Chapter 10

Final arguments

We are now ready to prove the main results, Theorems $3.4-3.12$ $3.4-3.12$. In several of these proofs, we require the following definition. Let $s \in \mathbb{N}$ and set

$$
k(s) = \max\{|S|_{\mathbf{u}} : S \subset \mathbb{N}_0^d, |S| \le s, S \text{ lower}\},\tag{10.1}
$$

where \boldsymbol{u} are the intrinsic weights [\(4.7\)](#page--1-2) (recall the definition of a lower set from Definition [2.8\)](#page--1-3). It can be shown that

$$
k(s) = s^2
$$
, (Legendre), $k(s) \le \min\{2^d s, s^{\log(3)/\log(2)}\}$, (Chebyshev). (10.2)

See, e.g., [\[8,](#page--1-4) equation (7.42), Propositions 5.13 and 5.17]. We will use this property several times in what follows.

10.1 Algebraic rates of convergence, finite dimensions

Proof of Theorem [3.4](#page--1-0)*.* The mapping was described in Table [4.1.](#page--1-5) As shown therein, we can write the corresponding approximation as $\hat{f} = \sum_{\nu \in \Lambda} \hat{c}_{\nu} \Psi_{\nu}$, where $\hat{c} =$ $(\hat{c}_{\nu})_{\nu \in \Lambda}$ is a minimizer of [\(4.6\)](#page--1-6). Next, due to the various assumptions made, we may apply Theorem [8.2.](#page--1-7) Setting $\tilde{f} = \hat{f}$ and $\tilde{c} = \hat{c}$, we deduce that

$$
||f - \hat{f}||_{L^2_{\rho}(\mathbf{u}; \mathbf{v})} \le c_1 \cdot \xi, \quad ||f - \hat{f}||_{L^{\infty}(\mathbf{u}; \mathbf{v})} \le c_2 \cdot \sqrt{k} \cdot \xi,
$$
 (10.3)

where (after writing out the term $E_{h,\infty}(f)$ explicitly)

$$
\xi = \frac{\sigma_k(c_\Lambda)_{1,\mathbf{u};\mathbf{V}}}{\sqrt{k}} + \frac{E_{\Lambda,\infty}(f)}{\sqrt{k}} + E_{\Lambda,2}(f) + ||f - \mathcal{P}_h(f)||_{L^\infty(\mathbf{U};\mathbf{V})} + \mathcal{G}(\hat{c}) - \mathcal{G}(\mathcal{P}_h(c_\Lambda)) + \frac{\|\mathbf{n}\|_{2;\mathbf{V}}}{\sqrt{m}},
$$
\n(10.4)

and $k = m/(c_0L)$ with $c_0 \ge 1$ a universal constant. We now bound each term separately.

Step 1. The terms $\sigma_k(c_{\Lambda})_{1,\mathbf{u};\mathcal{V}}/n$ \sqrt{k} , $E_{\Lambda,\infty}(f)/\sqrt{k}$ and $E_{\Lambda,2}(f)$. The term $\sigma_k(c_{\Lambda})_{1,\boldsymbol{u};\mathcal{V}}/$ p k

is estimated via (ii) of Theorem [A.1](#page--1-8) with $q = 1$. This gives

$$
\frac{\sigma_k(c_{\Lambda})_{1,\mathbf{u};\mathbf{V}}}{\sqrt{k}} \le C(d,p,\rho) \cdot k^{1/2 - 1/p} = C(d,p,\rho) \cdot \left(\frac{m}{c_0 L}\right)^{1/2 - 1/p}.\tag{10.5}
$$

We estimate the term $E_{\Lambda,2}(f)$ by first recalling that $\Lambda = \Lambda_{n,d}^{HC}$ is the union of all lower sets (see Definition [2.8\)](#page--1-3) of size at most $n = \lfloor m/L \rfloor$ (see Section [3.2\)](#page--1-9). Hence, using (i) of Theorem [A.1](#page--1-8) with $s = n$ and $q = 2$, we get

$$
E_{\Lambda,2}(f) = \|c - c_{\Lambda}\|_{2;\mathcal{V}} \le \|c - c_{S}\|_{2;\mathcal{V}} \le C(d, p, \rho) \cdot n^{1/2 - 1/p}
$$

$$
\le C(d, p, \rho) \cdot \left(\frac{m}{c_{0}L}\right)^{1/2 - 1/p}.
$$
 (10.6)

