
Chapter 1

Definitions and topological properties of Carathéodory
sets

In this chapter, we define the classes of Carathéodory sets which we are dealing with,
and explore topological properties of such sets.

1.1 Definitions and first examples

Take a compact set K � C. The open set C n K has at most a countable number
of bounded open connected components �j D �j .K/, j 2 I , where I D I.K/ is
some set of indices, and one component �1.K/ which is unbounded. The domain
�1.K/ is called the outer domain of K. It will be convenient to put �01.K/ WD
�1.K/ [ ¹1º.

The set @ext K WD @�1.K/ is traditionally called the external boundary of K.
The set

@intK WD @K

��
@�1.K/ [

[
j2I

@�j

�
is called the inner boundary of K. Thus,

@K D @intK [ @extK [
[
j2I

@�j .K/:

Accordingly, for an open set U � C we set

U1 WD �1. xU/; U 01 WD �1.
xU/ [ ¹1º: (1.1)

One of the most significant entities for our further considerations will be the concept
of the polynomial convex hull of a set. Let us recall that for a bounded set E � C its
polynomial convex hull, denoted by yE or E^, is defined as follows:

yE D
°
z 2 C W jp.z/j 6 sup

w2E

jp.w/j; p 2 P
±
:

A bounded set E is called polynomially convex if E D yE.
Observe that always E � yE D . yE/^ and the set yE is closed. Moreover, it can be

easily verified that
. xE/^ D yE

for any bounded set E � C. This equality will be frequently and implicitly used in
what follows.
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G1

G2

Figure 1. G1 is a Carathédory domain, while G2 is not.

If K is a compact subset of C then the maximum modulus principle for holo-
morphic functions and the classical Runge approximation theorem yield

yK D K [
[

j2I.K/

�j .K/;

and @ yK D @extK. Thus, yK is the union of K and all bounded components of C nK.
In what follows we will be dealing with several kinds of Carathéodory sets,

namely, with Carathéodory open sets (in particular, with Carathéodory domains), and
Carathéodory compact sets. Despite the fact, that the principal ideas underlying these
concepts are the same, it is convenient to define them separately.

Definition 1.1. A set G � C is called a Carathéodory open set if it satisfies the
following conditions:

(1) G is nonempty, open and bounded;

(2) @G D @ext.@G/.

A connected open Carathéodory set G is called a Carathéodory domain.

Since G1 D �1.@G/, condition (2) in Definition 1.1 also means that @G D
@G1.

A very simple example of a Carathéodory domain is provided by any Jordan
domain, that is a domain of the formD.� / for an arbitrary Jordan curve � . It follows
directly from Definition 1.1 that the domainsD DD n Œ0; 1/,D2 DD n xD.1

2
; 1
2
/, and

D3 D D n Œ�1
2
; 1
2
� are not Carathéodory domains. In the picture in Figure 1 one can

see two more complicated examples.
Notice, that for a Carathéodory domain G the set C n xG may be disconnected.

The “outer cornucopia”, which is a ribbon which winds around xD and accumulates to
T , see the domain G1 at Figure 2 below, gives an example of such behavior. Observe
that the domain G2 in Figure 2 is not a Carathéodory domain. This domain will be
useful for certain further considerations.
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G1

G2

Figure 2. A cornucopia G1 and an “inner snake” domain G2.

In fact, the set C n xG (for a Carathéodory domain G) can be even infinitely con-
nected as shown by the infinite cornucopia given in Figure 3.

Definition 1.2. A nonempty compact setK �C is said to be a Carathéodory compact
set, if @K D @ yK.

1.2 Properties of connectivity

We will explore in this section certain properties of connectivity of Carathéodory
sets. These properties are not only of interest in their own right in the general context
of the theory of Carathéodory sets, but they will be used repeatedly (but sometimes
implicitly) in what follows.

We recall that an open set U is simply connected if and only if the set C1 n U is
connected. The following result is easy to prove.

Proposition 1.3. LetK be a Carathéodory compact set, and letU be a Carathéodory
open set. Then, the following hold.

(a) IfKı D ;, then any compact subset Y � K is also a Carathéodory compact
set;

(b) If a compact set Y is the union of some components of K, then Y is a Cara-
théodory compact set;

(c) If � is the union of some components of U , then � is a Carathédoroy open
set.

For a bounded open set U let us introduce the concept of its Carathéodory hull,
which is yet another variety of the concept of a Carathéodory set.

