
Chapter 8

Error bounds for polynomial approximation via the
Hilbert-valued, weighted SR-LASSO

Having developed the necessary tools for Hilbert-valued compressed sensing, we now
specialize to the case introduced in Section 4.1 of polynomial approximation via the
Hilbert-valued, weighted SR-LASSO problem (4.6). Our main results in this chapter,
Theorems 8.2–8.4, yield error bounds for (inexact) minimizers of this problem in
terms of the best polynomial approximation error, the Hilbert space discretization
error and the noise.

8.1 The weighted RIP for the polynomial approximation problem

In order to obtain these results, we first need to assert conditions on m under which
the relevant measurement matrix satisfies the weighted RIP. As in Section 4.1, we let
¹‰�º�2F � L

2
%.U/ be either the tensor Chebyshev or Legendre polynomial basis,

ƒ D

´
ƒHC
n;d

d <1;

ƒHCI
n d D1;

(8.1)

be the hyperbolic cross index set and draw y1; : : : ;ym independently and identically
from the measure %. Then we define the measurement matrix A exactly as in (4.3).

Lemma 8.1 (Weighted RIP for orthogonal polynomials). Let ¹‰�º�2Nd
0

be the or-

thonormal tensor Legendre or Chebyshev polynomial basis ofL2%.U/,ƒ be as in (8.1)
for some n � 1 and y1; : : : ; ym be drawn independently and identically from the
measure %. Let 0 < � < 1, k > 0, u be the intrinsic weights (4.7), L0 D L0.k; n; d; �/
be given by

L0 D

´
log.2k/�.log.2k/�min¹log.n/Cd; log.ed/�log.2n/ºClog.��1// d <1;

log.2k/ � .log.2k/ � log2.2n/C log.��1// d D1;

and suppose that
m � c � k � L0.k; n; d; �/; (8.2)

where c > 0 is a universal constant. Then, with probability at least 1 � �, the matrix
A defined in (4.3) satisfies the weighted RIP of order .k;u/ with constant ık;u � 1=4.

Proof. The proof uses ideas that are now standard. The matrix A is a specific type
of measurement matrix associated to the bounded orthonormal system ¹‰�º�2ƒ (see,
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e.g., [8, Section 6.4.3] or [61, Chapter 12]). Such a matrix satisfies the weighted RIP
of order k > 0 with constant ık;u � ı whenever

m � c � k � ı�2 � log
�
2k

ı2

�
�

�
1

ı4
log
�
2k

ı2

�
� log.2N /C

1

ı
log.��1/

�
; (8.3)

where c > 0 is a universal constant. See, e.g., [8, Theorem 6.27 and equation (6.36)]
(this result is based on [37]). To obtain the result, we set ı D 1=4. Hence, (8.3) is
implied by

m � c � k � log.2k/ � Œlog.2k/ � log.2N /C log.��1/�;

for a potentially different universal constant c. Next, we use (3.6) (and recall that
jƒHCI
n j D jƒ

HC
n;nj) to estimate

log.2N / � c

´
min¹d C log.n/; log.2d/ � log.2n/º d <1;

log2.2n/ d D1;

for a potentially different universal constant. The result now follows after substituting
this into the previous expression.

Note that the choice of 1=4 in this lemma is arbitrary. Any value less than

.2
p
2 � 1/=7 � 0:261

(see Lemma 7.6) will suffice.

8.2 Bounds for polynomial approximations obtained as inexact
minimizers

We now present the main results of this chapter. These three results provide error
bounds for polynomial approximations that are obtained as (inexact) minimizers to
the weighted SR-LASSO problem (4.6). Each theorem corresponds to one of the three
scenarios in our main results in Section 3.3. Hence, we label them accordingly as
algebraic and finite-dimensional, algebraic and infinite-dimensional, and exponential.
In order to state these results, we now define some additional notation. Given f 2
L2%.UIV/ and ƒ � F , where F is as in (2.1)–(2.2), we let

Eƒ;2.f / D kf � fƒkL2%.UIV/; Eƒ;1.f / D kf � fƒkL1.UIV/;

where fƒ is as in (4.1), and, given a subspace Vh � L
2
%.UIV/, we let

Eh;1.f / D kf �Ph.f /kL1.UIV/;

where Ph.f / is as in (2.5).
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Theorem 8.2 (Error bounds for inexact minimizers, algebraic and finite-dimensional
case). Let d 2 N, m � 3, 0 < � < 1, ¹‰�º�2Nd

