Chapter 9

Error bounds and the restarting scheme for the
primal-dual iteration

Theorems 8.2-8.4 reduce the problem of proving the main results (Theorems 3.4—
3.12) to two tasks. The first involves bounding the error in the objective function, i.e.,
the term

§(¢) — G (Pnlcn)),

where ¢ is either an exact minimizer or an approximate minimizer obtained via the
primal dual iteration. The second involves the various approximation error terms
depending on f and its polynomial coefficients.

In this chapter, we address the first task. We first provide an error bound for
the (unrestarted) primal-dual iteration when applied to Hilbert-valued weighted SR-
LASSO problem (7.2), and then use this to derive the specific restart scheme.

9.1 Error bounds for the primal-dual iteration

We now return to the general setting of the primal-dual iteration, where it is applied to
the problem (4.9) and takes the form (4.12). The following result from [31, Theorem
5.1] establishes an important error bound for the Lagrangian difference.

Theorem 9.1. Let v, > 0, initial points (x(@,£©) € X x Y and a bounded linear
operator A € B(X, Y), be such that ”A”?B(x,y) < (to)~L. Consider the sequence
{(x™, E(”))}Zozl generated by the primal-dual iteration (4.12). Then, for any (x,§) €
X xY,

— 7 x — x© 2. +o g —£© 2.
i(i(”), g__) _ éﬁ(x, i__(,,)) < ” ||2,'V ||§ E 2;V ’ (9.1)
n

where
n

n
1 S 2® and EW = 1 360,
n n
k=1 k=1

are the ergodic sequences and £ is the Lagrangian (4.11).
The following lemma shows a decay rate of 1/n on the objective function in the

case of the primal-dual iteration when applied to the problem (7.2). It is an extension
of [13, Lemma 8.6] to the weighted and Hilbert-valued setting.
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Lemma9.2. Let A € B(VN, V™) and t,0 > 0 be such that | A ”.,Z‘B(VN pmy = (to)™ L

Consider the sequence {(x™, g("))}g;l generated by the primal-dual iteration in
(4.12) applied to (7.2) with x©@ e VN and E(O) =0 € V™. Then, forany x € VN,

7 x — xo|2y + 07! 1 &
g(f(n)) —g(x) < I ollz;y 1O Zx(k). 9.2)
n n =

Proof. Using (4.11) and (4.13), the left-hand side of (9.1) is given by

Ta(x.8) := (AZ™ 1 wry + Re(AZ™ —b.&)2v + 65(§))
— (A% Iy 0w + Re(Ax — b.E™)oy + 85(E™)),
where B is the unit ball in V™. Observe that the term £ ™ produced by this iteration

satisfies || & ™ ;v < 1. This follows from the observation shown in Section 4.4 that
the proximal mapping

proX,p+(§) = projp(§ — ob)
involves the projection onto the unit ball B. Hence, the ergodic sequence & ™ satisfies

[| € 2. < 1as well. Suppose now that Ax® —p £ 0 and set

Ax™ —p
T A by
Then 83 (&) = §5(E™) = 1 and therefore

T (x, &) = (A v+ 142" —b
> (A|Ix™

|2;v)—(/\||x||1,w;v +Re(Ax - bv g(n))z;v)
|1,w;"V + ”A-f(n) - b”z;'V) - (/\”x 1,w;V + ”Ax - b”z;V)'

Clearly, the same bound also holds in the case Ax™ — b = 0 where £ is an arbitrary
unit vector. Hence Theorem 9.1 and the fact that

1€ = &oll2;v = 11§

|2;”V =1

gives the result. u

9.2 The restarting scheme

For convenience, we now introduce new and slightly modify some existing notation.
First, we redefine the objective function § of the Hilbert-valued weighted SR-LASSO
problem (7.2) to make the dependence on the term b explicit: namely, we set

G(x,b) = A|x |l ey + |[Ax = by, x € VN, beV™
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We then let
€(z,x,b)=9(z,b)—6(x,b), x,ze€VN becVv"

Now consider the ergodic sequence ¥ ™ produced by 7 iterations of the primal-dual
iteration (4.12) applied to (7.2) with parameters 7,0 > 0, xo € VY and &g = 0 € V™.
For reasons that will become clear in a moment, we now make the dependence on the
vector b in (7.2), the number of iterations ¥ and the initial vector xg explicit, by
defining

P(xo,b,n) =x™.

With this in hand, we conclude this discussion by noting the following two scaling
properties:

S(ax,b) =a$(x,b/a), E&(az,x,b)=a&(z,x/a,b/a). 9.3)
These hold for any @ > 0 and for any x,z € V¥ and b € V™.

