
Preface

The present book aims at presenting in a systematic, painstaking and rather exhaustive
manner the incompressible viscous fluid limits of the system of Vlasov–Maxwell–
Boltzmann equations for one or two species. In these regimes, the evolution of the
fluid is governed by equations of Navier–Stokes–Fourier type, with some electromag-
netic forcing. Depending on the precise scaling, this forcing term takes on various
forms: it may be linear or nonlinear, electrostatic or governed by some hyperbolic
wave equation, possibly constrained by some relation of Ohm’s type.

From the mathematical point of view, these models have very different behaviors;
in particular, to establish the existence and stability of solutions require sometimes to
work with very weak notions of solutions. The asymptotic analysis, which consists
most often in retrieving the structure of the limiting system in the scaled Vlasov–
Maxwell–Boltzmann system, uses therefore various mathematical methods with im-
portant technical refinements. Thus, in order to make the reading easier, different
tools will be presented in separate chapters.

The first part of this work is devoted to the systematic formal analysis of viscous
hydrodynamic limits. Chapter 1 introduces the Vlasov–Maxwell–Boltzmann system
as well as its formal properties. An important point to be noted is that the a priori
bounds coming from these physical laws do not suffice for proving the existence of
global solutions, even in the renormalized sense of DiPerna and Lions [30], which
is a major difficulty for the study of fast relaxation limits. This actually explains the
dividing of the three other parts of this book, of increasing difficulty, giving rigorous
convergence results in more and more general settings.

Chapter 2 introduces the different scaling parameters arising in the system, and
details the formal steps leading to the constraint relations and the evolution equations
in each regime. We thus obtain a rather precise classification of physically relevant
models for viscous incompressible plasmas, some of which actually do not seem to
have been previously described in the literature.

Chapter 3 presents a mathematical analysis of these different models. The most
singular of them have a behavior that is actually more similar to the incompressible
Euler equations than to the Navier–Stokes equations: the lack of weak stability does
not allow to prove the existence of global solutions, with the exception of very weak
solutions in the spirit of the dissipative solutions introduced by Lions for the Euler
equations [59]. This lack of stability for limiting systems is the second major diffi-
culty encountered in the study of hydrodynamic limits.

The goal of the second part is to make precise and rigorous the convergence results
described formally in the first part. In order to isolate the difficulties which are spe-
cific to the asymptotic analysis, we choose here to prove first conditional results, i.e.,
to consider the convergence of renormalized solutions even though their existence is
not known. This of course does not imply the convergence of weaker solutions, which
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will be studied in the sequel (renormalized solutions with defect measure, and a for-
tiori solutions with Young measures), but most of the proof will remain unchanged.
The important point is that the analysis is based essentially on the uniform estimates
coming from the scaled entropy inequality, which holds in all situations.

Furthermore, we will focus exclusively on two typical regimes, namely, leading:

� from the one-species Vlasov–Maxwell–Boltzmann equations to the incom-
pressible quasi-static Navier–Stokes–Fourier–Maxwell–Poisson system (Theo-
rem 4.5);

� from the two-species Vlasov–Maxwell–Boltzmann equations to the two-fluid
incompressible Navier–Stokes–Fourier–Maxwell system with Ohm’s law in
the case of strong interspecies collisions (Theorem 4.7), or to the two-fluid in-
compressible Navier–Stokes–Fourier–Maxwell system with solenoidal Ohm’s
law in the case of weak interspecies collisions (Theorem 4.6).

These asymptotic regimes are critical, in the sense that they are the most singular ones
among the formal asymptotics mentioned in Chapter 2 and that all remaining regimes
can be treated rigorously by similar or even simpler arguments.

We will not detail in this preface the content of all chapters of the second part,
but rather insist on the main points requiring a treatment different from the usual
hydrodynamic limits [70]. In the case with only one species, the main difference is
due to the fact that the transport equation contains force terms involving a derivative
with respect to v, which does not allow to transfer equi-integrability from the v-
variable to the x-variable as in [37]. This is a major complication. The new idea
here consists in getting first some strong compactness in v by using regularizing
properties of the gain operator [53] and, then, in transferring this strong compactness
to the spatial variable by means of refined hypoelliptic arguments developed in [7].
The second important difference comes from the fast temporal oscillations which
couple acoustic and electromagnetic modes. Note that we introduce here a simple
method to avoid dealing with non-local projections.