0
� L2%.U/ be either the orthonor-

mal Chebyshev or Legendre basis, Vh � L
2
%.U/ be a subspace of L2%.U/ and ƒ D

ƒHC
n;d

be the hyperbolic cross index set with n D dm=Le where L D L.m; d; �/

is as in (3.8). Let f 2 L2%.UI V/, draw y1; : : : ; ym randomly and independently
according to % and suppose that A, b and e are as in (4.3) and (4.4). Consider the
Hilbert-valued, weighted SR-LASSO problem (4.6) with weights w D u as in (4.7)
and � D .4

p
m=L/�1. Then there exists universal constants c0; c1; c2 � 1 such that

the following holds with probability at least 1 � �. Any Qc D . Qc�/�2ƒ 2 CN satisfies

kf � Qf kL2%.UIV/ � c1 � �; kf �
Qf kL1.UIV/ � c2 �

p
k � �; Qf WD

X
�2ƒ

Qc�‰�;

where

�D
�k.cƒ/1;uIV
p
k

C
Eƒ;1.f /
p
k
CEƒ;2.f /CEh;1.f /CG . Qc/�G .Ph.cƒ//C

knk2IV
p
m

;

cƒ is as in (4.2), Ph.cƒ/ D .Ph.c�//�2ƒ, k D m=.c0L/ for L D L.m; d; �/ as
in (3.8), and n is as in (4.4).

Proof. We divide the proof into several steps.

Step 1: Splitting the error into separate terms. Consider the L2%.UIV/-norm error
first. By the triangle inequality and the fact that Ph is a projection, we have

kf � Qf kL2%.UIV/

� kf �Ph.f /kL2%.UIV/CkPh.f / �Ph.fƒ/kL2%.UIV/CkPh.fƒ/ �
Qf kL2%.UIV/

� kf �Ph.f /kL1.UIV/ C kf � fƒkL2%.UIV/ C kPh.fƒ/ �
Qf kL2%.UIV/

D Eh;1.f /CEƒ;2.f /C kPh.fƒ/ � Qf kL2%.UIV/:

Then, by orthonormality, we have

kf � Qf kL2%.UIV/ � Eh;1.f /CEƒ;2.f /C kPh.cƒ/ � Qck2IV :

Similarly, for the L1.UIV/-norm error, we have

kf � Qf kL1.UIV/

�kf �Ph.f /kL1.UIV/CkPh.f /�Ph.fƒ/kL1.UIV/CkPh.fƒ/�
Qf kL1.UIV/

�kf �Ph.f /kL1.UIV/ C kf � fƒkL1.UIV/ C kPh.fƒ/ �
Qf kL1.UIV/

DEh;1.f /CEƒ;1.f /C kPh.fƒ/ � Qf kL1.UIV/:
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Using the definition (4.7) of the weights u, we deduce that

kf � Qf kL1.UIV/ � Eh;1.f /CEƒ;1.f /C kPh.cƒ/ � Qck1;uIV :

Therefore, the rest of the proof is devoted to showing the following bounds:

kPh.cƒ/ � Qck2IV � c1 � �; kPh.cƒ/ � Qck1;uIV � c2 �
p
k � �: (8.4)

We do this in the next two steps by first asserting thatA has the weighted rNSP (Step
2) and then by applying the error bounds of Lemma 7.4 (Steps 3 and 4).

Step 2: Asserting the weighted rNSP. We now show that A has the weighted rNSP
over Vh of order .k;u/ with probability at least 1� �=2. This is based on Lemma 8.1.
First observe that

L D L.m; d; �/ � log2.3/ �min¹log.3/C 1; log.3/ � log.e/º � 1;

sincem � 3. This implies thatm �m=L �m=.c0L/D k since c0 � 1 as well. Since
n D dm=Le � m=LC 1 � 2m, we get

log.4k/ � .log.4k/ �min¹log.n/C d; log.ed/ � log.2n/º C log.2=�//

� log.4m/ � .log.4m/ �min¹log.2m/C d; log.ed/ � log.4m/º C log.2=�//

� c0L.m; d; �/=2

for a suitably large choice of c0. Hence

m D c0kL.m; d; �/ � 2c0kL
0.2k; d; �=2/;

where L0 is defined as in Lemma 8.1, and therefore (again assuming a suitably large
choice of c0) (8.2) holds with k replaced by 2k. We deduce that A satisfies the
weighted RIP over C of order .2k;u/ with constant ı2k;u � 1=4, with probability at
least 1 � �=2. Then, we deduce from Lemmas 7.5 and 7.6 that A has (with the same
probability) the weighted rNSP over Vh of order .k; u/ with constants � D 2

p
2=3

and 
 D 2
p
5=3.

