
Introduction

When we begin our studies of mathematics at university, we are mostly concerned
with things that are. We seek to prove that equations have solutions, that sets are
equal or in bijection, that groups are isomorphic and so on. Much of this mathematics
is highly constructive: we write down the needed solution, bijection or isomorphism
and are content.

The much subtler part of mathematics generally concerns things which are not1.
Compare the relative ease of, for example, showing that the sets Z and Q have the
same cardinality with the much more difficult proof that Q and R have different
cardinalities. When we want to show that two objects are not the same, we must work
a good deal harder than to show that they are. For groups, the question of when two
groups of the same cardinality are not isomorphic is exceedingly difficult and, indeed,
is algorithmically unsolvable. We certainly cannot check every possible bijection to
see if it respects the group structure!

This last statement is not always correct, of course. There are groups for which the
blunt method of testing all possible functions will eventually work: the finite groups.
Actually doing this in any practical context would be a fairly daft way to show two
groups are not isomorphic, but it is at least a comfort to know it is possible.

A less daft thing to do than checking all possible isomorphisms is to look for
group ‘invariants’: properties of a group that are preserved by isomorphism. If we
find two groups in the gutter, we could attempt to show that they are different by
checking our favourite list of invariant properties to see if the two groups have any
different properties. Perhaps one is abelian, and the other is not? Perhaps one has
centre, or has torsion of a particular order?

As an undergraduate, when I was first introduced to free groups, I not unnatur-
ally asked how we could be sure that free groups of different ranks were genuinely
different. The answer I was given was that the two groups had different numbers of
homomorphisms to a cyclic group of order two. There are, of course, plenty of other
ways to answer this particular question, but the fact remains that the easiest thing to
do was to reduce the question to the behaviour of the finite quotient groups, where we
can be certain that we can count things exactly.

The topic of this book is the study of how far we can push this idea: what can
we learn about a group if we only know its finite quotients? Which groups will have
enough finite quotients that we can use them to meaningfully study the whole group?
How are we to work with such an unwieldy piece of information as “the collection of
finite quotients of a given group”?

1No pedantry about double negatives, please.
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One approach would be to try to work with each finite quotient one at a time as
a sort of ‘approximation’ of the infinite group, and then to pass to larger and larger
finite quotients as needed to witness more and more information. We do in fact do this
very frequently in everyday life. By any sensible measure, the collection of dates on a
timeline forms a copy of the group of integers Z once we have fixed a ‘zero day’. We
are unlikely to specify a date by actually giving the total number of days since day
zero. We would first use a very small approximation to Z, the group Z=7Z: the set of
days of the week. If we could not distinguish two Tuesdays, we would pass to a larger
quotient, the group Z=7Z �Z=365Z, to tell us the position in the year2. Over a longer
span of time we might add a two-digit year date, or a four-digit, to get more refined
positions on the timeline. At present, in the Gregorian calendar we go no further, but
in the fullness of time we may expect to add more digits to see more of the group Z.
The Mayan Long Count calendar works with a very large quotient of Z indeed!

Dealing so explicitly with finite quotients of groups rapidly becomes a little
impractical. We would prefer to take these larger and larger finite groups and have
some sort of ‘limiting object’ to study that contains all the information from the finite
groups. This limiting object is called a profinite group. This book contains a study of
the formal constructions and properties of profinite groups. We especially focus on
those which arise as profinite completions: we take a ‘normal’ group, find the collec-
tion of all its finite quotients, and form the limiting object.

This is not the only source of profinite groups: they arise very naturally in math-
ematics, and especially in number theory, as Galois groups. When studying the beha-
viour of the Galois group of, say, the algebraic closure xQ of the rational numbers,
one would rarely think about the entirety of xQ. One may instead prefer to take some
algebraic number of interest, take a finite field extension of Q which is Galois and
contains the given element, and study the Galois group of the finite extension. The
finite Galois group is a quotient of the full Galois group of xQ, and larger and lar-
ger finite field extensions give better approximations of this full Galois group: the
full Galois group becomes a limit of these finite groups, a profinite group. Although
Galois groups and number theory are important examples and motivation to study
profinite groups, in this book I will focus far more on the group theory and on profin-
ite completions and only mention the number theory very occasionally.