Here, in the last step we recall that $n = \lfloor m/L \rfloor$ and $c_0 \ge 1$.

e, in the last step we recall that $n = |m/L|$ and $c_0 \ge 1$.
It remains to consider $E_{\Lambda,\infty}(f)/\sqrt{k}$. Due to the choice of weights, we have $E_{\Lambda,\infty}(f) \le ||c - c_{\Lambda}||_{1,\mathbf{u}:V}$. We now apply (i) of Theorem [A.1](#page--1-8) once more, with $s = n$ and $q = 1$, to get

$$
E_{\Lambda,\infty}(f) \leq \|c - c_S\|_{1,\boldsymbol{\mu};\mathcal{V}} \leq C(d,p,\boldsymbol{\rho}) \cdot n^{1-1/p}.
$$

Since $n = \lfloor m/L \rfloor > m/(c_0L) = k$, we obtain

$$
\frac{E_{\Lambda,\infty}(f)}{\sqrt{k}} \le C(d,p,\rho) \cdot \left(\frac{m}{c_0 L}\right)^{1/2 - 1/p}.\tag{10.7}
$$

Step 2. The term $\mathcal{G}(\hat{c}) - \mathcal{G}(\mathcal{P}_h(c_\Lambda))$. Since \hat{c} is a minimizer of [\(4.6\)](#page--1-6) and $\mathcal{P}_h(c_\Lambda) \in$ V_h^N is feasible for [\(4.6\)](#page--1-6), this term satisfies

$$
\mathcal{G}(\hat{c}) - \mathcal{G}(\mathcal{P}_h(c_{\Lambda})) \le 0. \tag{10.8}
$$

Step 3. Conclusion. We now substitute the bounds [\(10.5\)](#page-0-0)–[\(10.8\)](#page-1-0) into [\(10.4\)](#page-0-1). Since $k \le m/L$, we deduce that $\xi \le \zeta$, where ζ is given by [\(3.10\)](#page--1-10). This completes the proof.

Proof of Theorem [3.5](#page--1-11)*.* The argument is similar to that of the previous theorem. Recall from Section [4.5](#page--1-12) that, in this case the approximation $\hat{f} = \sum_{\nu \in \Lambda} \tilde{c}_{\nu} \Psi_{\nu}$, where $\hat{c} =$ $\bar{c}^{(T)}$ is the ergodic sequence obtained after T steps of the primal-dual iteration applied to [\(4.6\)](#page--1-6). Hence, the only difference is the estimation of $\mathcal{G}(\hat{c}) - \mathcal{G}(\mathcal{P}_h(c_{\Lambda}))$ in Step 2.

We now do this using Lemma [9.2.](#page--1-13) In order to apply this lemma we first need to estimate $||A||_{\mathcal{B}(\mathcal{V}_h^N, \mathcal{V}_h^m)}$. Let $x = (x_{\nu})_{\nu \in \Lambda} \in \mathcal{V}_h^N$ and define $p(y) = \sum_{\nu \in \Lambda} x_{\nu} \Psi_{\nu}$. Then

$$
||Ax||_{2;\mathcal{V}} = \sqrt{\frac{1}{m}\sum_{i=1}^{m} ||p(y_i)||_{\mathcal{V}}^2} \leq \sup_{y \in \mathcal{U}} ||p(y)||_{\mathcal{V}} \leq \sum_{y \in \Lambda} ||x_y||_{\mathcal{V}} u_y \leq ||x||_{2;\mathcal{V}} \sqrt{|\Lambda|_{\mathcal{U}}}.
$$

Now the set Λ is lower and of cardinality $|\Lambda| = \Theta(n, d)$. Hence, by [\(10.2\)](#page-0-2) with $s = N$, we have $|\Lambda|_{\mathbf{u}} \leq (\Theta(n, d))^{2\alpha}$, where α is as in [\(3.7\)](#page--1-14). Since x was arbitrary, we get

$$
||A||_{2;V} \le (\Theta(n,d))^{\alpha}.
$$
 (10.9)

