Chapter 10

Final arguments

We are now ready to prove the main results, Theorems 3.4-3.12. In several of these
proofs, we require the following definition. Let s € N and set

k(s) = max{|S|, : S C N&, |S| <5, S lower}, (10.1)

where u are the intrinsic weights (4.7) (recall the definition of a lower set from Defi-
nition 2.8). It can be shown that

k(s) = s%, (Legendre), k(s) < min{2ds,slog(3)/1°g(2)}, (Chebyshev). (10.2)

See, e.g., [8, equation (7.42), Propositions 5.13 and 5.17]. We will use this property
several times in what follows.

10.1 Algebraic rates of convergence, finite dimensions

Proof of Theorem 3.4. The mapping was described in Table 4.1. As shown therein,
we can write the corresponding approximation as f =) yep Cv¥y, Where ¢ =
(Cy)ven is a minimizer of (4.6). Next, due to the various assumptions made, we may
apply Theorem 8.2. Setting f = f and ¢ = ¢, we deduce that

IS = Fllzeuw Sci-& 1 = Flioquy) < 2 Vi &, (103)
where (after writing out the term Ej, o (/') explicitly)
ok(ea) vy Enco(f)
= = 4 == + E +f -2 co (U
3 Tk Ti A2() + L = POl Loousv)
156 — 8(Palen) + MY, (104
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and k = m/(coL) with co > 1 a universal constant. We now bound each term sepa-
rately.

Step 1. The terms oy, (cA)l,u;v/«/E, EA,oo(f)/\//; and Ep »(f). The term

ok (en) Lusv/Vk
is estimated via (ii) of Theorem A.1 with ¢ = 1. This gives
Uk(cA)l 73% 1/2—-1/ m 1/2—1/p
————_<C(d,p,p)-k P=C(,p,p)|— . 10.5
N =C(d.,p.p) d,p.p) (COL) (10.5)
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We estimate the term E A 5(f) by first recalling that A = A", is the union of all
lower sets (see Definition 2.8) of size at most n = [m/L] (see Section 3.2). Hence,

using (i) of Theorem A.1 with s = n and ¢ = 2, we get
Ena(f) = lle —eallzy < lle —eslloy < Cd, p.p) -n'/>71/P

1/2—1/
m ) 7 (10.6)

<C d’ , .<___
=C(d.p.p) oL
Here, in the last step we recall that n = [m/L] and ¢g > 1.
It remains to consider Ex o (f)/ Vk. Due to the choice of weights, we have
Ep,00(f) = lle —cally,uv- We now apply (i) of Theorem A.1 once more, with s = n
and g = 1, to get

Eneo(f) = lle = eslhuy = C(d. p,p)-n' =17,
Sincen = [m/L] = m/(coL) = k, we obtain

Encolf) m \1/2-1/p

< C d’ , o — X

Vi d.p.p) (CO L)

Step 2. The term §(¢) — §(P(ca)). Since ¢ is a minimizer of (4.6) and Pp(cp) €
"V;Ilv is feasible for (4.6), this term satisfies

(10.7)

5(6) = §(Pu(en)) =0. (10.8)

Step 3. Conclusion. We now substitute the bounds (10.5)—(10.8) into (10.4). Since
k <m/L, we deduce that £ < ¢, where ¢ is given by (3.10). This completes the
proof. |

Proof of Theorem 3.5. The argument is similar to that of the previous theorem. Recall
from Section 4.5 that, in this case the approximation f =) ,eAa CwWy, wWhere ¢ =
¢ is the ergodic sequence obtained after 7" steps of the primal-dual iteration applied
to (4.6). Hence, the only difference is the estimation of §(¢) — §(Py(cp)) in Step 2.
We now do this using Lemma 9.2. In order to apply this lemma we first need to
rersgimate ”A”B(v/,\’,vgf)- Let x = (xp)pep € V,Ilv and define p(y) = > ,cp Xv ¥y.
en
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Now the set A is lower and of cardinality |A| = ©(n, d). Hence, by (10.2) with
s = N, we have |A|, < (®(n,d))?, where « is as in (3.7). Since x was arbitrary,
we get

[Allzy = (©(n,d))*. (10.9)
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Since the primal-dual iteration in Section 4.5 is used with t = 0 = (®(n,d))™%, we
have that
1413y < (zo)™".

