
Chapter 10

Final arguments

We are now ready to prove the main results, Theorems 3.4–3.12. In several of these
proofs, we require the following definition. Let s 2 N and set

k.s/ D max¹jS ju W S � Nd
0 ; jS j � s; S lowerº; (10.1)

where u are the intrinsic weights (4.7) (recall the definition of a lower set from Defi-
nition 2.8). It can be shown that

k.s/ D s2; (Legendre); k.s/ � min
®
2d s; slog.3/= log.2/¯; (Chebyshev): (10.2)

See, e.g., [8, equation (7.42), Propositions 5.13 and 5.17]. We will use this property
several times in what follows.

10.1 Algebraic rates of convergence, finite dimensions

Proof of Theorem 3.4. The mapping was described in Table 4.1. As shown therein,
we can write the corresponding approximation as Of D

P
�2ƒ Oc�‰� , where Oc D

. Oc�/�2ƒ is a minimizer of (4.6). Next, due to the various assumptions made, we may
apply Theorem 8.2. Setting Qf D Of and Qc D Oc, we deduce that

kf � Of kL2%.UIV/ � c1 � �; kf �
Of kL1.UIV/ � c2 �

p
k � �; (10.3)

where (after writing out the term Eh;1.f / explicitly)

� D
�k.cƒ/1;uIV
p
k

C
Eƒ;1.f /
p
k

CEƒ;2.f /C kf �Ph.f /kL1.UIV/

C G . Oc/ � G .Ph.cƒ//C
knk2IV
p
m

; (10.4)

and k D m=.c0L/ with c0 � 1 a universal constant. We now bound each term sepa-
rately.

Step 1. The terms �k.cƒ/1;uIV=
p
k, Eƒ;1.f /=

p
k and Eƒ;2.f /. The term

�k.cƒ/1;uIV=
p
k

is estimated via (ii) of Theorem A.1 with q D 1. This gives

�k.cƒ/1;uIV
p
k

� C.d; p;�/ � k1=2�1=p D C.d; p;�/ �
� m

c0L

�1=2�1=p
: (10.5)
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We estimate the term Eƒ;2.f / by first recalling that ƒ D ƒHC
n;d

is the union of all
lower sets (see Definition 2.8) of size at most n D dm=Le (see Section 3.2). Hence,
using (i) of Theorem A.1 with s D n and q D 2, we get

Eƒ;2.f / D kc � cƒk2IV � kc � cSk2IV � C.d; p;�/ � n
1=2�1=p

� C.d; p;�/ �
� m

c0L

�1=2�1=p
: (10.6)

Here, in the last step we recall that n D dm=Le and c0 � 1.
It remains to consider Eƒ;1.f /=

p
k. Due to the choice of weights, we have

Eƒ;1.f /� kc � cƒk1;uIV . We now apply (i) of Theorem A.1 once more, with s D n
and q D 1, to get

Eƒ;1.f / � kc � cSk1;uIV � C.d; p;�/ � n
1�1=p:

Since n D dm=Le � m=.c0L/ D k, we obtain

Eƒ;1.f /
p
k

� C.d; p;�/ �
� m

c0L

�1=2�1=p
: (10.7)

Step 2. The term G . Oc/ � G .Ph.cƒ//. Since Oc is a minimizer of (4.6) and Ph.cƒ/ 2

VN
h

is feasible for (4.6), this term satisfies

G . Oc/ � G .Ph.cƒ// � 0: (10.8)

Step 3. Conclusion. We now substitute the bounds (10.5)–(10.8) into (10.4). Since
k � m=L, we deduce that � � �, where � is given by (3.10). This completes the
proof.

Proof of Theorem 3.5. The argument is similar to that of the previous theorem. Recall
from Section 4.5 that, in this case the approximation Of D

P
�2ƒ Qc�‰� , where Oc D

Nc.T / is the ergodic sequence obtained after T steps of the primal-dual iteration applied
to (4.6). Hence, the only difference is the estimation of G . Oc/� G .Ph.cƒ// in Step 2.

We now do this using Lemma 9.2. In order to apply this lemma we first need to
estimate kAkB.VN

h
;Vm
h
/. Let x D .x�/�2ƒ 2 VN

h
and define p.y/ D

P
�2ƒ x�‰� .