Since the primal-dual iteration in Section [4.5](#page--1-12) is used with $\tau = \sigma = (\Theta(n, d))^{-\alpha}$, we have that

$$
||A||_{2;\mathcal{V}}^2 \leq (\tau\sigma)^{-1}.
$$

Hence, we may apply Lemma [9.2.](#page--1-13) Since the iteration is also initialized with the zero vector and run for a total of $T = [2(\Theta(n, d))^{\alpha} t]$ iterations (see Section [4.5](#page--1-12) once more), this gives

$$
\mathcal{G}(\hat{c}) - \mathcal{G}(\mathcal{P}_h(c_{\Lambda})) \leq (\Theta(n,d))^{\alpha} \frac{\|\mathcal{P}_h(c_{\Lambda})\|_{2;\mathcal{V}}^2 + 1}{T}.
$$

Observe that

$$
\|\mathcal{P}_h(c_\Lambda)\|_{2;\mathcal{V}} \leq \|c_\Lambda\|_{2;\mathcal{V}} \leq \|c\|_{c;\mathcal{V}} = \|f\|_{L^2_{\varrho}(\mathcal{U};\mathcal{V})} \leq 1.
$$

Here, in the last step, we use the fact that $f \in \mathcal{B}(\rho)$, and therefore

$$
||f||_{L^2_{\varrho}(\mathcal{U};\mathcal{V})} \leq ||f||_{L^{\infty}(\mathcal{U};\mathcal{V})} \leq 1.
$$

Using this and the value of T , we deduce that

$$
\mathcal{G}(\hat{c}) - \mathcal{G}(\mathcal{P}_h(c_{\Lambda})) \leq \frac{1}{t}.
$$

Substituting this into (10.4) and combining with the other estimates (10.5) – (10.7) derived in Step 2 of the proof of Theorem [3.4](#page--1-0) now gives the desired error bound.

It remains to estimate the computational cost. We do this via Lemmas [4.3](#page--1-15) and [4.4.](#page--1-16) First observe that the value k in Lemma [4.4](#page--1-16) is equal to $k = d$ in this case, since the index set $\Lambda = \Lambda_{n,d}^{HG}$ is a d-dimensional hyperbolic cross index set. Similarly, the value *n* in Lemma [4.4](#page--1-16) is bounded by the order *n* of this hyperbolic cross. As Λ is a lower set, we also have $n \leq N$. Hence, the computational cost for forming the matrix A is bounded by $c \cdot m \cdot N \cdot d$. We now use Lemma [4.3](#page--1-15) to bound the computational cost of the algorithm. Finally, we recall that $N = \Theta(n, d)$ and $T = [2(\Theta(n, d))^{\alpha} t]$ in this case.

Proof of Theorem [3.6](#page--1-17)*.* As in the previous proof, we only need to estimate the term $\mathcal{G}(\hat{c}) - \mathcal{G}(\mathcal{P}_h(c_\Lambda))$. Recall from Table [4.3](#page--1-5) that in this case $\hat{c} = \tilde{c}^{(R)}$ is the output of the restarted primal-dual iteration with R restarts. Our goal is to use Theorem [9.4](#page--1-18) applied to the problem [\(4.6\)](#page--1-6) with weights $w = u$ as in [\(4.7\)](#page--1-2), $\lambda = (4\sqrt{m/L})^{-1}$ and $x = \mathcal{P}_h(c_A)$.

We first show that the conditions of this theorem hold. Recall from Step 2 of the proof of Theorem [8.2](#page--1-7) that the matrix A has the weighted rNSP of order (k, u) over V_h with constants $\rho = 2\sqrt{2}/3$ and $\gamma = 2\sqrt{5}/3$. In particular,

$$
\frac{(1+\rho)^2}{(3+\rho)\gamma} \ge 0.64.
$$

84 Final arguments

We now use (8.5) to see that

$$
\lambda = \frac{1}{4\sqrt{c_0}} \frac{1}{\sqrt{k}} \le \frac{(1+\rho)^2}{(3+\rho)\gamma} \frac{1}{\sqrt{k}},
$$

for a sufficiently large choice of c_0 .

