
Chapter 9

Error bounds and the restarting scheme for the
primal-dual iteration

Theorems 8.2–8.4 reduce the problem of proving the main results (Theorems 3.4–
3.12) to two tasks. The first involves bounding the error in the objective function, i.e.,
the term

G . Qc/ � G .Ph.cƒ//;

where Qc is either an exact minimizer or an approximate minimizer obtained via the
primal dual iteration. The second involves the various approximation error terms
depending on f and its polynomial coefficients.

In this chapter, we address the first task. We first provide an error bound for
the (unrestarted) primal-dual iteration when applied to Hilbert-valued weighted SR-
LASSO problem (7.2), and then use this to derive the specific restart scheme.

9.1 Error bounds for the primal-dual iteration

We now return to the general setting of the primal-dual iteration, where it is applied to
the problem (4.9) and takes the form (4.12). The following result from [31, Theorem
5.1] establishes an important error bound for the Lagrangian difference.

Theorem 9.1. Let �; � > 0, initial points .x.0/; �.0// 2 X � Y and a bounded linear
operator A 2 B.X;Y/, be such that kAk2

B.X;Y/
� .��/�1. Consider the sequence

¹.x.n/; �.n//º1nD1 generated by the primal-dual iteration (4.12). Then, for any .x; �/ 2
X � Y,

L. Nx.n/; �/ �L.x; x�.n// �
��1kx � x.0/k

2

2IV C �
�1k� � �.0/k

2

2IV

n
; (9.1)

where

Nx.n/ D
1

n

nX
kD1

x.k/ and x�.n/ D
1

n

nX
kD1

�.k/;

are the ergodic sequences and L is the Lagrangian (4.11).

The following lemma shows a decay rate of 1=n on the objective function in the
case of the primal-dual iteration when applied to the problem (7.2). It is an extension
of [13, Lemma 8.6] to the weighted and Hilbert-valued setting.
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Lemma 9.2. LetA 2B.VN ;Vm/ and �;� > 0 be such that kAk2
B.VN ;Vm/

�.��/�1.

Consider the sequence ¹.x.n/; �.n//º1nD1 generated by the primal-dual iteration in
(4.12) applied to (7.2) with x.0/ 2 VN and �.0/ D 0 2 Vm. Then, for any x 2 VN ,

G . Nx.n// � G .x/ �
��1kx � x0k

2
2IV C �

�1

n
; Nx.n/ D

1

n

nX
kD1

x.k/: (9.2)

Proof. Using (4.11) and (4.13), the left-hand side of (9.1) is given by

Tn.x; �/ WD
�
�k Nx.n/k1;wIV C RehA Nx.n/ � b; �i2IV C ıB.�/

�
�
�
�kxk1;wIV C RehAx � b; x�.n/i2IV C ıB.x�.n//

�
;

where B is the unit ball in Vm. Observe that the term �.n/ produced by this iteration
satisfies k�.n/k2IV � 1. This follows from the observation shown in Section 4.4 that
the proximal mapping

prox�h�.�/ D projB.� � �b/

involves the projection onto the unit ballB . Hence, the ergodic sequence x�.n/ satisfies
kx�.n/k2IV � 1 as well. Suppose now that Ax.n/ � b ¤ 0 and set

� D
Ax.n/ � b

kAx.n/ � bk2IV
:

Then ıB.�/ D ıB.x�.n// D 1 and therefore

Tn.x; �/D
�
�k Nx.n/k1;wIVCkA Nx

.n/
�bk2IV

�
�
�
�kxk1;wIVCRehAx � b; x�.n/i2IV

�
�
�
�k Nx.n/k1;wIV C kA Nx

.n/
� bk2IV

�
�
�
�kxk1;wIV C kAx � bk2IV

�
:

Clearly, the same bound also holds in the caseAx.n/ � bD 0 where � is an arbitrary
unit vector. Hence Theorem 9.1 and the fact that

k� � �0k2IV D k�k2IV D 1

gives the result.

9.2 The restarting scheme

For convenience, we now introduce new and slightly modify some existing notation.
First, we redefine the objective function G of the Hilbert-valued weighted SR-LASSO
problem (7.2) to make the dependence on the term b explicit: namely, we set

G .x;b/ D �kxk1;wIV C kAx � bk2IV ; x 2 VN ; b 2 Vm:



The restarting scheme 77

We then let

E.z;x;b/ D G .z;b/ � G .x;b/; x; z 2 VN ; b 2 Vm:

Now consider the ergodic sequence Nx.n/ produced by n iterations of the primal-dual
iteration (4.12) applied to (7.2) with parameters �; � > 0, x0 2 VN and �0 D 0 2 Vm.
For reasons that will become clear in a moment, we now make the dependence on the
vector b in (7.2), the number of iterations Nx.n/ and the initial vector x0 explicit, by
defining

P .x0;b; n/ D Nx
.n/:

With this in hand, we conclude this discussion by noting the following two scaling
properties:

G .ax;b/ D aG .x;b=a/; E.az;x;b/ D aE.z;x=a;b=a/: (9.3)

These hold for any a > 0 and for any x; z 2 VN and b 2 Vm.