Then

kAxk2IV D

vuut 1

m

mX
iD1

kp.yi /k
2
V � sup

y2U

kp.y/kV �
X
�2ƒ

kx�kVu� � kxk2IV

p
jƒju:

Now the set ƒ is lower and of cardinality jƒj D ‚.n; d/. Hence, by (10.2) with
s D N , we have jƒju � .‚.n; d//2˛ , where ˛ is as in (3.7). Since x was arbitrary,
we get

kAk2IV � .‚.n; d//
˛: (10.9)
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Since the primal-dual iteration in Section 4.5 is used with � D � D .‚.n; d//�˛ , we
have that

kAk
2
2IV � .��/

�1:

Hence, we may apply Lemma 9.2. Since the iteration is also initialized with the zero
vector and run for a total of T D d2.‚.n; d//˛te iterations (see Section 4.5 once
more), this gives

G . Oc/ � G .Ph.cƒ// � .‚.n; d//
˛
kPh.cƒ/k

2
2IV C 1

T
:

Observe that

kPh.cƒ/k2IV � kcƒk2IV � kckcIV D kf kL2%.UIV/ � 1:

Here, in the last step, we use the fact that f 2 B.�/, and therefore

kf kL2%.UIV/ � kf kL1.UIV/ � 1:

Using this and the value of T , we deduce that

G . Oc/ � G .Ph.cƒ// �
1

t
:

Substituting this into (10.4) and combining with the other estimates (10.5)–(10.7)
derived in Step 2 of the proof of Theorem 3.4 now gives the desired error bound.

It remains to estimate the computational cost. We do this via Lemmas 4.3 and 4.4.
First observe that the value k in Lemma 4.4 is equal to k D d in this case, since the
index set ƒ D ƒHC

n;d
is a d -dimensional hyperbolic cross index set. Similarly, the

value n in Lemma 4.4 is bounded by the order n of this hyperbolic cross. As ƒ is a
lower set, we also have n � N . Hence, the computational cost for forming the matrix
A is bounded by c �m � N � d . We now use Lemma 4.3 to bound the computational
cost of the algorithm. Finally, we recall that N D ‚.n; d/ and T D d2.‚.n; d//˛te
in this case.

Proof of Theorem 3.6. As in the previous proof, we only need to estimate the term
G . Oc/ � G .Ph.cƒ//. Recall from Table 4.3 that in this case Oc D Qc.R/ is the output
of the restarted primal-dual iteration with R restarts. Our goal is to use Theorem 9.4
applied to the problem (4.6) with weights w D u as in (4.7), � D .4

p
m=L/�1 and

x D Ph.cƒ/.
We first show that the conditions of this theorem hold. Recall from Step 2 of the

proof of Theorem 8.2 that the matrix A has the weighted rNSP of order .k; u/ over
Vh with constants � D 2

p
2=3 and  D 2

p
5=3. In particular,

.1C �/2

.3C �/
� 0:64:
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We now use (8.5) to see that

� D
1

4
p
c0

1
p
k
�
.1C �/2

.3C �/

1
p
k
;

for a sufficiently large choice of c0.
Next, with this choice of x, we see that

�.x;b/ D
�k.Ph.cƒ//1;uIV

p
k

C kAPh.cƒ/ � bk2IV :

Using (8.6) and (8.8), we get

�.x;b/ �
�k.cƒ/1;wIV
p
k

C
p
2

�
Eƒ;1.f /
p
k

CEƒ;2.f /

�
CEh;1.f /C

knk2IV
p
m

;

with probability at least 1 � �. Using (10.5)–(10.7), we deduce that

�.x;b/ � �;

with probability at least 1 � �, where � is as in (3.10). Hence, �.x;b/ � �0.
Next, recall from Table 4.3 that � D � D .‚.n; d//�˛ in this case. Due to (10.9),

we see that kAk2IV � .��/
�1 as well.

Now consider the constant C defined in (9.4). The values for � and  give that
C 01 � C

0
2 � 103. Since � D c=

p
k with c D 1=.4

p
c0/, we see that

4C � 812=c D 3296
p
c0 WD c

?: (10.10)

Therefore, recalling that r D 1=2 and � D � D .‚.n; d//�˛ , we see that�
2C

r
p
��

�
D d.‚.n; d//˛c?e D T;

where T is as specified in Table 4.3, and

1

2
r�."k C �

0/T D
.‚.n; d//˛T

4
"kC1 D s"kC1 D ak;

where s and ak are as specified in Table 4.3 and Algorithm 4, respectively.
With this in hand, we are now finally in a position to apply Theorem 9.4. We

deduce that

G . Oc/ � G .Ph.cƒ// D E. Qc.R/;Ph.cƒ/;b/ � "k D e�Rkbk2IV C �
0:

To complete the proof of the error bound (3.12), we simply note that kbk2IV �
kf kL1.UIV/ � 1, since f 2 B.�/.