Next, with this choice of x , we see that

$$
\xi(\mathbf{x},\mathbf{b})=\frac{\sigma_k(\mathcal{P}_h(c_{\Lambda}))_{1,\mathbf{u};\mathbf{V}}}{\sqrt{k}}+\|A\,\mathcal{P}_h(c_{\Lambda})-\mathbf{b}\|_{2;\mathbf{V}}.
$$

Using (8.6) and (8.8) , we get

$$
\xi(\mathbf{x},\mathbf{b}) \leq \frac{\sigma_k(c_{\Lambda})_{1,\mathbf{w};\mathbf{V}}}{\sqrt{k}} + \sqrt{2}\bigg(\frac{E_{\Lambda,\infty}(f)}{\sqrt{k}} + E_{\Lambda,2}(f)\bigg) + E_{h,\infty}(f) + \frac{\|\mathbf{n}\|_{2;\mathbf{V}}}{\sqrt{m}},
$$

with probability at least $1 - \epsilon$. Using [\(10.5\)](#page-0-0)–[\(10.7\)](#page-1-1), we deduce that

$$
\xi(x,b)\leq \zeta,
$$

with probability at least $1 - \epsilon$, where ζ is as in [\(3.10\)](#page--1-10). Hence, $\xi(x, b) \le \zeta'$.

Next, recall from Table [4.3](#page--1-5) that $\tau = \sigma = (\Theta(n, d))^{-\alpha}$ in this case. Due to [\(10.9\)](#page-1-2), we see that $||A||_{2;\mathcal{V}} \leq (\tau \sigma)^{-1}$ as well.

Now consider the constant C defined in [\(9.4\)](#page--1-22). The values for ρ and γ give that $C'_1 \leq C'_2$ v consider the constant C defined in (9.4). The values for $\frac{1}{2} \le 103$. Since $\lambda = c/\sqrt{k}$ with $c = 1/(4\sqrt{c_0})$, we see that

$$
4C \le 812/c = 3296\sqrt{c_0} := c^*.
$$
 (10.10)

Therefore, recalling that $r = 1/2$ and $\tau = \sigma = (\Theta(n, d))^{-\alpha}$, we see that

$$
\left\lceil \frac{2C}{r\sqrt{\sigma\tau}} \right\rceil = \left\lceil (\Theta(n,d))^{\alpha} c^{\star} \right\rceil = T,
$$

where T is as specified in Table [4.3,](#page--1-5) and

$$
\frac{1}{2}r\sigma(\varepsilon_k+\zeta')T=\frac{(\Theta(n,d))^{\alpha}T}{4}\varepsilon_{k+1}=s\varepsilon_{k+1}=a_k,
$$

where s and a_k are as specified in Table [4.3](#page--1-5) and Algorithm [4,](#page--1-23) respectively.

With this in hand, we are now finally in a position to apply Theorem [9.4.](#page--1-18) We deduce that

$$
\mathcal{E}(\hat{c}) - \mathcal{E}(\mathcal{P}_h(c_{\Lambda})) = \mathcal{E}(\tilde{c}^{(R)}, \mathcal{P}_h(c_{\Lambda}), \boldsymbol{b}) \leq \varepsilon_k = e^{-R} \|\boldsymbol{b}\|_{2; \mathcal{V}} + \zeta'.
$$

To complete the proof of the error bound [\(3.12\)](#page--1-24), we simply note that $||b||_2 \rightarrow \infty$ $|| f ||_{L^{\infty}(\mathcal{U}: \mathcal{V})} \leq 1$, since $f \in \mathcal{B}(\rho)$.

It remains to estimate the computational cost. As before, the computational cost for forming the matrix A is bounded by $c \cdot m \cdot N \cdot d$. Next, by construction, we

observe that the algorithm consists of $R = t$ primal-dual iterations, each involving $T = [(\Theta(n, d))^{\alpha} c^{\star}]$ steps. Therefore, by Lemma [4.3](#page--1-15) the computational cost for the algorithm is

$$
c \cdot (m \cdot N \cdot K + (m + N) \cdot (F(G) + K)) \cdot [(\Theta(n, d))^{\alpha} c^{\star}] \cdot t.
$$

Since $N = \Theta(n, d)$ and c^* is a universal constant, the result follows.

10.2 Algebraic rates of convergence, infinite dimensions

Proof of Theorem [3.7](#page--1-25)*.* The proof is similar to that of Theorem [3.4,](#page--1-0) except that it uses Theorem [8.3](#page--1-13) in place of Theorem [8.2.](#page--1-7) In particular, we see that [\(10.3\)](#page-0-3) also holds in this case with ξ as in [\(10.4\)](#page-0-1) and $k = m/(c_0L)$.

