
Appendix A

Best polynomial approximation rates for holomorphic
functions

In this appendix, we recap a series of standard best approximation error bounds for
polynomial approximation of holomorphic functions. These are used in Chapter 10
to estimate the various error terms appearing in Theorems 8.2–8.4.

A.1 The finite-dimensional case

We first consider the finite-dimensional case, where U D Œ�1; 1�d for d < 1 and
f W U! V is a Hilbert-valued function (in fact, the following results also apply in
the more general setting of Banach-valued functions; however, we shall not consider
this explicitly). We now summarize the various approximation error bounds in the
following theorem. This result combines various well-known results in the literature.
It is essentially the same as [8, Theorem 3.25]. However, we have made a number of
minor edits to fit the notation and setup of this work (see Remark A.2 below).

Theorem A.1 (Best s-term decay rates; finite dimensions). Let d 2 N, f 2 B.�/

for some � > 1, where B.�/ is as in (2.6), and c D .c�/�2Nd
0

be its Chebyshev or
Legendre coefficients. Then the following best s-term decay rates hold:

(i) for any 0 < p � q � 2 and s 2 N, there exists a lower set S � Nd
0 of size

jS j � s such that

�s.c/qIV � kc � cSkqIV � kc � cSkq;uIV � C � s
1=q�1=p;

where �s.c/qIV is as in Definition 2.3 (with ƒ D Nd
0 ), u is as in (4.7) and

C D C.d; p;�/ > 0 depends on d , p and � only;

(ii) for any 0 < p � q � 2 and k > 0,

�k.c/q;uIV � C � k
1=q�1=p;

where �k.c/q;uIV is as in Definition 7.2, u is as in (4.7) and

C D C.d; p;�/ > 0

depends on d , p and � only;

(iii) for any 0 < p � 2,

0 <  < .d C 1/�1
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and s 2 N, there exists a lower set S � Nd
0 of size jS j � s such that

�s.c/pIV � kc � cSkpIV � kc � cSkp;uIV � C � exp.�s1=d /;

where �s.c/pIV is as in Definition 2.3 (with ƒ D Nd
0 ), u is as in (4.7) and

C D C.d; ; p;�/ > 0 depends on d ,  , p and � only.

Remark A.2. There are several differences between Theorem A.1 and [8, Theorem
3.25]. A minor difference is that we do not specify the various constants C appearing
in the result. Another difference is in the presentation of (iii). Here we allow arbitrary
s � 1 (instead of s � Ns) at the expense of a larger (and unspecified) constant C . The
main difference, however, is the additional term kc � cSkq;uIV appearing in (i). This

can be shown as follows. First, one defines the sequence Nc D .u
2=q�1
� c�/�2Nd

0
so

that kc � cSkq;uIV D kNc � NcSkqIV and then uses Stechkin’s inequality in lower sets
(see, e.g., [8, Lemma 3.9]) to show that k Nc � NcSkqIV � s

1=q�1=pk Nckp;M IV , where
k�kp;M IV is the norm on the majorant `p space `pM .N

d
0 IV/ (see, e.g., [8, Definition

3.8]). Finally, it can be shown that k Nckp;M IV � C.d;p;�/ using standard arguments.
See, e.g., [8, Lemma 7.19] (this lemma only considers the scalar-valued case; however
the extension to the Hilbert-valued case is straightforward).

Note that Theorem A.1 immediately implies Theorems 2.4 and 2.6. For the for-
mer, we note that

kf � fS1kL2%.UIV/ D kc � cS1k2IV and kf � fS2kL1.UIV/ � kc � cS2k1;uIV :

We then apply (i) with q D 2 or q D 1. For the latter, we use (iii) with p D 1.

A.2 The infinite-dimensional case

We now consider the infinite-dimensional case, where d D1 and U D Œ�1; 1�N .

Theorem A.3 (Best s-term decay rates; infinite-dimensional case). Let d D 1,
0 < p < 1, " > 0, b 2 `p.N/ with b > 0 and f 2 B.b; "/, where B.b; "/ is as
in (2.7). Let c D .c�/�2F be the Chebyshev or Legendre coefficients of f . Then the
following best s-term decay rates hold:

(i) For any p � q < 1 and s 2 N, there exists a lower set S � F of size
jS j � s such that

�s.c/qIV � kc � cSkqIV � kc � cSkq;uIV � C � s
1=q�1=p;

where �s.c/qIV is as in Definition 2.3 (with ƒ D F ), u is as in (4.7) and
C D C.b; "; p/ > 0 depends on b, " and p only.
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(ii) For any p � q � 2 and k > 0,

�k.c/q;uIV � C � k
1=q�1=p;

where �k.c/q;uIV is as in Definition 7.2, u is as in (4.7) and C D .b; ";p/ >
0 depends on b, " and p only.

(iii) Suppose that b is monotonically nonincreasing. Then, for any p � q <1
and s 2 N, there exists an anchored set S � F of size jS j � s such that

�s.c/qIV � kc � cSkqIV � kc � cSkq;uIV � C � s
1=q�1=p;

where �s.c/qIV is as in Definition 2.3 (with ƒ D F ), u is as in (4.7) and
C D .b; "; p/ > 0 depends on b, " and p only.

Remark A.4. This theorem is based on [8, Theorems 3.29 and 3.33]. Besides the
term kc � cSkq;uIV , parts (i) and (iii) can be found in [8, Theorem 3.29] and [8, The-
orem 3.33], respectively. As in the finite-dimensional case (see Remark A.2), the
main difference is the assertion of the bound on kc � cSkq;uIV . This can be estab-
lished through similar arguments, using either the majorant `p space `pM .F IV/ or
the anchored `p space `pA.F IV/ (see, e.g., [8, Definition 3.31]) and then Stechkin’s
inequality in lower or anchored sets (see, e.g., [8, Lemma 3.32]). See also [8, Lemma
7.23] (this lemma only considers the scalar-valued case; however the extension to the
Hilbert-valued case is straightforward).

Note that neither [8, Theorem 3.29] nor [8, Theorem 3.33] asserts part (ii) of
Theorem A.3. This can be shown via the weighted Stechkin’s inequality (see, e.g., [8,
Lemma 3.12]), which gives the bound �k.c/q;uIV � kckp;uIV � k

1=q�1=p , and then by
showing that kckp;uIV � C.b; "; p/. This latter fact can be obtained by the straight-
forward extension of [8, Lemma 7.23] to the Hilbert-valued setting.

Note that Theorem A.3 implies Theorem 2.5. This follows from (i) by setting
either q D 2 or q D 1.