Step 3: Bounding Ph.cƒ/ � Qc using the weighted rNSP. We use Lemma 7.4. First,
consider the value of �. Since c0 � 1we havem=L�m=.c0L/D k. Hence, recalling
the values for � and 
 obtained in the previous step, we have

1

4
p
c0

1
p
k
D

1

4
p
m=L

D � �
1

4
p
k
<
.1C �/2

.3C �/


1
p
k
: (8.5)

Therefore, (7.3) holds. We now apply this lemma with V D Vh, x D Ph.cƒ/, Qx D Qc
and e D APh.cƒ/ � b. Notice first that the best .k; u/-approximation error (7.1)
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satisfies

�k.Ph.cƒ//1;uIV D inf
° X
�2ƒnS

u�


Ph.c�/




V
W S � ƒ; jS ju � k

±
� �k.cƒ/1;uIV ; (8.6)

since Ph is a projection. Hence, applying Lemma 7.4 and using the lower bound
in (8.5), we get

k Qc�Ph.cƒ/k2IV �c1

�
�k.cƒ/1;wIV
p
k

CG . Qc/�G .Ph.cƒ//C


APh.cƒ/�b




2IV

�
;

k Qc �Ph.cƒ/k1;uIV �c2
�
�k.cƒ/1;wIV C

p
k.G . Qc/ � G .Ph.cƒ///

C
p
k


APh.cƒ/ � b




2IV

�
; (8.7)

with probability at least 1� �=2. Therefore, to show (8.4) and therefore complete the
proof, it suffices to show that the following holds with probability at least 1 � �=2:

kAPh.cƒ/ � bk2IV �
p
2

�
Eƒ;1.f /
p
k

CEƒ;2.f /

�
CEh;1.f /C

knk2IV
p
m

: (8.8)

The overall result then follows by the union bound.

Step 4: Showing that (8.8) holds. Observe that
p
mk.APh.cƒ/ � b/ikV

� kPh.fƒ/.yi / � f .yi /kV C


ni

V

� kPh.fƒ/.yi / �Ph.f /.yi /kV C kf .yi / �Ph.f /.yi /kV C


ni

V

� kf .yi / � fƒ.yi /kV CEh;1.f /C knikV :

Therefore,

kAPh.cƒ/ � bkV I2 � Eƒ;disc.f /CEh;1.f /C
knk2IV
p
m

; (8.9)

where

Eƒ;disc.f / D

vuut 1

m

mX
iD1

kf .yi / � fƒ.yi /k
2
V : (8.10)

For this final step, we follow near-identical arguments to those found in [8, Lemma
7.11]. This shows that

Eƒ;disc.f / �
p
2

�
Eƒ;1.f /
p
k

CEƒ;2.f /

�
;

with probability at least 1 � �=2, provided m � 2k log.2=�/. However, this follows
due to the assumptions onm and the arguments given in Step 2. Thus we obtain (8.8)
and the proof is complete.
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Theorem 8.3 (Error bounds for inexact minimizers, algebraic and infinite-dimen-
sional case). Let d D 1, m � 3, 0 < � < 1, ¹‰�º�2F � L

2
%.U/ be either the or-

thonormal Chebyshev or Legendre basis, Vh � L
2
%.U/ be a subspace of L2%.U/ and

ƒ D ƒHCI
n be the hyperbolic cross index set with n D dm=Le where L D L.m; d; �/

is as in (3.8). Let f 2 L2%.UI V/, draw y1; : : : ; ym randomly and independently
according to % and suppose that A, b and e are as in (4.3) and (4.4). Consider the
Hilbert-valued, weighted SR-LASSO problem (4.6) with weights w D u as in (4.7)
and � D .4

p
m=L/�1. Then there exists universal constants c0; c1; c2 � 1 such that

the following holds with probability at least 1 � �. Any Qc D . Qc�/�2ƒ 2 CN satisfies