Step 2 is identical. The only differences occur in Step 1. We now describe the changes needed in this case. First consider the term $\sigma_k(c_\Lambda)_{1,\mu;\mathcal{V}}/\sqrt{k}$. To bound this, we use (ii) of Theorem [A.3](#page--1-26) with $q = 1 > p$. This gives

$$
\frac{\sigma_k(c_{\Lambda})_{1,\boldsymbol{u};\mathcal{V}}}{\sqrt{k}} \leq C(\boldsymbol{b},\varepsilon,p) \cdot k^{1/2-1/p} = C(\boldsymbol{b},\varepsilon,p) \cdot \left(\frac{m}{c_0 L}\right)^{1/2-1/p}
$$

To estimate $E_{\Lambda,2}(f)$, recall that $\Lambda = \Lambda_n^{\text{HCI}}$ contains all anchored sets (see Defini-tion [2.8\)](#page--1-3) of size at most $n = \lfloor m/L \rfloor$ (see Section [3.2\)](#page--1-9). Hence, using (iii) of Theo-rem [A.3](#page--1-26) with $s = n$ and $q = 2 > p$, we get

$$
E_{\Lambda,2}(f) = \|c - c_{\Lambda}\|_{2;\mathcal{V}} \le \|c - c_{S}\|_{2;\mathcal{V}} \le C(\bm{b}, \varepsilon, p) \cdot n^{1/2 - 1/p} \le C(\bm{b}, \varepsilon, p) \cdot (\frac{m}{c_{0}L})^{1/2 - 1/p}.
$$

Finally, for $E_{\Lambda,\infty}(f)$, we use (iii) of Theorem [A.3](#page--1-26) once more (with $q = 1 > p$) to get

$$
\frac{E_{\Lambda,\infty}(f)}{\sqrt{k}} \le \frac{\|c - c_S\|_{1,\mathbf{u};\mathbf{V}}}{\sqrt{k}} \le C(\mathbf{b}, \varepsilon, p) \cdot k^{1/2 - 1/p}
$$

$$
= C(\mathbf{b}, \varepsilon, p) \cdot \left(\frac{m}{c_0 L}\right)^{1/2 - 1/p}.
$$

Having done this, we also observe that $\mathcal{G}(\hat{c}) - \mathcal{G}(\mathcal{P}_h(c_A)) \leq 0$ in this case, since \hat{c} is once more an exact minimizer. Using this and the previously derived bounds, we conclude that $\xi \le \zeta$, where ζ is as in [\(3.14\)](#page--1-27). This gives the result. П

Proof of Theorem [3.8](#page--1-28). The argument is similar to that of Theorem [3.5.](#page--1-11) Here $\hat{c} = \bar{c}^{(T)}$ is the ergodic sequence obtained after T steps of the primal-dual iteration applied to [\(4.6\)](#page--1-6) as well.

 \blacksquare

:

We recall that the set Λ is lower and of cardinality $|\Lambda| = \Theta(n, d)$ with $d = \infty$. Hence, by [\(10.2\)](#page-0-2) with $s = N$, we have $|\Lambda|_{\mathbf{u}} \leq (\Theta(n, d))^{2\alpha}$, where α is as in [\(3.7\)](#page--1-14). Using this, we get

$$
||A||_{2;\mathcal{V}} \leq (\Theta(n,d))^{\alpha},
$$

as before. Since the primal-dual iteration in Table [4.3](#page--1-5) is used with

$$
\tau = \sigma = (\Theta(n, d))^{-\alpha},
$$

we have that $||A||_{2;\mathcal{V}}^2 \leq (\tau \sigma)^{-1}$. Hence, following the same steps we deduce that

$$
\mathcal{G}(\hat{c}) - \mathcal{G}(\mathcal{P}_h(c_{\Lambda})) \leq \frac{1}{t}.
$$

Substituting this into (10.4) and combining with the other estimates (10.5) – (10.7) derived in Step 2 of the proof of Theorem [3.4](#page--1-0) now gives the desired error bound.

The computational cost estimate is similar to the that in the proof of Theorem [3.5.](#page--1-11) In this case, observe that the value k in Lemma [4.4](#page--1-16) is equal to n . Hence, the computational cost of forming A is bounded by $c \cdot m \cdot N \cdot n$ in this case. The computational cost for the algorithm is given by Lemma [4.3.](#page--1-15) To complete the estimate, we substitute the values $N = \Theta(n, d)$ and $T = [2(\Theta(n, d))^{\alpha} t]$, as before. \blacksquare

Proof of Theorem [3.9](#page--1-29). The proof is similar to that of Theorem [3.6](#page--1-17) and involves estimating the term $\mathcal{G}(\hat{c}) - \mathcal{G}(\mathcal{P}_h(c_{\Lambda}))$. Using the same steps, we deduce that

$$
\xi(x,b)\leq \zeta,
$$

with probability at least $1 - \epsilon/2$, where ζ is as in [\(3.14\)](#page--1-27). Hence, $\xi(x, b) \le \zeta'$.