Definition 1.4. Let U ¤ ; be a bounded open set. The set U � WD Int. yU/ is called the
Carathéodory hull of U .
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Figure 3. An infinite cornucopia.

For example, in Figure 3 the set G� is the union of the cornucopia domain G
itself (the domain shown in blue in this picture) and all disks, where this cornucopia
accumulates. For the inner snake at the right-hand side in Figure 2, the set G�2 is the
small open disc, where the cornucopia is included.

Proposition‘ 1.5. For Carathéodory open sets, the following holds.

(1) Every Carathéodory open set U is simply connected.

(2) IfG is a Carathéodory domain, thenG is a component ofG�. Conversely, for
any bounded open set B , each component of B� is a Carathéodory domain.

Proof. Take a Carathéodory open set U and assume that it is not simply connected.
Then, there exists a component V of U which is not simply connected. In such a case
the set C1 n V is not connected. Then, there exist two closed sets X; Y � C1 n V
such that

X \ Y D ;; X ¤ ;; Y ¤ ;; C1 n V D X [ Y: (1.2)

Assume that1 2 Y , then X is a compact subset of C. Then,

�1. xV / � C1 n xU � X [ Y:

Since �1. xV / is a connected set, then (1.2) yields

�1. xV / � Y ) @�1. xV / � Y: (1.3)
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It holds, moreover, that @X � @V . Indeed, for any w0 2 @X and ı > 0 with ı <
dist.X; Y /, one has

D.w0; ı/\X ¤ ;; ; ¤ D.w0; ı/\X
{
D D.w0; ı/\ .Y [ V / D D.w0; ı/\ V:

So, w0 2 @V . Since V is a Carathéodory domain, the properties (1.2) and (1.3) imply

; ¤ @X � @U \ @X D @�1. xV / � Y \X D ;;

which gives a contradiction. Thus, any Carathéodory open set U is simply connected
as it is claimed.

Let now K D yG. Since G � Int. yK/, let V be the component of Int. yK/ such that
G � V . It needs to be shown that G D V . Assume that there is a point z1 2 V n G.
Let z0 2 G and take a polygonal line L � V such that z0; z1 2 L (it is possible since
V is a domain). Then, there exists a point w such that

w 2 @G \ L � @G \ V � @ yG \ Int. yG/ D ;;

which is a contradiction.

Proposition‘ 1.6. The following properties are satisfied.

(1) If U is a Carathéodory open set, then U D Int. xU/.

(2) If G is a simply connected domain such that the set xG does not separate the
plane, then G is a Carathéodory domains if and only if G D Int. xG/.

Proof. It is clear that U � Int. xU/. Assume that there exists a point z 2 Int. xU/ n U .
Then, for some ı > 0, it holds that D.z; ı/ � xU , and hence z 2 @U D @�1. xU/. So,
; ¤ D.z; ı/ \ .C n xU/ � xU \ .C n xU/ D ;, which is a contradiction. Thus, (1) is
proved.

We are going now to prove the second part of the proposition. Since xG does not
separate the plane, one has that �1. xG/ D C n xG. Then,

@�1. xG/ D @.C n xG/ D @ xG D
xxG n Int. xG/ D xG nG D @G;

and the proof is completed.

Note that if K is a Carathéodory compact set, then K may be different from
Int.K/.

The domain G2 at Figure 2 is an “inner snake” which is not a Carathéodory
domain. It gives an example showing that the converse assertion to the part (1) of
Proposition 1.6 is not true, and also that the hypothesis in the part (2) of this Propos-
ition that G does not separate the plane is essential.

The concept of a Carathéodory domain is not topologically invariant. For example
one can consider the domain f .G2/, where G2 is presented in the picture in Figure 2
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and f .z/ D 1=.z � a/ with a being the center of the center of the disk in which
G2 accumulates. In order for the Carathéodory property for a given domain to be
preserved by a homeomorphism of G, some additional assumptions on this homeo-
morphism are required. The next result generalizes [39, Theorem 2], where the hypo-
theses that the set xG does not separate the plane is additionally assumed.

Theorem‘ 1.7. Let G be a Carathéodory domain. Assume that f W yG ! C is a con-
tinuous injection. Then, f .G/ is a Carathéodory domain. If xG does not separate the
plane then f .G/ also does not separate the plane.

Proof. For a subset A � yG the continuity of f and compactness of f . xA/ imply that
f . xA/ D f .A/. Let now Y WD f . xG/ D f .G/.

