
Chapter 7

Hilbert-valued compressed sensing

In this chapter, we develop Hilbert-valued compressed sensing theory. Here, rather
than the classical setting of a vector in CN , one seeks to recover a Hilbert-valued
vector in VN . This was considered in [52] in the for the classical sparsity model
with `1-minimization. We now consider the more general weighted sparsity model
and weighted `1-minimization. This model was first developed in [121] in the scalar-
valued case. See also [2, 37] and [8, Chapter 6]. Note that in this chapter, we shall
write V rather than Vh, as is done in (4.6). Since V is arbitrary, all the results shown
below will also apply in the case of Vh.

7.1 Weighted sparsity and weighted best approximation

Letƒ � F andwD .w�/�2ƒ > 0 be positive weights. Given a set S �ƒ, we define
its weighted cardinality as

jS jw WD
X
i2S

w2i :

The following two definitions extend Definitions 2.2 and 2.3 to the weighted setting.

Definition 7.1 (Weighted sparsity). Let ƒ � F . A V -valued sequence c D .c�/�2ƒ
is weighted .k;w/-sparse for some k � 0 and weights w D .w�/�2ƒ > 0 if

jsupp.c/jw � k;

where supp.z/ D ¹� W kz�kV ¤ 0º is the support of z. The set of such vectors is
denoted by †k;w.

Definition 7.2 (Weighted best .k;w/-term approximation error). Let ƒ � F , 0 <
p � 2, w > 0, c 2 `pw.ƒIV/ and k � 0. The `pw-norm weighted best .k;w/-term
approximation error of c is

�k.c/p;wIV D min
®
kc � zkp;wIV W z 2 †k;w

¯
:

Notice that this is equivalent to

�k.c/p;wIV D inf
®
kc � cSkp;wIV W S � ƒ; jS jw � k

¯
: (7.1)

Here and elsewhere, for a sequence c D .c�/�2ƒ and a set S � ƒ, we define cS as
the sequence with �th entry equal to c� if � 2 S and zero otherwise.
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7.2 The weighted robust null space property

For the rest of this chapter, we consider the index set ƒ D ¹1; : : : ; N º for some
N 2 N. Our analysis of the weighted SR-LASSO problem is presented in terms of
the so-called weighted robust null space property. Let w > 0 and k > 0. A bounded
linear operatorA 2B.VN ;Vm/ has the weighted robust Null Space Property (rNSP)
over V of order .k;w/ with constants 0 < � < 1 and 
 > 0 if

kxSk2IV �
�kxSck1;wIV
p
k

C 
kAxk2IV ; 8x 2 VN ;

for any S � ŒN � with jS jw � k.
Importantly, the weighted rNSP implies distance bounds in the `1w- and `2-norms.

The following lemma is standard in the scalar case (see, e.g., [8, Lemma 6.24]). We
omit the proof of its extension to the Hilbert-valued case, since it follows almost
exactly the same arguments.

Lemma 7.3 (Weighted rNSP implies `1w and `2 distance bounds). Suppose that A 2
B.VN ;Vm/ has the weighted rNSP over V of order .k;w/ with constants 0 < � < 1
and 
 > 0. Let x; z 2 VN . Then

kz � xk1;wIV � C1.2�k.x/1;wIV C kzk1;wIV � kxk1;wIV /

C C2
p
kkA.z � x/k2IV ;

kz � xk2IV �
C 01
p
k
.2�k.x/1;wIV C kzk1;wIV � kxk1;wIV /

C C 02kA.z � x/k2IV ;

where the constants are given by

C1 D
.1C �/

.1 � �/
; C2 D

2


.1 � �/
; C 01 D

�
.1C �/2

1 � �

�
and C 02 D

�
.3C �/


1 � �

�
:

Lemma 7.3 can be used to show distance bounds for exact minimizers of the
Hilbert-valued weighted SR-LASSO problem

min
z2VN

G .z/; G .z/ WD �kzk1;wIV C kAz � bk2IV : (7.2)

Fortunately, it also implies bounds for approximate minimizers, such as those ob-
tained by a finite number of steps of the primal-dual iteration.

Lemma 7.4 (Weighted rNSP implies error bounds for inexact minimizers). Suppose
that A 2 B.VN ;Vm/ has the weighted rNSP over V of order .k;w/ with constants
0 < � < 1 and 
 > 0. Let x 2 VN , b 2 Vm and e D Ax � b 2 Vm, and consider
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the problem (7.2) with parameter

0 < � �
.1C �/2

.3C �/

k�1=2: (7.3)

Then, for any Qx 2 VN ,

k Qx � xk1;wIV � C1

�
2�k.x/1;wIV C

G . Qx/ � G .x/

�

�
C

�
C1

�
C C2

p
k

�
kek2IV ;

k Qx � xk2IV �
C 01
p
k

�
2�k.x/1;wIV C

G . Qx/ � G .x/

�

�
C

�
C 01
p
k�
C C 02

�
kek2IV ;

where C1, C2, C 01 and C 02 are as in Lemma 7.3.