Lemma 9.3. Suppose that A € B(VN, V™) has the weighted rNSP over 'V of order
(k, w) with constants 0 < p < 1 and y > 0. Consider the Hilbert-valued weighted
SR-LASSO problem (7.2) with parameter A = ¢/ 'k, where

_d+p?

O0<c< .
B+ p)y

Let & and P be as defined above, t, o satisfy | A ”?B(WJNNW) <(to) land x,xy €
YN be V™ a>0. Then

C2
&(aP(xo/a,bja,n),x,b) < —(E(xo,x,b) + £)> + =
atn on

where
C =2max{Cj/c,C;}, (9.4)
C{, C} are as in Lemma 7.3 and
0k (%)1,w;v
=&(x,b)=————"+ |Ax — b||5.vy. 9.5)
§=¢ N I ll2;v

Proof. The scaling property (9.3) and Lemma 9.2 give
&aP(xo/a,b/a,n),x,b) =a&(P(xo/a,b/a,n),x/a,b/a)
(r—l lx/a — xo/all3y + o‘l)
=a :

n

2
lx —xoll2y @
= Y

atn on
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Now consider the term |[x — x¢/,.. Since A has the weighted rNSP and A satis-
fies (7.3), we may use Lemma 7.4 to get

9 (x0,b)— 8 (x, b)) +( Cl

C/
= ¥ollwy < 1@@umww+

+CQnAx—muw

~Vk A Vi
C{ ;0% (X) 1,w;v ( Cy ,)

= E(xg,x,b) +2C —— 4+ +C, |||[Ax —b|,.
\/%A ( 0 ) 1 \/% \/E/\ 2 ” ||2,'V

<2max{C;/c,C5}(E(xq,x,b) + &).
Substituting this into the previous expression now gives the result. |

This lemma gives the rationale behind the restarted scheme. It says the error in the
objective function of the scaled output aP(x¢/a, b/a, n) of the primal-dual iteration
with initial value x¢ can be bounded in terms of the error in the objective function
at the initial value, plus terms depending on the scaling parameter a, the number of
iterations n and the compressed sensing error term £. By choosing these parameters
suitably and iterating this procedure, we obtain the restarting scheme. We summarize
this in the following theorem.

Theorem 9.4 (Restarting scheme). Suppose that A € B(VN, V™) has the weighted
rNSP over 'V of order (k, w) with constants 0 < p < 1 and y > 0. Consider the
Hilbert-valued weighted SR-LASSO problem (7.2) with parameter A = ¢/ Vk, where
0<c< (1+'°)2. Letx € VN b e V™M, > & whereEisasin(9.5),0<r < 1and

B+o)y
define the sequence

go = |bllyy. k41 =r(k +8), k=0,1,2,....

Let & and P be as defined above, t, o satisfy || A ”f@('vN,Vm) < (to)~! and set

2C 1
n=’r —‘, ay = z0¢p41n, k=0,1,2,...,
ry/ot 2
where C is as in (9.4). Then the iteration ¥ @, W @ defined by
i@ =0, %Y =4 2PGE® /ag.b/ag,n), k=0,1,2,...,

satisfies

E(xz.x,b) <ep < r*|b

r !/
N k) k=0,1,2,....
lo.y + 1= r§
Proof. We use induction on k. Suppose first that k = 0. Then, by definition,

8(f(k)’x,b) = 8(0,x,b) =< ﬁ((), b) = ||b||2;v = &o-
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Now suppose that the result holds for k. The previous lemma gives
gE*D x . b) = 6(ar P(*® Jay,b/ay,n), x,b)

C? 5 a

< ——(EGEW,x. )+ 0%+ 5

artn on
2

=

a
(ex + 0% + ==
artn on

We now substitute the values of n and aj to obtain

_2C% (e +0)

exE*tD x b) .
rotn

This completes the proof.
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o7k +0) S oo+ 0+ (e + 0 = e

This theorem states that the restarted primal-dual iteration (@ ¥ @

yields an objective function error & (#®), x, b) that converges exponentially fast in

the number of restarts k. Further, each (inner) primal-dual iteration involves a number
of steps n that depends on the parameters C, r, o and t. In other words, # is a constant
independent of k. Hence, the restarted scheme converges exponentially fast in the

total number of primal-dual iterations as well.

As discussed in Section 5.1.1, it is typical to use this theorem to optimize the
choice of r. Recall that this leads to the explicit choice r = e~!. We use this value in

our algorithms — see Table 4.3.