Hence, we may apply Lemma 9.2. Since the iteration is also initialized with the zero
vector and run for a total of 7 = [2(®(n, d))*t] iterations (see Section 4.5 once
more), this gives

IPn(ea)ll3p + 1

G(6) —9(Pulen)) = (©(n,d))* T

Observe that

IPhlem)lzgy < lleallzsy = lelle;y = 1 2wy = 1-

Here, in the last step, we use the fact that f € B(p), and therefore
Il z2qusvy = 1 lLoousyy = 1.

Using this and the value of 7', we deduce that

§(¢) —9(Pnlen)) =

~ | =

Substituting this into (10.4) and combining with the other estimates (10.5)—(10.7)
derived in Step 2 of the proof of Theorem 3.4 now gives the desired error bound.

It remains to estimate the computational cost. We do this via Lemmas 4.3 and 4.4.
First observe that the value k in Lemma 4.4 is equal to k = d in this case, since the
index set A = Aﬁ?d is a d-dimensional hyperbolic cross index set. Similarly, the
value n in Lemma 4.4 is bounded by the order n of this hyperbolic cross. As A is a
lower set, we also have n < N. Hence, the computational cost for forming the matrix
A is bounded by ¢ -m - N - d. We now use Lemma 4.3 to bound the computational
cost of the algorithm. Finally, we recall that N = O(n,d) and T = [2(O(n,d))%t]
in this case. |

Proof of Theorem 3.6. As in the previous proof, we only need to estimate the term
9(¢) — §(Pn(cn)). Recall from Table 4.3 that in this case ¢ = ¢® is the output
of the restarted primal-dual iteration with R restarts. Our goal is to use Theorem 9.4
applied to the problem (4.6) with weights w = u as in (4.7), A = (4/m/L)~! and
x = Pplen).

We first show that the conditions of this theorem hold. Recall from Step 2 of the
proof of Theorem 8.2 that the matrix A has the weighted rNSP of order (k, u) over
'V}, with constants p = 2+/2/3 and y = 2+/5/3. In particular,

(1+p)?

> 0.64.
B+ p)y
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We now use (8.5) to see that
L Lo 1+p)? 1
4co vk~ B+py vk

for a sufficiently large choice of cy.
Next, with this choice of x, we see that

ok (Prea)) 1,u;v

N

§(x.b) = + |APn(en) = bllo;v-
Using (8.6) and (8.8), we get

E(x,b) < M + \/E(M + EAz(f)) + Eh,oo(f) + ||"||2;v’

vk vk vm
with probability at least 1 — €. Using (10.5)—(10.7), we deduce that
E(x.b) < ¢,

with probability at least 1 — €, where { is as in (3.10). Hence, £(x,b) < (.

Next, recall from Table 4.3 that t = 0 = (®(n,d))™® in this case. Due to (10.9),
we see that [|A ||,y < (t0) ™" as well.

Now consider the constant C defined in (9.4). The values for p and y give that
C|{ < C; <103. Since A = c/\/% with ¢ = 1/(4./co), we see that

4C < 812/c =32964/cq := c™. (10.10)

Therefore, recalling that 7 = 1/2 and 1 = 0 = (®(n,d))™“, we see that

2C @ g
Lﬁ] — (@M. d) e = T,

where T is as specified in Table 4.3, and

(©@,d)*T

1
Era(sk + T = 2

Ek+1 = S€k+1 = Ak,

where s and ay are as specified in Table 4.3 and Algorithm 4, respectively.
With this in hand, we are now finally in a position to apply Theorem 9.4. We
deduce that

9(8) —5(Pulen)) = EEP, Prlen).b) < ex = F|b

2;V + Z/-

To complete the proof of the error bound (3.12), we simply note that [|b]|,.y <
I f Lo qusvy = 1, since f € B(p).