Lemma 9.3. Suppose that A 2 B.VN ;Vm/ has the weighted rNSP over V of order
.k;w/ with constants 0 < � < 1 and  > 0. Consider the Hilbert-valued weighted
SR-LASSO problem (7.2) with parameter � D c=

p
k, where

0 < c �
.1C �/2

.3C �/
:

Let E and P be as defined above, �; � satisfy kAk2B.VN ;Vm/ � .��/
�1 and x;x0 2

VN , b 2 Vm, a > 0. Then

E.aP .x0=a;b=a; n/;x;b/ �
C 2

a� n
.E.x0;x;b/C �/

2
C

a

�n
;

where
C D 2max¹C 01=c; C

0
2º; (9.4)

C 01, C 02 are as in Lemma 7.3 and

� D �.x;b/ D
�k.x/1;wIV
p
k

C kAx � bk2IV : (9.5)

Proof. The scaling property (9.3) and Lemma 9.2 give

E.aP .x0=a;b=a; n/;x;b/ D aE.P .x0=a;b=a; n/;x=a;b=a/

� a

�
��1kx=a � x0=ak

2
2IV C �

�1

n

�
D
kx � x0k

2
2IV

a� n
C

a

�n
:
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Now consider the term kx � x0k2IV . Since A has the weighted rNSP and � satis-
fies (7.3), we may use Lemma 7.4 to get

kx�x0k2IV �
C 01
p
k

�
2�k.x/1;wIVC

G .x0;b/�G .x;b/

�

�
C

�
C 01
p
k�
CC 02

�
kAx�bk2IV

D
C 01
p
k�

E.x0;x;b/C 2C
0
1

�k.x/1;wIV
p
k

C

�
C 01
p
k�
C C 02

�
kAx � bk2IV

�2max¹C 01=c; C
0
2º.E.x0;x;b/C �/:

Substituting this into the previous expression now gives the result.

This lemma gives the rationale behind the restarted scheme. It says the error in the
objective function of the scaled output aP .x0=a;b=a; n/ of the primal-dual iteration
with initial value x0 can be bounded in terms of the error in the objective function
at the initial value, plus terms depending on the scaling parameter a, the number of
iterations n and the compressed sensing error term � . By choosing these parameters
suitably and iterating this procedure, we obtain the restarting scheme. We summarize
this in the following theorem.

Theorem 9.4 (Restarting scheme). Suppose that A 2 B.VN ;Vm/ has the weighted
rNSP over V of order .k;w/ with constants 0 < � < 1 and  > 0. Consider the
Hilbert-valued weighted SR-LASSO problem (7.2) with parameter � D c=

p
k, where

0 < c � .1C�/2

.3C�/
. Let x 2 VN , b 2 Vm, �0 � � , where � is as in (9.5), 0 < r < 1 and

define the sequence

"0 D kbk2IV ; "kC1 D r."k C �
0/; k D 0; 1; 2; : : : :

Let E and P be as defined above, � , � satisfy kAk2B.VN ;Vm/ � .��/
�1 and set

n D

�
2C

r
p
��

�
; ak D

1

2
�"kC1n; k D 0; 1; 2; : : : ;

where C is as in (9.4). Then the iteration Qx.0/; Qx.1/; Qx.2/; : : : ; defined by

Qx.0/ D 0; Qx.kC1/ D akP . Qx.k/=ak;b=ak; n/; k D 0; 1; 2; : : : ;

satisfies

E.x?k ;x;b/ � "k � r
k
kbk2IV C

r

1 � r
�0; k D 0; 1; 2; : : : :

Proof. We use induction on k. Suppose first that k D 0. Then, by definition,

E. Qx.k/;x;b/ D E.0;x;b/ � G .0;b/ D kbk2IV D "0:
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Now suppose that the result holds for k. The previous lemma gives

E. Qx.kC1/;x;b/ D E.akP . Qx.k/=ak;b=ak; n/;x;b/

�
C 2

ak� n
.E. Qx.k/;x;b/C �/2 C

ak

�n

�
C 2

ak� n
."k C �/

2
C
ak

�n
:

We now substitute the values of n and ak to obtain

E. Qx.kC1/;x;b/D
2C 2."k C �/

r�� n2
C
1

2
r."k C �/�

1

2
r."k C �/C

1

2
r."k C �/D "kC1:

This completes the proof.

This theorem states that the restarted primal-dual iteration Qx.0/; Qx.1/; Qx.2/; : : :
yields an objective function error E. Qx.k/; x; b/ that converges exponentially fast in
the number of restarts k. Further, each (inner) primal-dual iteration involves a number
of steps n that depends on the parametersC , r , � and � . In other words, n is a constant
independent of k. Hence, the restarted scheme converges exponentially fast in the
total number of primal-dual iterations as well.

As discussed in Section 5.1.1, it is typical to use this theorem to optimize the
choice of r . Recall that this leads to the explicit choice r D e�1. We use this value in
our algorithms – see Table 4.3.