It remains to estimate the computational cost. As before, the computational cost
for forming the matrix A is bounded by c � m � N � d . Next, by construction, we
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observe that the algorithm consists of R D t primal-dual iterations, each involving
T D d.‚.n; d//˛c?e steps. Therefore, by Lemma 4.3 the computational cost for the
algorithm is

c � .m �N �K C .mCN/ � .F.G /CK// � d.‚.n; d//˛c?e � t:

Since N D ‚.n; d/ and c? is a universal constant, the result follows.

10.2 Algebraic rates of convergence, infinite dimensions

Proof of Theorem 3.7. The proof is similar to that of Theorem 3.4, except that it uses
Theorem 8.3 in place of Theorem 8.2. In particular, we see that (10.3) also holds in
this case with � as in (10.4) and k D m=.c0L/.

Step 2 is identical. The only differences occur in Step 1. We now describe the
changes needed in this case. First consider the term �k.cƒ/1;uIV=

p
k. To bound this,

we use (ii) of Theorem A.3 with q D 1 > p. This gives

�k.cƒ/1;uIV
p
k

� C.b; "; p/ � k1=2�1=p D C.b; "; p/ �
� m

c0L

�1=2�1=p
:

To estimate Eƒ;2.f /, recall that ƒ D ƒHCI
n contains all anchored sets (see Defini-

tion 2.8) of size at most n D dm=Le (see Section 3.2). Hence, using (iii) of Theo-
rem A.3 with s D n and q D 2 > p, we get

Eƒ;2.f / D kc � cƒk2IV � kc � cSk2IV � C.b; "; p/ � n
1=2�1=p

� C.b; "; p/ �
� m

c0L

�1=2�1=p
:

Finally, for Eƒ;1.f /, we use (iii) of Theorem A.3 once more (with q D 1 > p) to
get

Eƒ;1.f /
p
k

�
kc � cSk1;uIV

p
k

� C.b; "; p/ � k1=2�1=p

D C.b; "; p/ �
� m

c0L

�1=2�1=p
:

Having done this, we also observe that G . Oc/ � G .Ph.cƒ// � 0 in this case, since Oc
is once more an exact minimizer. Using this and the previously derived bounds, we
conclude that � � �, where � is as in (3.14). This gives the result.

Proof of Theorem 3.8. The argument is similar to that of Theorem 3.5. Here Oc D Nc.T /

is the ergodic sequence obtained after T steps of the primal-dual iteration applied
to (4.6) as well.
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We recall that the set ƒ is lower and of cardinality jƒj D ‚.n; d/ with d D 1.
Hence, by (10.2) with s D N , we have jƒju � .‚.n; d//2˛ , where ˛ is as in (3.7).
Using this, we get

kAk2IV � .‚.n; d//
˛;

as before. Since the primal-dual iteration in Table 4.3 is used with

� D � D .‚.n; d//�˛;

we have that kAk22IV � .��/
�1. Hence, following the same steps we deduce that

G . Oc/ � G .Ph.cƒ// �
1

t
:

Substituting this into (10.4) and combining with the other estimates (10.5)–(10.7)
derived in Step 2 of the proof of Theorem 3.4 now gives the desired error bound.

The computational cost estimate is similar to the that in the proof of Theorem 3.5.
In this case, observe that the value k in Lemma 4.4 is equal to n. Hence, the compu-
tational cost of formingA is bounded by c �m �N � n in this case. The computational
cost for the algorithm is given by Lemma 4.3. To complete the estimate, we substitute
the values N D ‚.n; d/ and T D d2.‚.n; d//˛te, as before.

Proof of Theorem 3.9. The proof is similar to that of Theorem 3.6 and involves esti-
mating the term G . Oc/ � G .Ph.cƒ//. Using the same steps, we deduce that

�.x;b/ � �;

with probability at least 1 � �=2, where � is as in (3.14). Hence, �.x;b/ � �0.
Next, recall from Table 4.3 that � D � D .‚.n; d//�˛ with d D 1 in this case.

Due to (10.9), we see that kAk2IV � .��/
�1 holds. We now apply Theorem 9.4 to

obtain

G . Oc/ � G .Ph.cƒ// D E. Qc.R/;Ph.cƒ/;b/ � "R D e�Rkbk2IV C �
0:

To complete the proof of the error bound (3.12), we simply note that kbk2IV �
kf kL1.UIV/ � 1, since f 2 B.b; "/.