I will now give a general survey of the structure of the book, and the key topics
covered in each chapter. We begin with a discussion of limits. I have said that one
goal of profinite groups is to combine the information of a system of larger and larger
finite groups into a single object we can study, which certainly suggests we should
seek some form of limiting object. The correct notion of limit for our purpose is that
provided by category theory.

2Let us pretend leap years do not exist.



Introduction xi

The first chapter therefore includes a discussion of category theory from the
ground up. I have not assumed any prior familiarity with categories as such – although
any mathematician is already familiar with plenty of examples of categories, whether
they have heard them described as such or not. Categories provide the general lan-
guage of objects and maps between them. Working with categories allows us to define
and study limits in many settings at once, rather than having to reprove each result
for sets, groups, rings, and so on.

The broad notion of ‘limit’ in category theory being rather too broad for our
purposes, we then restrict to a particular kind of limit which to some extent is the
star of the whole story – the inverse limit. This refinement gives a little more texture
to the limiting process and opens up all the constructions we will need – we will
constantly be referring back to the results in this chapter, in particular the theorems
giving non-emptiness of various limiting sets.

At this point the other star of the story appears – topology. Initially our limits
will be simply sets or groups, but we can equip them with natural topologies which,
when we take a limit of a collection of finite groups or sets, is a compact Hausdorff
topology. Any student of topology knows that compact Hausdorff spaces are an excel-
lent place to work, and it is this well-behaved topology that rescues us: an incredibly
unwieldy limit group becomes somewhat tamer. The behaviour of this topology is the
primary reason that instead of studying limits of arbitrary groups, we study limits of
finite groups – the eponymous profinite groups.

Chapter 1 thus gives us a foundation for our study. In Chapter 2 we will meet and
study our first real profinite groups and give both examples of profinite groups and
ways to construct more. In a sense, this chapter is concerned with seeing how far the
world of profinite groups runs parallel to the development of group theory in general,
being something of a hybrid of infinite group theory and finite group theory. We
establish the familiar constructions of subgroups, quotients, products and so on, with
the admixture of our compact topology leading us to restrict to closed subgroups and
continuous quotients. Comfortingly neither of these constructions leaves the category
we are trying to study: taking a closed subgroup or continuous quotient of a profinite
group again gives a profinite group. From the theory of finite groups, the notion of a
Sylow subgroup will enter the picture, allowing us in some cases to consider profinite
groups “one prime at a time”.

We will see key examples of profinite groups which mimic the behaviour of the
familiar essential examples of groups: we have a replacement for the integers in the
form of the profinite integers yZ and we have various special and general linear groups
over profinite rings. We will construct, in great generality, an appropriate notion of
free profinite groups, from which all other profinite groups can be constructed as
continuous quotients.
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We also study generation of profinite groups and their actions on sets – again, if
it need be emphasized further, with the inclusion of the topology so that we speak of
topological generating sets and continuous actions. Even the automorphism group of
a profinite group acquires a topology allowing it to act continuously on the profinite
group, the compact-open topology. I will give a self-contained account of this topo-
logy so the reader will not need to seek out some grand old tome on topology to
follow along.

The structure of profinite groups thus appears to track roughly in parallel with
the abstract theory of groups, when combined with plenty of topology. In Chapter 3
we will begin to explore a close connection between the two worlds: the profinite
completion. This operation, which is a vital part of the story of the book, takes an
abstract group and builds from it a profinite group whose continuous finite quotients
exactly agree with the finite quotients of the original group. The profinite group being
the limit of these finite groups, one may say that the profinite completion remembers
everything about the original group that could be seen in its finite quotients, and
nothing else. We will prove, for example, that two (finitely generated) groups have the
same collection of finite quotients if and only if their respective profinite completions
are isomorphic as topological groups.

