants $0 < \rho < 1$ and $\gamma > 0$. Let $x \in \mathcal{V}^N$, $b \in \mathcal{V}^m$ and $e = Ax - b \in \mathcal{V}^m$, and consider

the problem (7.2) with parameter

$$0 < \lambda \le \frac{(1+\rho)^2}{(3+\rho)\gamma} k^{-1/2}.$$
(7.3)

Then, for any $\tilde{x} \in \mathcal{V}^N$,

$$\begin{aligned} \|\tilde{\boldsymbol{x}} - \boldsymbol{x}\|_{1,\boldsymbol{w};\boldsymbol{\mathcal{V}}} &\leq C_1 \left(2\sigma_k(\boldsymbol{x})_{1,\boldsymbol{w};\boldsymbol{\mathcal{V}}} + \frac{\mathscr{G}(\tilde{\boldsymbol{x}}) - \mathscr{G}(\boldsymbol{x})}{\lambda} \right) + \left(\frac{C_1}{\lambda} + C_2 \sqrt{k} \right) \|\boldsymbol{e}\|_{2;\boldsymbol{\mathcal{V}}}, \\ \|\tilde{\boldsymbol{x}} - \boldsymbol{x}\|_{2;\boldsymbol{\mathcal{V}}} &\leq \frac{C_1'}{\sqrt{k}} \left(2\sigma_k(\boldsymbol{x})_{1,\boldsymbol{w};\boldsymbol{\mathcal{V}}} + \frac{\mathscr{G}(\tilde{\boldsymbol{x}}) - \mathscr{G}(\boldsymbol{x})}{\lambda} \right) + \left(\frac{C_1'}{\sqrt{k}\lambda} + C_2' \right) \|\boldsymbol{e}\|_{2;\boldsymbol{\mathcal{V}}}, \end{aligned}$$

where C_1 , C_2 , C'_1 and C'_2 are as in Lemma 7.3.

Proof. First notice that $C'_1/C'_2 \le C_1/C_2$ since $0 < \rho < 1$, where C_1 , C_2 , C'_1 and C'_2 are as in Lemma 7.3. Hence the condition on λ implies that

$$\lambda \leq \min\{C_1/C_2, C_1'/C_2'\}k^{-1/2},$$

Using this lemma and this bound, we deduce that

$$\begin{aligned} \|\tilde{\boldsymbol{x}} - \boldsymbol{x}\|_{1,\boldsymbol{w};\boldsymbol{\mathcal{V}}} &\leq 2C_1 \sigma_k(\boldsymbol{x})_{1,\boldsymbol{w};\boldsymbol{\mathcal{V}}} + \frac{C_1}{\lambda} \left(\lambda \|\tilde{\boldsymbol{x}}\|_{1,\boldsymbol{w};\boldsymbol{\mathcal{V}}} + \|\boldsymbol{A}\tilde{\boldsymbol{x}} - \boldsymbol{b}\|_{2;\boldsymbol{\mathcal{V}}} - \lambda \|\boldsymbol{x}\|_{1,\boldsymbol{w};\boldsymbol{\mathcal{V}}} \right) \\ &+ C_2 \sqrt{K} \|\boldsymbol{e}\|_{2;\boldsymbol{\mathcal{V}}}. \end{aligned}$$

The definition of \mathscr{G} in (7.2) gives

$$\|\tilde{\boldsymbol{x}} - \boldsymbol{x}\|_{1,\boldsymbol{w};\boldsymbol{\mathcal{V}}} \leq 2C_1\sigma_k(\boldsymbol{x})_{1,\boldsymbol{w};\boldsymbol{\mathcal{V}}} + \frac{C_1}{\lambda}(\mathscr{G}(\tilde{\boldsymbol{x}}) - \mathscr{G}(\boldsymbol{x}) + \|\boldsymbol{e}\|_{2;\boldsymbol{\mathcal{V}}}) + C_2\sqrt{k}\|\boldsymbol{e}\|_{2;\boldsymbol{\mathcal{V}}},$$

which is the first result. The second follows in an analogous manner.

