
Chapter 11

Conclusions

Sparse polynomial approximation is a useful tool in parametric model problems,
including surrogate model construction in UQ. The theory of best s-term approxi-
mation supports the use of polynomial-based methods, and techniques such as least
squares and compressed sensing are known to have desirable sample complexity
bounds for obtaining polynomial approximations. In this work, we have closed a key
gap between these two areas of research, by showing the existence of algorithms that
achieve the algebraic and exponential rates of the best s-term approximation with
respect to the number of samples m. Thus, sparse polynomial approximation can be
practically realized in a provably sample-efficient manner. As our numerical exper-
iments confirm, our algorithms are practical, and actually perform better than the
theory suggests.

There are a number of avenues for further research. First, this work has focused on
Chebyshev and Legendre polynomials on the hypercube Œ�1; 1�d . It is plausible that
it can be extended to general ultraspherical or Jacobi polynomials. A more significant
challenge involves Hermite or Laguerre polynomials on Rd or Œ0;1/d , respectively.
This is an interesting problem for future research.

It is notable that the algorithms developed in this work do not generally compute
m-term polynomial approximations. Indeed, (inexact) minimizers of the SR-LASSO
problem will generally be nonsparse vectors of length N D ‚.n; d/. It is interest-
ing to investigate whether one can develop algorithms that achieve the same error
bounds while computingm-term polynomial approximations. In classical compressed
sensing, one can typically compute sparse solutions by using a greedy or iterative pro-
cedure (see, e.g., [61]). Unfortunately, it is not clear how to extend these procedures to
the weighted case with theoretical guarantees. Nonetheless, certain weighted greedy
methods appear to work well in practice for sparse polynomial approximation [4].

Another motivation for considering different algorithms is to see if the computa-
tional cost estimates can be reduced. While this is often not the main computational
bottleneck in parametric model problems (generally, computing the samples is the
most computationally intensive step), it is still an important issue. We have shown
that the computational cost is at worst subexponential in m in infinite dimensions,
and algebraic in m (for fixed d ) in finite dimensions. Whether these are optimal is an
interesting open problem. Here, ideas from sublinear-time algorithms [38,39] may be
particularly useful.

In the case of the exponential rates, it is notable that the best s-term approximation
error is exponentially small in  � s1=d (see Theorem 2.6), whereas the exponents in
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Section 3.3.3 are .=2/ � .m=.c0L//1=d (Chebyshev) and  � .m=.c0L//1=.2d/ (Leg-
endre). The reason for this can be traced to the sample complexity estimate for
computing a sparse (and lower) polynomial approximations via compressed sensing
with Monte Carlo sampling, i.e., m � c0 � 2d � s � L (Chebyshev) or m � c0 � s2 � L
(Legendre). To see why this is the case, combine Lemma 8.1 with (10.2). In the setting
of least squares, in which the desired polynomial subspace is known, it is possible
to change the sampling measure to obtain sample complexity bounds that are log-
linear in s and therefore near optimal. See, e.g., [9, 44, 71]. More recently, several
works [21, 54, 56, 85, 93, 137] have also introduced sampling schemes that achieve
linear sample complexity in s – i.e., optimal up to a constant. Unfortunately, it is
unknown whether linear or log-linear sample complexity possible in the compressed
sensing setting, where the target subspace is unknown. See [10] for further discussion
on this issue.

Finally, as previously noted in Section 1.5, this work focuses on polynomial
approximation, and not on fundamental issues pertaining to tractability and the infor-
mation complexity of the classes of multivariate holomorphic functions considered.
For some related work in this direction, see [81, 112, 147] and references therein.
A question of particular interest is whether pointwise samples (i.e., standard infor-
mation), and more specifically, i.i.d. pointwise samples (i.e., random information)
constitutes optimal or near-optimal information for these classes of functions. These
questions have recently been considered in a broader context in [79,88]. See also [87]
for the case of functions in Sobolev spaces. As we observed in Section 1.5, in a recent
work [12] we derived lower bounds for the (adaptive) m-widths for classes of .b; "/-
holomorphic functions in infinite dimensions. Showing that the algorithms (or small
modifications thereof) developed in this work also attain (nearly) matching upper
bounds – and, consequently, that i.i.d. pointwise samples constitute (near) optimal
information – is an interesting problem for future work.