This linkage between abstract and profinite groups may be thought to have two
principal directions: we may attempt to study a finitely generated group by looking
at its profinite completion, or we may attempt to study the profinite completion by
building finite quotients of the original group. Both directions require the original
group to have a healthy supply of finite quotients if we are going to get something
non-trivial: trying to take the completion of an infinite simple group, for example,
would simply give the trivial group and we would learn nothing at all. Very naturally,
therefore, we are drawn to study those groups for which we can guarantee a good
supply of finite quotients with which to work.

The basic notion is that of residually finite groups: groups for which we can, at
the very least, distinguish all the different group elements from each other by looking
at finite quotients. These groups inject into their profinite completions as a dense
subgroup, giving something of a skeleton inside the profinite group. We can then ask
more detailed questions about how similar the profinite group looks to this skeleton:
will their subgroup structures be similar, will their conjugacy classes interact in a
sensible way, and so on. From these questions come more refined ‘residual properties’
studied later in the chapter, subgroup separability and conjugacy separability.

We naturally want to have examples of residually finite groups. A major source
of examples, as we will see, comes from linear groups: the simple idea of “reducing
a matrix modulo a large prime” takes one a surprising distance. For the more detailed
properties like subgroup separability, however, this is insufficient, and to build our
finite quotients we are drawn towards the theory of covering spaces. The need for a
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well-behaved space to cover shows why, for much of this book, our examples come
from geometry. We will thus spend a good amount of time studying free groups in
their guise of fundamental groups of graphs, as well as groups of “the next dimension
up”: fundamental groups of surfaces.

We also ask what properties of a group can be recovered from its profinite com-
pletion. Another way to state the issue is this: if two residually finite groups have
isomorphic profinite completions, what properties must they share? This topic is
the study of profinite invariants, an area of mathematics in which much is yet to
be discovered. In this part of the chapter we will introduce some profinite invari-
ants – principally those connected in some way with abelian quotients – and see
some examples of natural properties which fail to be profinite. We also give explicit
examples of distinct groups sharing the same profinite completions.

In Chapter 4 we return to the study of profinite groups in their own right, or more
precisely to the study of a particularly well-behaved family of profinite groups, the
pro-p groups. In their first group theory course, the reader will have seen that finite
groups whose orders are a power of a prime p are rather more tractable than arbitrary
finite groups. The only simple group about which we have to worry is the cyclic group
of order p, and all other p-groups may be built up step-by-step from this one group.
The possibility of various sorts of ‘inductive’ proofs is opened up, and we will see
that many of these techniques allow us to study pro-p groups, which are the inverse
limits of systems of finite p-groups.

This inductive approach allows us to study generation of pro-p groups in rather
more precision than for general profinite groups, and also to engage in a style of
p-adic arithmetic via the techniques of Hensel’s lemma. We go on to apply these
methods to matrix groups over the p-adic integers, and see that these matrix groups
have a rather more rigid structure than the special linear groups over the honest
integers. As all profinite matrix groups are built in direct products of such p-adic
matrix groups via the Chinese remainder theorem, this chapter serves as an introduc-
tion to the study of arithmetic groups, and onward to the study of p-adic analytic
groups.

Restricting our attention to pro-p groups also enables us to establish an important
result that, while true for general (finitely generated) profinite groups, is exceedingly
difficult to prove: the ‘uniqueness’, in an appropriate sense, of the topology of a
profinite group. That is, the compact topology which we built in Chapter 1 and have
used ever since is not some artefact of the construction or dependent on any choices,
but is forced upon us by the group structure itself.

At this point the book seems to change directions entirely: Chapter 5 provides
the reader with a good grounding in group cohomology, or at least the parts of it that
will be useful later on. It may seem somewhat odd for the longest chapter of the book
to mention none of the words from the title, but cohomology is deeply engrained
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in the study of profinite groups and it is essential to have a firm grounding in the
abstract theory before attempting to consider the cohomology of a profinite group. I
did not wish to insist that the reader should be an expert in group cohomology before
beginning this book, so I have included this self-contained chapter to build from.