7.3 The weighted rNSP and weighted restricted isometry property

In the next chapter, we give explicit conditions in terms of m under which the measurement matrices (4.3) satisfy the weighted rNSP over \mathcal{V} . It is well known that showing the (weighted) rNSP directly can be difficult. In the classical, scalar setting, this is overcome by showing that the (weighted) rNSP is implied by the so-called (weighted) restricted isometry property. Hence, in this section, we first introduced this property and describe its relation to the (weighted) rNSP.

Let w > 0 and k > 0. A bounded linear operator $A \in \mathcal{B}(\mathcal{V}^N, \mathcal{V}^m)$ has the *weighted Restricted Isometry Property (RIP)* over \mathcal{V} of order (k, w) if there exists a constant $0 < \delta < 1$ such that

$$(1-\delta) \|\boldsymbol{z}\|_{2;\mathcal{V}}^2 \le \|\boldsymbol{A}\boldsymbol{z}\|_{2;\mathcal{V}}^2 \le (1+\delta) \|\boldsymbol{z}\|_{2;\mathcal{V}}^2, \quad \forall \boldsymbol{z} \in \Sigma_{k,\boldsymbol{w}} \subseteq \mathcal{V}^N.$$

The smallest constant such that this property holds is called the (k, w)th weighted Restricted Isometry Constant (wRIC) of A, and is denoted as $\delta_{k,w}$.

It is first convenient to show an equivalence between the scalar weighted RIP over \mathbb{C} and the Hilbert-valued weighted RIP over \mathcal{V} .

Lemma 7.5 (Weighted RIP over \mathbb{C} is equivalent to the weighted RIP over \mathcal{V}). Let $\boldsymbol{w} > \boldsymbol{0}, k > 0$ and $\boldsymbol{A} = (a_{ij})_{i,j=1}^{m,N} \in \mathbb{C}^{m \times N}$ be a matrix. Then \boldsymbol{A} satisfies the weighted RIP over \mathbb{C} of order (k, \boldsymbol{w}) with constant $0 < \delta < 1$ if and only if the corresponding bounded linear operator $\boldsymbol{A} \in \mathcal{B}(\mathcal{V}^N, \mathcal{V}^m)$ defined by

$$\mathbf{x} = (x_i)_{i=1}^N \in \mathcal{V}^N \mapsto A\mathbf{x} := \left(\sum_{i=1}^N a_{ij} x_j\right)_{i=1}^m \in \mathcal{V}^m$$

satisfies the weighted RIP over \mathcal{V} of order (k, \boldsymbol{w}) with the same constant δ .

Proof. We follow similar arguments to [52, Remark 3.5]. First, we rewrite the equivalence as follows:

$$(1-\delta)\|\boldsymbol{x}\|_{2;\mathcal{V}}^{2} \leq \|\boldsymbol{A}\boldsymbol{x}\|_{2;\mathcal{V}}^{2} \leq (1+\delta)\|\boldsymbol{x}\|_{2;\mathcal{V}}^{2}, \quad \forall \boldsymbol{x} \in \mathcal{V}^{N}, \ |\mathrm{supp}(\boldsymbol{x})|_{\boldsymbol{w}} \leq k, \ (7.4)$$

if and only if

$$(1-\delta) \|\boldsymbol{x}\|_{2}^{2} \leq \|\boldsymbol{A}\boldsymbol{x}\|_{2}^{2} \leq (1+\delta) \|\boldsymbol{x}\|_{2}^{2}, \quad \forall \boldsymbol{x} \in \mathbb{C}^{N}, \ |\operatorname{supp}(\boldsymbol{x})|_{\boldsymbol{w}} \leq k.$$
(7.5)