kf � Qf kL2%.UIV/ � c1 � �; kf �
Qf kL1.UIV/ � c2 �

p
k � �; Qf WD

X
�2ƒ

Qc�‰�;

where

�D
�k.cƒ/1;uIV
p
k

C
Eƒ;1.f /
p
k
CEƒ;2.f /CEh;1.f /CG . Qc/�G .Ph.cƒ//C

knk2IV
p
m

;

cƒ is as in (4.2), Ph.cƒ/ D .Ph.c�//�2ƒ, k D m=.c0L/ for L D L.m; d; �/ as
in (3.8), and n is as in (4.4).

Proof. The proof has the same structure as that of the previous theorem. Steps 1, 3
and 4 are identical. The only differences occur in Step 2. We now describe these
changes. Once more we observe that L D L.m;1; �/ � 1 since m � 3. Hence,
m �m=L �m=.c0L/D k since c0 � 1. We also have nD dm=Le � 2m. Therefore,

log.4k/ � .log.4k/ � log2.2n/C log.2=�// � log.4m/ � .log3.4m/C log.2=�//

� c0L.m;1; �/=2

for a suitably large choice of c0. We deduce that

m D c0kL.m;1; �/ � 2c0kL
0.2k;1; �=2/;

where L0 is as in Lemma 8.1. An application of this lemma now shows thatA has the
weighted RIP of order .2k;u/ with constant ı2k;u � 1=4, as required.

Theorem 8.4 (Error bounds for inexact minimizers, exponential case). Let d 2 N,
m � 3, 0 < � < 1, ¹‰�º�2Nd

0
� L2%.U/ be either the orthonormal Chebyshev or Leg-

endre basis, Vh � L
2
%.U/ be a subspace of L2%.U/ and ƒ D ƒHC

n;d
be the hyperbolic

cross index set with n as in (3.15). Draw y1; : : : ; ym randomly and independently
according to %. Then, with probability at least 1 � �, the following holds. Let f 2
L2%.UI V/ and suppose that A, b and e are as in (4.3) and (4.4). Consider the
Hilbert-valued, weighted SR-LASSO problem (4.6) with weights w D u as in (4.7)
and � D .4

p
m=L/�1. Then there exists universal constants c0; c1; c2 � 1 such that
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any Qc D . Qc�/�2ƒ 2 CN satisfies

kf � Qf kL2%.UIV/ � c1 � �; kf �
Qf kL1.UIV/ � c2 �

p
k � �; Qf WD

X
�2ƒ

Qc�‰�;

where

� D
�k.cƒ/1;uIV
p
k

CEƒ;1.f /CEh;1.f /C G . Qc/ � G .Ph.cƒ//C
knk2IV
p
m

;

cƒ is as in (4.2), Ph.cƒ/ D .Ph.c�//�2ƒ, k D m=.c0L/ for L D L.m; d; �/ as
in (3.8), and n is as in (4.4).

Proof. The proof has the same structure as that of Theorem 8.2. Step 1 is identical,
and reduces the proof to showing that (8.4) holds. We now describe the modifications
needed in Steps 2–4.

Step 2: Asserting the weighted rNSP. We now show that A has the weighted rNSP
over Vh of order .k; u/ with probability at least 1 � �. This step is essentially the
same, except for the choice of n and the probability 1 � � instead of 1 � �=2.

Step 3: Bounding Ph.cƒ/ � Qc using the weighted rNSP. Since � and k are the same
as in Theorem 8.2, the bound (8.5) also holds in this case. We then follow the same
arguments, leading to (8.7) holding with probability at least 1 � �. Finally, rather
than (8.8), we ask for the slightly modified bound

kAPh.cƒ/ � bk2IV � Eƒ;1.f /CEh;1.f /C
knk2IV
p
m

; (8.11)

to hold with probability one.

Step 4: Showing (8.11) holds. By the same argument, we see that (8.9) holds. Instead
of the probabilistic bound for Eƒ;disc.f /, we now simply bound it as

Eƒ;disc.f / � kf � fƒkL1.UIV/ D Eƒ;1.f /:

This immediately implies (8.11).
Finally, we observe that we can simplify the previous estimates in this case using

the bound Eƒ;2.f / � Eƒ;1.f /.