The computational cost estimate is as in the previous proof.

10.3 Exponential rates of convergence, finite dimensions

Proof of Theorem 3.10. The proof has the same structure to that of Theorem 3.4, the
only differences being the use of Theorem 8.4 instead of Theorem 8.2 and the esti-
mation of the various terms in Step 1. Suppose first thatm � c02dC2L and define the
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following:

s D

´
d
p
m=.4c0L/e Legendre;

dm=.4c02
dL/e Chebyshev:

Observe that

s �

´p
m=.c0L/ Legendre;

m=.c02
dL/ Chebyshev;

and therefore the quantity k.s/ defined in (10.1) satisfies

k.s/ �
m

c0L
D k:

Now consider the term �k.cƒ/1;uIV=
p
k. Using this and (iii) of Theorem A.1 with

p D 1 we have

�k.cƒ/1;uIV
p
k

�
�k.s/.c/1;uIV
p
k

�
C.d; ;�/ � exp.�s1=d /

p
k

:

Note that this is possible since any lower set S of size at most s satisfies jS ju � k.s/
by definition.

Now consider Eƒ;1.f /. Recall that ƒ D ƒHC
n;d

, where n is as in (3.15). Clearly
n � s, since c0 � 1. Henceƒ contains all lower sets of size at most s. We deduce that

Eƒ;1.f / � kc � cSk1;uIV ;

for any lower set of size s. We now use (iii) of Theorem A.1 with p D 1 once more,
to get

Eƒ;1.f / � C.d; ;�/ � exp.�s1=d /:

We now combine this with the previous bound to deduce that the quantity � in Theo-
rem 8.4 satisfies

� � C.d; ;�/ � exp.�s1=d /CEh;1.f /C
knk2IV
p
m

;

(here, we also recall that the term G . Oc/ � G .Ph.cƒ// � 0, as in the proof of Theo-
rem 3.4). Using the value of s and recalling that m � c02dC2L, we deduce that

� � C.d; ;�/ �

8̂<̂
:

exp
�
�

2

�
m

4c0L

� 1
d

�
Chebyshev

exp
�
�
�
m

4c0L

� 1
2d

�
Legendre

C
knk2IV
p
m

C kf �Ph.f /kL1.UIV/;

for m � c02dC2L. However, this bound also clearly holds for all m � 1, up to a
change in the constant C.d; ; �/. After relabeling the universal constant 4c0 as c0,
we deduce that � � �, where � is as in (3.17). This concludes the proof.
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Proof of Theorem 3.11. The argument is the same as the proof of Theorem 3.5. The
difference relies on the fact that now � has the following bound

� � C.d; ;�/ �

8̂<̂
:

exp
�
�

2

�
m

4c0L

� 1
d

�
Chebyshev

exp
�
�
�
m

4c0L

� 1
2d

�
Legendre

C
knk2IV
p
m

C kf �Ph.f /kL1.UIV/ C G . Oc/ � G .Ph.cƒ//:

To estimate the final term, we argue exactly as in the proof of Theorem 3.5. The
computational cost estimate is likewise identical.

Proof of Theorem 3.12. The proof is similar to that of Theorem 3.6, except we use
Theorem 8.4 instead. Recall from Step 2 of the proof of Theorem 8.4 that the matrix
A has the weighted rNSP of order .k; u/ over Vh with constants � D 2

p
2=3 and

 D 2
p
5=3 with probability 1 � �. In particular,

.1C �/2

.3C �/
� 0:64:

We now use (8.5) to see that

� D
1

4
p
c0

1
p
k
�
.1C �/2

.3C �/

1
p
k
;

for a sufficiently large choice of c0, as before.
Next, with the choice x D Ph.cƒ/ as before, we see that

�.x;b/ D
�k.Ph.cƒ//1;uIV

p
k

C kAPh.cƒ/ � bk2IV :

Using (8.11), we get

�.x;b/ �
�k.cƒ/1;wIV
p
k

CEƒ;1.f /CEh;1.f /C
knk2IV
p
m

;

with probability 1 � �. It now follows from the proof of Theorem 3.10 that

�.x;b/ � �;

with probability at least 1 � �, where � is as in (3.17). Hence, �.x;b/ � �0.
The rest of the proof follows the same steps as the proof of Theorem 3.6.