In view of the theorem on the invariance of open sets (see, for instance [94, page
122] or [78, page 475]) the function f maps open sets in C to open sets in C, in
particular the set f .G/ is a domain.

Assume now that G is such that yG ¤ xG. Then, for any bounded component B of
C n xG its image f .B/ coincides with some bounded component � of C n Y .

Let us prove this claim. Take such B . Then, the set f .B/ is a domain and f .B/\
Y D f .B \ xG/ D ; since f is injective. So, f .B/ has to be included into some
component of C n Y . Assume that f .B/ � �1.Y /. In this case, one can take a
point a 2 B and find some infinite polygonal line L � �1.Y / joining f .a/ with
1. Clearly L \ f .B/ ¤ ; and L \ f .B/{ ¤ ;, since f .B/ is a bounded set. Then,
there exists a point b 2 L\ @f .B/ � �1.Y /\ Y D ;, which gives a contradiction.
Therefore, there is a bounded component � of C n Y such that f .B/ � �. Thus,
f . xB/ � x�.

Now, let us assume, that f .B/ ¤ �. In such a case one can take a point a0 2
� n f .B/ and a point b0 2 f .B/. If � � � is a polygonal line joining a0 with b0,
one has ; ¤ � \ @f .B/ � � \ Y D ;, which, again, is a contradiction. Therefore,
f .B/ D � and, hence, f . xB/ D x�, as it was claimed.

Going further, let � be a bounded component of the set C n Y . Then, @� � @Y .
Put F WD f �1.@�/ so that F is a compact subset of @G. Thus, yF � yG and f . yF /D x�
by the previous arguments.

Now, we have to prove that

f .G/ D Int.f .G//: (1.4)

By part (1) of Proposition 1.6 we obtain

f .G/ D f .Int. xG// � f . xG/ D f .G/:

But f .Int. xG// is an open set, so f .G/ � Int.f .G//. In order to verify the opposite
inclusion it suffices to observe that

f �1.Int.f .G/// D f �1.Int.f . xG/// � Int.f �1.f . xG/// D Int. xG/ D G:
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Thereafter, using (1.4) we have

@f .G/ D f .G/ n Int.f .G// D f .G/ n f .G/ D @f .G/: (1.5)

Assume now that f .G/ is not a Carathéodory domain. Using (1.5) again, one has

@f .G/ D @f .G/ D @int Y [ @ext Y [
[
@�j .Y / ¤ @ext Y;

where ¹�j D �j .Y /º is the collection (nonempty in the case under consideration) of
components of the set C n Y .

Therefore, for every bounded component B of the set C n xG there exists a point
z … @extB but z 2 @intB [

S
@�j . This implies that there exists a point z1 2 @�j for

some index j such that z1 … @extB . Put now M WD @B and K WD @�j , so that K is a
component ofM . By Zoretti’s theorem [136, page 109] there exists a Jordan curve �
that encloses @�j and such thatM \ � D ; while d.�;K/ < " for some sufficiently
small ". Then, � � f .G/, f �1.�j / D Gj and �1 D f �1.� / is a Jordan curve on
G such that �1 encloses @Gj . But it is a contradiction because �1 separates points of
�1. xG/, which are in the bounded component of C n �1, from1.

If yG D xG then, by the theorem of invariance by homeomorphisms on C1 [78,
page 550], the set C n Y is also connected. In this case, the proof may be completed
using Proposition 1.6 (part (2)) and (1.4).

Proposition‘ 1.8. Let K be a compact subset of C. Then, K is a Carathéodory com-
pact set if and only if

Int. yK/ D Int.K/ [
[
Gj ;

where ¹Gj º is the collection of all bounded components of the set C nK.

Proof. In the case that K D yK (that is for compact sets which do not separate the
plane) there is nothing to prove. Assume that K is a now a general Carathéodory
compact set. Since Int.K/ [

S
Gj � yK, then

Int.K/ [
[
Gj � Int. yK/:

Letw 2 Int. yK/ and take " > 0 such thatD.w;"/\�1.K/D;. Then,D.w;"/\
@K D ;. This means that D.w; "/ � K or D.w; "/ � K{ n�1.K/ D

S
Gj . Then,

w 2 Int.K/ or w 2 Gk for some index k.
Conversely, assume that Int. yK/ D Int.K/ [

S
Gj , then

@ yK D yK \
�

Int.K/[
[
Gj

�
{
D yK \

�[
Gj

�
{
\ Int.K/{

D K \ Int.K/{
D @K:

Therefore, K is a Carathéodory compact set and the proof is completed.