It remains to estimate the computational cost. As before, the computational cost
for forming the matrix A is bounded by ¢ - m - N - d. Next, by construction, we
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observe that the algorithm consists of R = ¢ primal-dual iterations, each involving
T = [(®(n,d))*c*] steps. Therefore, by Lemma 4.3 the computational cost for the
algorithm is

c-(m-N-K+@m+N)-(F(G)+ K))-[(On,d))*c*] -1.

Since N = ®(n,d) and c* is a universal constant, the result follows. [

10.2 Algebraic rates of convergence, infinite dimensions

Proof of Theorem 3.7. The proof is similar to that of Theorem 3.4, except that it uses
Theorem 8.3 in place of Theorem 8.2. In particular, we see that (10.3) also holds in
this case with £ asin (10.4) and k = m/(coL).

Step 2 is identical. The only differences occur in Step 1. We now describe the
changes needed in this case. First consider the term ok (¢A)1,u;v/ V'k. To bound this,
we use (ii) of Theorem A.3 with g = 1 > p. This gives

or(ea),u;v

vk

To estimate EA »(f), recall that A = A contains all anchored sets (see Defini-
tion 2.8) of size at most n = [m/L] (see Section 3.2). Hence, using (iii) of Theo-
rem A3 withs =nandg =2 > p, we get

2y < C(b,e, p)-n'/271/P

Exa(f)=lc—ca
m )1/2—1/17

<C(b.e p)- (co_L

1/2—-1/
< Clb.ep) KPP = Cep) - (=)
Co

2;V S ||c —Cs

Finally, for EA o (f), we use (iii) of Theorem A.3 once more (withg = 1 > p) to
get

Eneo(f) _ llc —es|
N/ vk
m )1/2—1/p

= C(b,E, p) . (CO_L

S < C(boe.p)- kMNP

Having done this, we also observe that €(¢) — (P (ca)) < 0 in this case, since ¢
is once more an exact minimizer. Using this and the previously derived bounds, we
conclude that £ < ¢, where  is as in (3.14). This gives the result. ]

Proof of Theorem 3.8. The argument is similar to that of Theorem 3.5. Here é = ¢(T)
is the ergodic sequence obtained after 7" steps of the primal-dual iteration applied
to (4.6) as well.
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We recall that the set A is lower and of cardinality |A| = ®(n, d) with d = oo.
Hence, by (10.2) with s = N, we have |A|, < (®(n,d))?*, where « is as in (3.7).
Using this, we get

[4ly < (©(n,d))*,

as before. Since the primal-dual iteration in Table 4.3 is used with
T=0=(00n,d)?,

we have that || 4 ||§;v < (ro)~!. Hence, following the same steps we deduce that

5(¢) —9(Pnlen)) =

~ | —

Substituting this into (10.4) and combining with the other estimates (10.5)—(10.7)
derived in Step 2 of the proof of Theorem 3.4 now gives the desired error bound.
The computational cost estimate is similar to the that in the proof of Theorem 3.5.
In this case, observe that the value k in Lemma 4.4 is equal to n. Hence, the compu-
tational cost of forming A is bounded by ¢ - m - N - n in this case. The computational
cost for the algorithm is given by Lemma 4.3. To complete the estimate, we substitute
the values N = O(n,d) and T = [2(O(n, d))*t], as before. ]

Proof of Theorem 3.9. The proof is similar to that of Theorem 3.6 and involves esti-
mating the term §(¢) — §(P(cp)). Using the same steps, we deduce that

§(x.b) = ¢,

with probability at least 1 — €/2, where ¢ is as in (3.14). Hence, £(x,b) < {'.