Overall, we are eventually able to establish through weak compactness methods a
very general result (Theorem 4.5) asserting the convergence of renormalized solutions
of the one-species Vlasov–Maxwell–Boltzmann system towards weak solutions of
corresponding macroscopic systems.

In the case of two species, the situation not only requires to exploit the methods
for one species, it is considerably more complex:

� First of all, there is an additional scaling parameter measuring the strength
of interspecies interactions (and, incidentally, the typical size of the electric
current, which can be much smaller than the bulk velocities of each of the two
species of particles): this implies that the (formal) expansions involve a larger
number of terms (for instance, the constraint equations are derived at different
orders).

� Secondly, the linearized collision operator has a more complicated vectorial
structure. The inversion of fluxes and the computation of dissipation terms in
the limiting energy inequalities are therefore substantially more technical.
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� In the most singular regimes, we get nonlinear constraint equations. This
means that renormalization methods, compensated compactness tech-
niques and controls on the conservation defects are already required at this
stage of the proof.

� We have no sufficient uniform a priori bound on the electric current to handle
nonlinear terms, which prevents us from taking limits in the approximate con-
servation of momentum law. To avoid this difficulty, we need to introduce a
modified conservation law involving the Poynting vector.

� Even in this more suitable form, the evolution equations are not stable under
weak convergence, and we have no equi-integrability in these singular regimes.
We therefore develop an improved modulated entropy method, which allows
to consider renormalized solutions without important restrictions on the ini-
tial data. Note that this renormalized modulated entropy method should
also lead to some improvements concerning the convergence of the Boltzmann
equation (without any electromagnetic field) to the Navier–Stokes equations
for ill-prepared initial data.

The third and fourth parts (which will be published in a second volume) are more
technical. They show how to adapt the arguments presented in the conditional case of
the second part to take into account the state of the art Cauchy theory for the Vlasov–
Maxwell–Boltzmann system.

In the case of long-range microscopic interactions giving rise to a collision cross-
section with a singularity for grazing collisions, treated in the third part, we start by
proving the existence of renormalized solutions with a defect measure in the spirit
of the construction by Alexandre and Villani [1]. This result, which is important
independently of the study of hydrodynamic limits, has been addressed in the note [8].
The study of hydrodynamic limits follows then essentially the lines of [4] (combined
with the results of the conditional part). We would like however to mention some
important novelties:

� The first one concerns the estimate of the defect measure. A refined anal-
ysis of the convergence of approximate solutions to the Vlasov–Maxwell–
Boltzmann system shows that the defect measure can be controlled by the en-
tropy dissipation. This remark allows for a simplification of the proofs from
[4], especially the passage to the limit in the kinetic equation leading to the
characterization of the limiting form of the dissipation, and the control of con-
servation defects.

� The other simplification is related to the renormalization process. Here we
choose a decomposition of the renormalized collision operator which allows
both to control the singularity due to the collision cross-section, and to preserve
the good scalings for the fluctuation. In particular, the same decomposition can
be used for the control of the transport and of the conservation defects (with a
loop estimate).
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In the case of general microscopic interactions (including for instance the case
of hard spheres), it is not known how to prove the convergence of approximation
schemes of the Vlasov–Maxwell–Boltzmann system, due to a lack of compactness
produced by the electromagnetic interaction. The existence of renormalized solutions
is therefore still an open problem. Nevertheless, Lions [55] has defined a very weak
notion of solution – the measure-valued renormalized solution – defined as limit of
approximate solutions: the equation to be satisfied involves indeed Young measures.

In the fourth part, we begin by refining the control of Young measures for such
solutions by the entropy inequality. We then proceed by showing that the estimates
obtained in the second part are very stable, so that they can be generalized with Young
measures. By using convexity properties and Jensen inequalities, we can extend all
the arguments, and operate both the moment method and the entropy method in more
singular regimes. This extension to solutions of the Vlasov–Maxwell–Boltzmann
system defined in a very weak sense shows that the methods based on the entropy
inequality are extremely robust, and that the convergence is essentially determined
by the limiting system.

These good asymptotic properties seem to further indicate that the measure-valued
solutions defined by Lions (which have never been really studied from the qualitative
point of view) are relevant in some sense.

Paris, France, Diogo Arsénio & Laure Saint-Raymond
January 2016