Next, recall from Table [4.3](#page--1-5) that $\tau = \sigma = (\Theta(n, d))^{-\alpha}$ with $d = \infty$ in this case. Due to [\(10.9\)](#page-1-2), we see that $||A||_{2:V} \leq (\tau \sigma)^{-1}$ holds. We now apply Theorem [9.4](#page--1-18) to obtain

$$
\mathcal{G}(\hat{c}) - \mathcal{G}(\mathcal{P}_h(c_{\Lambda})) = \mathcal{E}(\tilde{c}^{(R)}, \mathcal{P}_h(c_{\Lambda}), b) \leq \varepsilon_R = e^{-R} ||b||_{2; \mathcal{V}} + \zeta'.
$$

To complete the proof of the error bound [\(3.12\)](#page--1-24), we simply note that $||b||_{2\cdot V} \le$ $|| f ||_{L^{\infty}(\mathcal{U}: \mathcal{V})} \leq 1$, since $f \in \mathcal{B}(\boldsymbol{b}, \varepsilon)$.

П

The computational cost estimate is as in the previous proof.

10.3 Exponential rates of convergence, finite dimensions

Proof of Theorem [3.10](#page--1-13)*.* The proof has the same structure to that of Theorem [3.4,](#page--1-0) the only differences being the use of Theorem [8.4](#page--1-30) instead of Theorem [8.2](#page--1-7) and the estimation of the various terms in Step 1. Suppose first that $m \geq c_0 2^{d+2} L$ and define the

following:

$$
s = \begin{cases} \lceil \sqrt{m/(4c_0L)} \rceil & \text{Legendre,} \\ \lceil m/(4c_02^dL) \rceil & \text{Chebyshev.} \end{cases}
$$

Observe that

$$
s \le \begin{cases} \sqrt{m/(c_0 L)} & \text{Legendre,} \\ m/(c_0 2^d L) & \text{Chebyshev,} \end{cases}
$$

and therefore the quantity $k(s)$ defined in [\(10.1\)](#page-0-4) satisfies

$$
k(s) \le \frac{m}{c_0 L} = k.
$$

Now consider the term $\sigma_k(c_\Lambda)_{1,\mathbf{u};\mathcal{V}}/$ k . Using this and (iii) of Theorem [A.1](#page--1-8) with $p = 1$ we have

$$
\frac{\sigma_k(c_{\Lambda})_{1,\boldsymbol{\mu};\mathcal{V}}}{\sqrt{k}} \leq \frac{\sigma_{k(s)}(c)_{1,\boldsymbol{\mu};\mathcal{V}}}{\sqrt{k}} \leq \frac{C(d,\gamma,\boldsymbol{\rho})\cdot \exp(-\gamma s^{1/d})}{\sqrt{k}}.
$$

Note that this is possible since any lower set S of size at most s satisfies $|S|_{\mathbf{u}} \leq k(s)$. by definition.

Now consider $E_{\Lambda,\infty}(f)$. Recall that $\Lambda = \Lambda_{n,d}^{HC}$, where *n* is as in [\(3.15\)](#page--1-31). Clearly $n \geq s$, since $c_0 \geq 1$. Hence Λ contains all lower sets of size at most s. We deduce that

$$
E_{\Lambda,\infty}(f) \leq \|c - c_S\|_{1,\mathbf{u};\mathcal{V}},
$$

for any lower set of size s. We now use (iii) of Theorem [A.1](#page--1-8) with $p = 1$ once more, to get

$$
E_{\Lambda,\infty}(f) \leq C(d,\gamma,\rho) \cdot \exp(-\gamma s^{1/d}).
$$

We now combine this with the previous bound to deduce that the quantity ξ in Theorem [8.4](#page--1-30) satisfies

$$
\xi \leq C(d,\gamma,\rho) \cdot \exp(-\gamma s^{1/d}) + E_{h,\infty}(f) + \frac{\|\mathbf{n}\|_{2;\mathcal{V}}}{\sqrt{m}},
$$