The treatment of cohomology theory I have chosen to give is rather category-
theoretic. It is possible to study group cohomology in a fairly ‘explicit’ way, working
directly with cocycles, and this viewpoint will be available to us, but I deemed it
important for the future to introduce the proper machinery of homological algebra
first. This machinery mimics the cellular structure of a cell complex, allowing us to
tease apart the behaviour of our group in different ‘dimensions’ and quantify this
behaviour as a sequence of abelian groups.

We give the general theory and construction of group cohomology, and the rela-
tions to the subgroup and quotient group structure of a given group. We go on to make
a particular study of the cohomology groups in dimension two. These have a very
concrete connection to the behaviour and classification of group extensions, which
we give in full. The chapter concludes with a collection of worked examples – again
those groups with geometric grounding, like surface groups, play a primary role.

In Chapter 6 the two threads of profinite groups and cohomology theory reunite,
and we study the cohomology theory of profinite groups. At its core, this theory bears
a strong similarity to the cohomology theory of abstract groups, with the word ‘con-
tinuous’ scattered liberally among the proofs to account for the topology. The most
rigorous way to proceed would be to repeat the whole of Chapter 5 with the topo-
logy appropriately included, but this is needlessly time consuming: the proofs are so
similar that I have chosen simply to incorporate the results of Chapter 5 by fiat, and
proceed to talk about the more unique aspects of the profinite theory.

One key ‘unique’ point of this theory is the strong form of duality known as
Pontryagin duality. This gives a strong enough symmetry between the homology and
cohomology groups of a profinite group to treat them as a single unified theory, in
contrast to abstract groups where one really needs both theories at different times.
Another important aspect we discuss that is not present in the classical cohomology
theory is the intrusion of Sylow theory: since all objects involved are limits of finite
objects, we will see many scenarios in which we can simply take one prime at a time
to simplify matters.

The utility of working with a single prime at a time is seen when we consider
the cohomology of a pro-p group with coefficients in the cyclic group of order p.
We prove the striking theorem that a pro-p group is free if and only if it is ‘one-
dimensional’ in the appropriate sense, and extend this to quantify the one-dimensional
profinite groups. Analogous results are known to be true for abstract groups, but the
proofs are very much more involved than in the pro-p case. We can even establish
more detailed theorems which one would very much like – but which fail – for
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abstract groups: the one-dimensional cohomology controls the number of generat-
ors of a pro-p group, and the two-dimensional cohomology controls the number of
relations needed to describe a pro-p group.

The obvious question, given the context of the book and the previous chapters, is
“how much does the cohomology of a profinite completion look like the cohomology
of the original group?”. We study this question in Chapter 7, with particular focus
on those groups which have the exact same cohomology as their profinite comple-
tions. This property was seemingly introduced by Serre in an exercise in his book
Cohomologie Galoisienne, and received the throwaway name ‘goodness’. Since then,
the concept has grown in importance, but unfortunately has received neither a new
name nor published proofs of the original exercises. I have attempted to rectify this,
and offer the new name ‘separable cohomology’ to bring the nomenclature into line
with the related notions from Chapter 3. We give a complete treatment both of the
results from Serre’s exercises and from certain later research papers, although I have
offered new proofs of many of these.

Two key points of this chapter deserve note here: the use of separable cohomology
to study residual finiteness of extensions of groups (a topic notably missing from our
first chapter on residual finiteness); and the construction of sensible chain complexes
to compute and work with the cohomology of a profinite group, which somewhat
amends the lack of geometric classifying spaces for profinite groups.

In the preceding chapters we have considered many different constructions for
building new groups from old ones: subgroups, extensions, (semi)direct products, and
so on. The missing construction is the operation of ‘gluing’ several groups together by
identifying them along a common subgroup. Such amalgams of groups will be stud-
ied in Chapter 8. We pay particular attention to the question of when gluing together
residually finite groups should produce a group which is again residually finite. This
is generally studied using the notion of efficiency, although I have recast the common
definition into an equivalent form which I feel better expresses the geometric content
of amalgams as groups which act on trees. We go on to study the equivalent notion
of amalgams for profinite groups, and the extent to which profinite completions com-
mute with our amalgamation operations.