Proof. First notice that C 01=C
0
2 � C1=C2 since 0 < � < 1, where C1, C2, C 01 and C 02

are as in Lemma 7.3. Hence the condition on � implies that

� � min¹C1=C2; C 01=C
0
2ºk
�1=2;

Using this lemma and this bound, we deduce that

k Qx � xk1;wIV � 2C1�k.x/1;wIV C
C1

�

�
�k Qxk1;wIV C



A Qx � b


2IV
� �kxk1;wIV

�
C C2

p
Kkek2IV :

The definition of G in (7.2) gives

k Qx � xk1;wIV � 2C1�k.x/1;wIV C
C1

�
.G . Qx/ � G .x/C kek2IV /C C2

p
kkek2IV ;

which is the first result. The second follows in an analogous manner.

7.3 The weighted rNSP and weighted restricted isometry property

In the next chapter, we give explicit conditions in terms of m under which the mea-
surement matrices (4.3) satisfy the weighted rNSP over V . It is well known that
showing the (weighted) rNSP directly can be difficult. In the classical, scalar setting,
this is overcome by showing that the (weighted) rNSP is implied by the so-called
(weighted) restricted isometry property. Hence, in this section, we first introduced
this property and describe its relation to the (weighted) rNSP.

Let w > 0 and k > 0. A bounded linear operator A 2 B.VN ; Vm/ has the
weighted Restricted Isometry Property (RIP) over V of order .k;w/ if there exists
a constant 0 < ı < 1 such that

.1 � ı/kzk22IV � kAzk
2
2IV � .1C ı/kzk

2
2IV ; 8z 2 †k;w � VN :
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The smallest constant such that this property holds is called the .k;w/th weighted
Restricted Isometry Constant (wRIC) of A, and is denoted as ık;w.

It is first convenient to show an equivalence between the scalar weighted RIP over
C and the Hilbert-valued weighted RIP over V .

Lemma 7.5 (Weighted RIP over C is equivalent to the weighted RIP over V ). Let
w> 0, k > 0 andA D .aij /

m;N
i;jD1 2Cm�N be a matrix. ThenA satisfies the weighted

RIP over C of order .k;w/ with constant 0 < ı < 1 if and only if the corresponding
bounded linear operator A 2 B.VN ;Vm/ defined by

x D .xi /
N
iD1 2 VN

7! Ax WD

 
NX
iD1

aijxj

!m
iD1

2 Vm;

satisfies the weighted RIP over V of order .k;w/ with the same constant ı.

Proof. We follow similar arguments to [52, Remark 3.5]. First, we rewrite the equiv-
alence as follows:

.1 � ı/kxk22IV � kAxk
2
2IV � .1C ı/kxk

2
2IV ; 8x 2 VN ; jsupp.x/jw � k; (7.4)

if and only if

.1 � ı/kxk22 � kAxk
2
2 � .1C ı/kxk

2
2; 8x 2 CN ; jsupp.x/jw � k: (7.5)

Suppose that (7.5) holds. Let x D .xj /
N
iD1 2 VN be .k;w/-sparse and ¹�iºi be an

orthonormal basis of V . Then, for each i 2 ŒN �, xi 2 V can be uniquely represented
as

xi D
X
j

˛ij�j ; ˛ij 2 C:

Let xj D .˛ij /NiD1 2CN . Then supp.xj /� supp.x/ and therefore xj is .k;w/-sparse.
Hence (7.5) gives

.1 � ı/kxj k
2
2 � kAxj k

2
2 � .1C ı/kxj k

2
2: (7.6)

Now observe thatX
j

kxj k
2
2 D

NX
iD1

X
j

j˛ij j
2
D

NX
iD1

kxik
2
V D kxk

2
2IV

and X
j



Axj

22 DX
j

mX
iD1

ˇ̌̌̌
ˇ NX
kD1

aik˛kj

ˇ̌̌̌
ˇ
2

D

mX
iD1






 NX
kD1

aikxk







2

V

D kAxk
2
2IV :

Summing (7.6) over j , we deduce that (7.4) holds.
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Conversely, suppose that (7.4) holds and let zD.zi /NiD12CN with jsupp.z/jw�k.
Define x D .zi�i / 2 VN and notice that kxk2IV D kzk2 and kAxk2IV D kAzk2.
Since supp.x/ D supp.z/ and jsupp.z/jw � k, we now apply (7.4) to deduce that
.1 � ı/kzk22 � kAzk

2
2 � .1C ı/kzk

2
2. We conclude that (7.5) holds.

The following result shows that the weighted RIP is a sufficient condition for
the weighted rNSP. This result is well known in the scalar-valued case (see, e.g., [8,
Theorem 6.26]). Since its extension to the Hilbert-valued case is straightforward, we
omit the proof.

Lemma 7.6 (Weighted RIP implies the weighted rNSP). Let w > 0, k > 0 and sup-
pose that A 2 Cm�N has the weighted RIP over V of order .2k;w/ with constant
ı2k;w < .2

p
2 � 1/=7. Then A has the weighted rNSP of order .k;w/ over V with

constants � D 2
p
2ı2k;w=.1 � ı2k;w/ and 
 D

p
1C ı2k;w=.1 � ı2k;w/.