(here, we also recall that the term $\mathcal{G}(\hat{c}) - \mathcal{G}(\mathcal{P}_h(c_{\Lambda})) \leq 0$, as in the proof of Theo-rem [3.4\)](#page--1-0). Using the value of s and recalling that $m \geq c_0 2^{d+2} L$, we deduce that

$$
\xi \le C(d, \gamma, \rho) \cdot \begin{cases} \exp\left(-\frac{\gamma}{2} \left(\frac{m}{4c_0 L}\right)^{\frac{1}{d}}\right) & \text{Chebyshev} \\ \exp\left(-\gamma \left(\frac{m}{4c_0 L}\right)^{\frac{1}{2d}}\right) & \text{Legendre} \end{cases} + ||f - \mathcal{P}_h(f)||_{L^{\infty}(\mathcal{U}; \mathcal{V})},
$$

for $m \geq c_0 2^{d+2} L$. However, this bound also clearly holds for all $m \geq 1$, up to a change in the constant $C(d, \gamma, \rho)$. After relabeling the universal constant $4c_0$ as c_0 , we deduce that $\xi \le \zeta$, where ζ is as in [\(3.17\)](#page--1-32). This concludes the proof.

Proof of Theorem [3.11](#page--1-33)*.* The argument is the same as the proof of Theorem [3.5.](#page--1-11) The difference relies on the fact that now ζ has the following bound

$$
\xi \le C(d, \gamma, \rho) \cdot \begin{cases} \exp\left(-\frac{\gamma}{2} \left(\frac{m}{4c_0 L}\right)^{\frac{1}{d}}\right) & \text{Chebyshev} \\ \exp\left(-\gamma \left(\frac{m}{4c_0 L}\right)^{\frac{1}{2d}}\right) & \text{Legendre} \end{cases} + ||f - \mathcal{P}_h(f)||_{L^{\infty}(\mathcal{U}; \mathcal{V})} + \mathcal{G}(\hat{c}) - \mathcal{G}(\mathcal{P}_h(c_\Lambda)).
$$

To estimate the final term, we argue exactly as in the proof of Theorem [3.5.](#page--1-11) The computational cost estimate is likewise identical.

Proof of Theorem [3.12](#page--1-1). The proof is similar to that of Theorem [3.6,](#page--1-17) except we use Theorem [8.4](#page--1-30) instead. Recall from Step 2 of the proof of Theorem 8.4 that the matrix A has the weighted rNSP of order (k, u) over V_h with constants $\rho = 2\sqrt{2}/3$ and $\gamma = 2\sqrt{5}/3$ with probability $1 - \epsilon$. In particular,

$$
\frac{(1+\rho)^2}{(3+\rho)\gamma} \ge 0.64.
$$

We now use (8.5) to see that

$$
\lambda = \frac{1}{4\sqrt{c_0}} \frac{1}{\sqrt{k}} \leq \frac{(1+\rho)^2}{(3+\rho)\gamma} \frac{1}{\sqrt{k}},
$$

for a sufficiently large choice of c_0 , as before.

Next, with the choice $x = \mathcal{P}_h(c_A)$ as before, we see that

$$
\xi(\mathbf{x},\mathbf{b})=\frac{\sigma_k(\mathcal{P}_h(c_{\Lambda}))_{1,\mathbf{u};\mathbf{V}}}{\sqrt{k}}+\|A\,\mathcal{P}_h(c_{\Lambda})-\mathbf{b}\|_{2;\mathbf{V}}.
$$

Using (8.11) , we get

$$
\xi(\mathbf{x},\mathbf{b}) \leq \frac{\sigma_k(c_{\Lambda})_{1,\mathbf{w};\mathbf{V}}}{\sqrt{k}} + E_{\Lambda,\infty}(f) + E_{h,\infty}(f) + \frac{\|\mathbf{n}\|_{2;\mathbf{V}}}{\sqrt{m}},
$$

with probability $1 - \epsilon$. It now follows from the proof of Theorem [3.10](#page--1-13) that

$$
\xi(x,b)\leq \zeta,
$$

with probability at least $1 - \epsilon$, where ζ is as in [\(3.17\)](#page--1-32). Hence, $\xi(x, b) \le \zeta'$.

The rest of the proof follows the same steps as the proof of Theorem [3.6.](#page--1-17)

 \blacksquare