Appendix A

Best polynomial approximation rates for holomorphic
functions

In this appendix, we recap a series of standard best approximation error bounds for
polynomial approximation of holomorphic functions. These are used in Chapter 10
to estimate the various error terms appearing in Theorems 8.2-8.4.

A.1 The finite-dimensional case

We first consider the finite-dimensional case, where U = [—1, l]d for d < oo and
f U — 'V is a Hilbert-valued function (in fact, the following results also apply in
the more general setting of Banach-valued functions; however, we shall not consider
this explicitly). We now summarize the various approximation error bounds in the
following theorem. This result combines various well-known results in the literature.
It is essentially the same as [8, Theorem 3.25]. However, we have made a number of
minor edits to fit the notation and setup of this work (see Remark A.2 below).

Theorem A.1 (Best s-term decay rates; finite dimensions). Let d € N, f € B(p)
for some p > 1, where B(p) is as in (2.6), and ¢ = (CV)veNg be its Chebyshev or
Legendpre coefficients. Then the following best s-term decay rates hold:

(i) forany0 < p <q <2ands € N, there exists a lower set S C Ng of size

|S| < s such that
05()gv < e —esllgy < le = esllgusy < C -4,

where og(¢)4.v is as in Definition 2.3 (with A = Ng), u is as in (4.7) and
C =C(d,p,p) > 0depends ond, p and p only;

(i) foranyO<p<qg <2andk >0,
0% () qusy < C -kMI71P,
where 0k (¢)q,u;v is as in Definition 7.2, u is as in (4.7) and
C=Cd,p,p)>0

depends on d, p and p only;
(iii) forany0 < p <2,

d 1/d
O<y<(d+ 1)_1<d! Hlog(Pj)) .

Jj=1
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and s € N, there exists a lower set S C N(‘f’ of size |S| < s such that

l/d)

GS(C)P;V = ||C —Cs |p;’V = ||C —cs p.u;V <C- exp(—ys

where og(c)p.v is as in Definition 2.3 (with A = Ng), u is as in (4.7) and
C =C(,y, p,p) >0dependsond, y, pand p only.

Remark A.2. There are several differences between Theorem A.l and [8, Theorem
3.25]. A minor difference is that we do not specify the various constants C appearing
in the result. Another difference is in the presentation of (iii). Here we allow arbitrary
s > 1 (instead of s > §) at the expense of a larger (and unspecified) constant C. The
main difference, however, is the additional term [lc — ¢s|, 4.y appearing in (i). This
can be shown as follows. First, one defines the sequence ¢ = (u.z,/ q_lcv)v eNg SO
that [[¢ — es|l;,4;v = Il€ — €54y and then uses Stechkin’s inequality in lower sets
(see, e.g., [8, Lemma 3.9]) to show that ||¢ — &g,y < s'/97VP||||,, ps.y, where
Il p,1;v is the norm on the majorant £? space o, (Ng; V) (see, e.g., [8, Definition
3.8]). Finally, it can be shown that |[¢||,, 57,y < C(d, p, p) using standard arguments.
See, e.g., [8, Lemma 7.19] (this lemma only considers the scalar-valued case; however
the extension to the Hilbert-valued case is straightforward).

Note that Theorem A.l immediately implies Theorems 2.4 and 2.6. For the for-
mer, we note that

1 = Fsi 2wy = le —esi oy and [Lf = fs,lpooquevy < lle = €8,y e

We then apply (i) with ¢ = 2 or ¢ = 1. For the latter, we use (iii) with p = 1.

A.2 The infinite-dimensional case

We now consider the infinite-dimensional case, where d = oo and U = [—1, 1]V,

Theorem A.3 (Best s-term decay rates; infinite-dimensional case). Let d = oo,
0<p<l1l,e>0 bectlP(N)withb>0and f € B(b,e), where B(b, &) is as
in (2.7). Let ¢ = (cy)veg be the Chebyshev or Legendre coefficients of f. Then the
following best s-term decay rates hold:
(i) Forany p <q < oo and s € N, there exists a lower set S C F of size
|S| < s such that

y<C .gl/a=1/p
q.uV = ’

0s(¢)g:v = lle —esllgy < lle —es

where og(¢)q.v is as in Definition 2.3 (with A = ¥ ), u is as in (4.7) and
C = C(b,e, p) > 0depends on b, € and p only.
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(i) Forany p <q <2andk >0,
O'k(c)q,u;'v <C- kl/q_l/p,

where 0y (¢)g,u;v is as in Definition 7.2, w is as in (4.7) and C = (b, ¢, p) >
0 depends on b, & and p only.

(iii) Suppose that b is monotonically nonincreasing. Then, for any p < ¢ < o0
and s € N, there exists an anchored set S C ¥ of size |S| < s such that

Us(c)q;V = ||C - cS”q;'V = ||C - cS”q,u;'V =C- sl/q—l/p,
where o4(c)gq;v is as in Definition 2.3 (with A = F), u is as in (4.7) and
C = (b,¢e, p) > 0depends on b, ¢ and p only.

Remark A.4. This theorem is based on [8, Theorems 3.29 and 3.33]. Besides the
term |lc — ¢s||4 4;v- parts (i) and (iii) can be found in [8, Theorem 3.29] and [8, The-
orem 3.33], respectively. As in the finite-dimensional case (see Remark A.2), the
main difference is the assertion of the bound on |l¢ — ¢s||; ,.v- This can be estab-
lished through similar arguments, using either the majorant £7 space 611\)/1 (F;7V) or
the anchored £ space Ki’ (F;V) (see, e.g., [8, Definition 3.31]) and then Stechkin’s
inequality in lower or anchored sets (see, e.g., [8, Lemma 3.32]). See also [8, Lemma
7.23] (this lemma only considers the scalar-valued case; however the extension to the
Hilbert-valued case is straightforward).

Note that neither [8, Theorem 3.29] nor [8, Theorem 3.33] asserts part (ii) of
Theorem A.3. This can be shown via the weighted Stechkin’s inequality (see, e.g., [8,
Lemma 3.12]), which gives the bound 0% (¢)g,u;v < ll¢|lp u:v - k'/4=1/P and then by
showing that [l¢||, ,.v < C(b, ¢, p). This latter fact can be obtained by the straight-
forward extension of [8, Lemma 7.23] to the Hilbert-valued setting.

Note that Theorem A.3 implies Theorem 2.5. This follows from (i) by setting
eitherq = 2orqg = 1.