Ending this section let us provide yet other clear relations among Carathéodory
sets.
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Proposition‘ 1.9. The following statements hold.

(1) IfK is a Carathéodory compact set withKı ¤ ;, thenKı is a Carathéodory
open set.

(2) If U is a Carathéodory open set, then xU is a Carathéodory compact set.

1.3 Accessible boundary points

In this section we recall the concept of an accessible boundary point and present
certain properties of accessible points on boundaries of Carathéodory domains.

Definition 1.10. Let U be an open set in C, and let a; b 2 @U .

(1) An arc E beginning at some pointw 2U , ending at a, and such that E n ¹aº �

U is called an end-cut of U (or in U ).

(2) An arc C beginning at a, ending at b, and such that C n ¹a; bº � U is called
a cross-cut of U (or in U ).

The following fact may be found in [94, page 145].

Theorem 1.11. Let G be a domain in C.

(1) IfG is simply connected and if C is a cross-cut inG, thenG n C D G1 [G2,
where G1 and G2 are disjoint simply connected domains.

(2) If for each cross-cut C inG the setG nC is not connected, thenG is a simply
connected domain.

The next definition is a small refinement of the definition given in [136, page
111].

Definition 1.12. (1) Let X be a subset of C. A point a 2 @X is said to be accessible
from X , if there exists some end-cut E of X ending at a.

(2) LetG be a simply connected domain in C. A point z 2 @G is accessible from,
at least, two sides of G, if there exists a cross-cut C in G with endpoints a; b 2 @G,
such that z … ¹a; bº, z 2 @G1, z 2 @G2, where G n C D G1 [G2, and the point z is
accessible both from G1 and from G2.

For a simply connected domain G in C we put

@aG WD
®
z 2 @G W z is accessible from G

¯
:

It is natural to call the set @aG the accessible part of the boundary of G. The set @aG
is always dense in @G. This follows from the fact, easy to prove, that the set of points
which are accessible by segments (as end-cuts) is dense. In [89] it was proved the
important fact that @aG is a Borel set for every domain G.
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Definition 1.13. Let M be a connected set and w 2 M . The point w is called a cut
point of M if the set M n ¹wº is not connected. The point w is called an end point
of M , if there exists a sequence .Un/ of (circular) neighborhoods of w such that
diam.Un/! 0, as n!1, and the set @Un \M consists of a single point for each n.

Proposition‘ 1.14. If G is a Carathéodory domain, then @G does not have points
which are accessible from both sides of G. Moreover, @G has neither cut points nor
end points.

Proof. Assume that a point z is an accessible point from both sides of G and let C

be a cross-cut of G with endpoints a and b such that z ¤ a, z ¤ b, satisfying all
requirements of Definition 1.12. For s D 1; 2, let Es be two end-cuts in Gs starting
at some points zs 2 Gs and ending at the point z. Since G is a domain, let L � G
be a polygonal line joining the points z1 and z2 such that L \ Es � ¹z1; z2º for each
s D 1; 2. Then, � WD E1 [ E2 [L is a Jordan curve that separates a and b. If�1 and
�2 are the components of C n � we may assume that a 2 �1, b 2 �2. Since G is a
Carathéodory domain then �s \�1. xG/ ¤ ; for each s. So,

; ¤ � \�1. xG/ � .G [ ¹zº/ \ .C n xG/ D ;;

which gives the desired result.
Assume now that w 2 @G is a cut point. Then, @G DM1 [ ¹wº [M2 withM1 \

M2 DM2 \M1 D ;. By the separation theorem (see [136, page 108]) applied to the
sets A D M1 and B D M2 there exists a Jordan curve � � G [ ¹wº that separates
M1 and M2. After that the proof may be completed as it was for accessible points.

Finally, if w 2 @G is an end point then, by its definition, w is the limit of some
sequence .�n/ of points which are cut points of @G. However, this sequence cannot
exist, therefore such a point w does not exist.

The next result was obtained in [26] but here we prove it in a more simple manner.

Proposition‘ 1.15. Let G be a Carathéodory domain and let B be a bounded com-
ponent of C n xG. Then, the set @aG \ @B consists of at most one point.