Suppose that (7.5) holds. Let $\mathbf{x} = (x_j)_{i=1}^N \in \mathcal{V}^N$ be (k, \mathbf{w}) -sparse and $\{\phi_i\}_i$ be an orthonormal basis of \mathcal{V} . Then, for each $i \in [N]$, $x_i \in \mathcal{V}$ can be uniquely represented as

$$x_i = \sum_j \alpha_{ij} \phi_j, \quad \alpha_{ij} \in \mathbb{C}.$$

Let $x_j = (\alpha_{ij})_{i=1}^N \in \mathbb{C}^N$. Then supp $(x_j) \subseteq$ supp(x) and therefore x_j is (k, w)-sparse. Hence (7.5) gives

$$(1-\delta)\|\mathbf{x}_j\|_2^2 \le \|\mathbf{A}\mathbf{x}_j\|_2^2 \le (1+\delta)\|\mathbf{x}_j\|_2^2.$$
(7.6)

Now observe that

$$\sum_{j} \|\mathbf{x}_{j}\|_{2}^{2} = \sum_{i=1}^{N} \sum_{j} |\alpha_{ij}|^{2} = \sum_{i=1}^{N} \|\mathbf{x}_{i}\|_{\mathcal{V}}^{2} = \|\mathbf{x}\|_{2;\mathcal{V}}^{2}$$

and

$$\sum_{j} \|Ax_{j}\|_{2}^{2} = \sum_{j} \sum_{i=1}^{m} \left|\sum_{k=1}^{N} a_{ik} \alpha_{kj}\right|^{2} = \sum_{i=1}^{m} \left\|\sum_{k=1}^{N} a_{ik} x_{k}\right\|_{\mathcal{V}}^{2} = \|Ax\|_{2;\mathcal{V}}^{2}.$$

Summing (7.6) over j, we deduce that (7.4) holds.

Conversely, suppose that (7.4) holds and let $\mathbf{z} = (z_i)_{i=1}^N \in \mathbb{C}^N$ with $|\operatorname{supp}(\mathbf{z})|_{\mathbf{w}} \le k$. Define $\mathbf{x} = (z_i\phi_i) \in \mathcal{V}^N$ and notice that $\|\mathbf{x}\|_{2;\mathcal{V}} = \|\mathbf{z}\|_2$ and $\|A\mathbf{x}\|_{2;\mathcal{V}} = \|A\mathbf{z}\|_2$. Since $\operatorname{supp}(\mathbf{x}) = \operatorname{supp}(\mathbf{z})$ and $|\operatorname{supp}(\mathbf{z})|_{\mathbf{w}} \le k$, we now apply (7.4) to deduce that $(1-\delta)\|\mathbf{z}\|_2^2 \le \|A\mathbf{z}\|_2^2 \le (1+\delta)\|\mathbf{z}\|_2^2$. We conclude that (7.5) holds.

The following result shows that the weighted RIP is a sufficient condition for the weighted rNSP. This result is well known in the scalar-valued case (see, e.g., [8, Theorem 6.26]). Since its extension to the Hilbert-valued case is straightforward, we omit the proof.

Lemma 7.6 (Weighted RIP implies the weighted rNSP). Let $\boldsymbol{w} > \boldsymbol{0}$, k > 0 and suppose that $A \in \mathbb{C}^{m \times N}$ has the weighted RIP over \mathcal{V} of order $(2k, \boldsymbol{w})$ with constant $\delta_{2k,\boldsymbol{w}} < (2\sqrt{2}-1)/7$. Then A has the weighted rNSP of order (k, \boldsymbol{w}) over \mathcal{V} with constants $\rho = 2\sqrt{2}\delta_{2k,\boldsymbol{w}}/(1-\delta_{2k,\boldsymbol{w}})$ and $\gamma = \sqrt{1+\delta_{2k,\boldsymbol{w}}}/(1-\delta_{2k,\boldsymbol{w}})$.