Our studies of cohomology remain relevant in this final chapter: by means of
Mayer–Vietoris sequences, we may connect the cohomology of an amalgam to the
cohomology groups of its various pieces. This allows us to greatly expand our list of
groups known to have separable cohomology beyond those studied in Chapter 7.

Many mathematical books include at this point a diagram showing the logical
interrelations of the several chapters: which chapters depend on which other chapters.
I have included such a diagram as Figure 1. The structure of this book is maybe not
so convoluted as to really need such a diagram, but I rather enjoy them.
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Each of these chapters is equipped with several exercises. As with any new piece
of mathematics, it is a good habit to work through some problems as well as simply
reading through the material. Many of these exercises constitute important results in
their own right, and if something seems to be missing from the main text it is a good
idea to check for its inclusion in the exercises. The danger with including results of
substance as exercises is, of course, the frustration that comes if one ever needs to cite
them. As such, I have included a full set of solutions at the end of the book, so the
reader can check the proofs and cite these results as securely as if they were labelled
‘Theorem’.

Certain remarks in the text, and certain sections, have been labelled ‘Discussion’.
These are intended to make the reader aware of various adjacent or future topics of
mathematics which are relevant to the study of profinite groups and residual finiteness
but whose formal proofs go too far astray, or are too difficult, to warrant inclusion in
this book. These are not essential for understanding the remainder of the book and
should be treated as hopefully interesting asides.

Some discussion is needed of the relation of this book to the other standard works
on the subject. For the general account of profinite group theory I have drawn great
assistance from the books of Wilson [142] and Ribes and Zalesskii [117], although I
have in all cases tried to rework the proof of each theorem to read as well as possible
and form a cohesive whole. Wilson’s book includes more material on Galois groups
than I have chosen to include. Ribes–Zalesskii deals with profinite groups in perhaps
greater generality than I have done, by considering constructions of ‘pro-C ’ groups
for various families of finite groups C . I made the conscious decision to consider only
the case when C is the class of all finite groups, or occasionally the class of finite p-
groups for a prime p. This is the main focus of the vast majority of papers in the area
and allows me to give what I believe is a more accessible treatment of the subject.
After understanding the material covered in this book, the reader who needs a more
specific pro-C construction will be much better equipped to consult [117] than they
would be if they began the field in the greatest possible generality. Neither of these
books has the amount of focus on residual finiteness or geometry that I have chosen
to include in the scope of this book.

For the treatment of the classical cohomology theory I have relied on Brown [26]
to fill the gaps in my own knowledge. For the profinite version I again draw some
parts from [117], but also include aspects of the treatment given by Symonds and
Weigel in [136] and by Serre in [123]. Again I have reworked the proofs and, at least
in the case of Serre’s exceedingly terse account, greatly expanded them. The end
result, then, reads rather differently from any of these sources, though many of the
key results are of course shared with them.

The final two chapters, concerning groups with separable cohomology and amal-
gams, are far more new and do not, to my knowledge, have a good treatment in any of
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the present textbooks. Some material is drawn from Serre [123], from Ribes [115] and
from such primary sources as are cited in the text, but I have given new and in many
cases genuinely different proofs of these results. The material on residual finiteness
in Chapter 3, while well known, is also rather undertreated in the standard textbooks
and here again I have relied more on the listed primary sources.
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the topics in this book and/or assisting with the finding of references. Thanks are
also due to my family and friends and assorted colleagues, doctoral students and the
Fellows of two colleges who have had to listen to me ramble about the business of
profinite groups during the writing process. I also wish to thank Prof Henry Beker for
his support of my teaching post at Selwyn College, without which I would not be able
to write this book.
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Figure 1. Logical relations of the chapters of the book.