Proof. Assume the opposite, which means, that there exists a cross-cut C � B [

¹�1; �2º, �1¤ �2, �1; �2 2 @aG \ @B . LetG1 andG2 be two simply connected domains
such that G n C D G1 [ G2. Then, take a line R, orthogonal to the segment Œ�1; �2�
and passing through the middle point of this segment. Denote by R˙, respectively,
two rays of R starting at the middle point of Œ�1; �2�. Then, take the last point �3 2
R \ @B in the direction of the ray RC, and the last point �4 2 R \ @B in the direction
of the ray R�. All points �j , j D 1; 2; 3; 4 are different. Put C0 D C , C1 D xG, then
C0 \C1 D ¹�1; �2º is not connected, then, by the second theorem of Janiszewski (see
[78, page 506]), the continuum C0 [ C1 separates the plane. So, C n .C0 [ C1/ D
U1 [ U2, where U1 and U2 are two open sets, with Gj � Uj for j D 1; 2. In each of
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two small discs D.�k; ı/, for k D 3; 4, there exists a point zj 2 �1. xG/ \ Uj ¤ ;
for j D 1; 2. These facts together with �1. xG/ D .�1. xG/\ U1/[ .�1. xG/\ U2/
give a contradiction.

Example 2 in [26] shows a Carathéodory domainG such that the set @aG \ @B is
a singleton. A more informative example is given in Example 2.20 in Chapter 2, see
Figure 6 below.

We mention here that the authors of [26] were unaware at that moment of the
result proved in [38, page 172]. The aforementioned result says, in the notations of
Proposition 1.15, that @aG \ @aB is either empty or consists of a single point. The
difference of considering @aB in place of @B allows the author of [38] to argue more
directly. But this difference is essential, because of Example 2.20. Let us also refer
Proposition 2.19, where additional information is presented concerning the matter.

Corollary‘ 1.16. If G is a Carathéodory domain such that @G D @aG, then the set
C n xG is connected.

Corollary‘ 1.17. IfW1 andW2 are two different components of a Carathéodory open
set U , then @aW1 \ @aW2 consists of at most one point.

We end this section with the next result, which will be used several times in what
follows.

Proposition‘ 1.18. For every Carathéodory compact set X there exists a Carathéo-
dory continuum Y such that X � Y and Xı D Y ı.

Proof. In order to prove this assertion we consider for each integer k > 1 the family
Dk of the dyadic squares of the generation k, i.e.,

Dk D

²
Q D

�
j1

2k
;
j1 C 1

2k

�
�

�
j2

2k
;
j2 C 1

2k

�
W j1; j2 2 Z

³
:

Define the subfamily Dk.X/ consisting of all squares Q 2 Dk such that X \ xQ ¤
;, put Fk WD

S
Q2Dk.X/

Q and suppose Fk;1; : : : ; Fk;rk to be the closures of the
polynomial hulls of the components of Fk . In such a case one has that X � F ı1;1 [
� � � [ F ı1;r1 . For each k and j D 1; : : : ; rk we choose a point zk;j 2 @Fk;j . Set F �

k
WDSrk

jD1Fk;j . Denote by IkC1;j the set of indexes sD 1; : : : ; rk such that FkC1;s �Fk;j
and set F �

kC1;j
WD
S
s2IkC1;j

FkC1;s .
In what follows by a tree we mean a connected polygonal line T such that C n T

is connected.
Let us construct a sequence of trees .Tk/ with Tk�1 � Tk by induction. Take a

point z … X and choose a tree T1 such that T1 connects z with all points z1;j , j D
1; : : : ; r1 and such that the set C n .F �1 [ T1/ is connected. Suppose now that the trees
T1; : : : ; Tk are already constructed. Let us show how to construct the tree TkC1. Since
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Fk;j for j D 1; : : : ; rk contains a finite number of ¹FkC1;sº (where s D 1; : : : ; rkC1),
we can choose a new tree Tk;kC1;j that connects zk;j with all zkC1;s for s 2 IkC1;j
such that the domain Gk WD C n .Tk [ Yk/, where Yk D

Srk
jD1.F

�
kC1;j

[ Tk;kC1;j /

is simply connected. Now, we put TkC1 D Tk [ .
Srk
jD1 Tk;kC1;j /.

Finally, we take T D
S1
kD1 Tk and let Y DX [ T . Then, Y is a compact set such

thatXı D Y ı. Since allGk are simply connected domains and C n Y D
S
kGk , then

Y is connected and finally, Y is a Carathéodory compact set because of the fact that
@Y D @X [ T .