Next, recall from Table 4.3 that T = 0 = (®(n,d))™* with d = oo in this case.
Due to (10.9), we see that [|4 ||,y < (to)~! holds. We now apply Theorem 9.4 to
obtain

9(8) —5(Pulen)) = EEP, Prulen).b) <er = F|blyy + ¢

To complete the proof of the error bound (3.12), we simply note that [|b]|,.y <

I fllLooqusvy < 1,since f € B(b, ¢).
The computational cost estimate is as in the previous proof. ]

10.3 Exponential rates of convergence, finite dimensions
Proof of Theorem 3.10. The proof has the same structure to that of Theorem 3.4, the

only differences being the use of Theorem 8.4 instead of Theorem 8.2 and the esti-
mation of the various terms in Step 1. Suppose first that m > ¢¢2¢ 2L and define the
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following:

g = { [/m/(4coL)] Legendre,

[m/(4co2?L)] Chebyshev.
Observe that

{ vm/(coL) Legendre,
s =<

m/(co24L) Chebyshev,
and therefore the quantity k(s) defined in (10.1) satisfies

m

Now consider the term o (cA)1,u;v/ Vk. Using this and (iii) of Theorem A.l with
p = 1 we have

k(€M) v _ Ok (©ray _ C(d.y.p) -exp(=ys'/)
N/ RN/ vk '
Note that this is possible since any lower set S of size at most s satisfies |S|, < k(s)
by definition.
Now consider E4,c0(f). Recall that A = A%, where n is as in (3.15). Clearly
n > s, since co > 1. Hence A contains all lower sets of size at most s. We deduce that

Epco(f) = e —es

|1,u;V’

for any lower set of size s. We now use (iii) of Theorem A.l with p = 1 once more,
to get
Enoo(f) = C(d.y,p) - exp(=ys'/?).

We now combine this with the previous bound to deduce that the quantity &€ in Theo-
rem 8.4 satisfies

”” 2;V

vm
(here, we also recall that the term §(¢) — §(Pr(ca)) < 0, as in the proof of Theo-
rem 3.4). Using the value of s and recalling that m > co2¢ 2L, we deduce that

£ <Cd.y,p) exp(—ys"?) + Ejoo(f) +

exp(—%(hsz)%) Chebyshev
§=Cld.y.p): N

exp(—y (ﬁ) 2d ) Legendre Vm

+ 1 = Pu(D oo cusvys

7]l

for m > c02d+2L. However, this bound also clearly holds for all m > 1, up to a
change in the constant C(d, y, p). After relabeling the universal constant 4¢g as ¢y,
we deduce that £ < ¢, where ¢ is as in (3.17). This concludes the proof. ]
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Proof of Theorem 3.11. The argument is the same as the proof of Theorem 3.5. The
difference relies on the fact that now ¢ has the following bound

1
exp (—%( m_)d ) Chebyshev

weol Iy
£E<C(,y.p)- 1 7
exp (—y ( 45&) 2d ) Legendre

+ 1.f = P Leoquzvy + 9(€) — G(Prlea)).

To estimate the final term, we argue exactly as in the proof of Theorem 3.5. The
computational cost estimate is likewise identical. ]

Proof of Theorem 3.12. The proof is similar to that of Theorem 3.6, except we use
Theorem 8.4 instead. Recall from Step 2 of the proof of Theorem 8.4 that the matrix
A has the weighted rNSP of order (k, u) over V), with constants p = 2+/2/3 and
y = 2+/5/3 with probability 1 — €. In particular,

1 2
ﬂ > 0.64.
G+ py

We now use (8.5) to see that

o L1 _d+p® 1
4o vk T B+py vk

for a sufficiently large choice of ¢y, as before.
Next, with the choice x = £, (cp) as before, we see that

ok (Pr(ea))1,u;v

N

§(x.b) = + 1A Pn(ca) = bllpy-

Using (8.11), we get

ox(c . 7]l
M + EA,oo(f) + Eh,oo(f) + _2,'V

vk Vm

with probability 1 — €. It now follows from the proof of Theorem 3.10 that

E(x,b) < ¢,

with probability at least 1 — ¢, where ¢ is as in (3.17). Hence, £(x,b) < {’.
The rest of the proof follows the same steps as the proof of Theorem 3.6. ]

§(x,b) <



