
Chapter 2

Carathéodory sets and conformal maps

2.1 Some background on conformal maps

Let B and G be domains in C. One says that a function f maps B conformally
onto G (respectively, into G) if f is holomorphic and injective in B , and f .B/ D
G (respectively, f .B/ � G). The Riemann mapping theorem is the starting point
of all studies of conformal maps. Let us recall some historical remarks concerning
the Riemann theorem since they are important for better understanding the role of
Carathéodory’s ideas and results. B. Riemann enunciated his outstanding theorem
on conformal maps in his dissertation in 1851. The Riemann theorem says that, if
G is a simply connected domain such that G ¤ C and G ¤ ;, then there exists a
conformal map f from D onto G. If a 2 G and # 2 Œ0; 2�/ are fixed, then there
exists a unique conformal map f satisfying the normalization conditions f .0/ D a
and arg f 0.0/ D # . If # D 0, the corresponding f is called the Riemann mapping
function (with respect to a). Notice, that the proof given by Riemann contained a
gap which was eliminated later on by D. Hilbert and other authors. The standard
modern proof was developed by R. Riesz and L. Fejér and was published by T. Radó
in 1923. It may be found, for instance, in [33, Chapter vii] and in [61, page 30].
Montel’s theory of normal families of holomorphic functions plays a crucial role in
this proof. Also we refer to [19, page 298], where one can find a constructive proof
of the Riemann mapping theorem made by P. Koebe and C. Carathéodory.

If f is the Riemann map from D ontoG and gD f �1, the numberRD 1=g0.a/ is
called the conformal radius ofG we respect to a. The function g0 WD g=g0.a/ defined
on G maps G conformally onto D.0; R/ and satisfies the normalization conditions
g0.a/ D 0 and g00.a/ D 1. Sometimes this function is more easily handled than the
Riemann map. For instance, the function g0 possesses several minimality properties,
one of which is given by the following proposition.

Proposition 2.1. Let G ¤ C be a simply connected domain and let a 2 G. Then, the
function g0 defined above is the unique solution to the extremal problemZ

G

jg00j
2 dA D inf

²Z
G

jh0j2 dA W h 2 H.G/; h.a/ D 0; h0.a/ D 1

³
D �R2:

The details of the proof may be found in [61, page 55]. It is appropriate to recall
that the standard area formula (see, e.g., [43, page 96]) yields that for any measurable
set E � G, for each function h 2H.G/ (not necessarily univalent) and for every real
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nonnegative measurable function F defined on h.E/ it holdsZ
h.E/

F.z/ n.h; z/ dA.z/ D

Z
E

F.h.w// jh0.w/j2 dA.w/; (2.1)

where n.h;a/ stands for the number of points of h�1.¹aº/, for each a 2C. The above
formula also holds for complex measurable functions F , provided that one of its two
entries is well defined.

One of the central questions in the theory of conformal maps which is of high
importance for our considerations is the study of the behavior of a conformal map
f WD ! G near a point � 2 @D. In a general sense this behavior is given by the
concept of a prime end. We denote by diam# the diameter of sets in the spherical
metric in C1 (see [104, page 1]).

Definition 2.2. Let G be a simply connected domain. We call a sequence of cross-
cuts .Cn/ a null-chain of G if

(i) xCn \ xCnC1 D ; for each n D 0; 1; 2; : : : I

(ii) Cn separates C0 and CnC1 for each n D 1; 2; 3; : : : I

(iii) diam#.Cn/! 0 as n!1.

If @G is bounded one can replace diam# with the Euclidean diameter.

Let us recall the notion of equivalence of null-chains. We say that two null-chains
.Cn/ and .C 0n/ are equivalent if, for every large number m, there exists a number n
such that C 0m separates Cn from C0, and Cm separates C 0n from C 00. The equivalence
classes of null-chains with respect to this relation are called the prime ends of G. Let
us denote the set of all prime ends of G by Pr.G/. It is possible to define a topology
on the set Pr.G/ such that G [ Pr.G/ become compact. The next result is one of
the keystones in the conformal mapping theory, it is known as Carathéodory prime
ends theorem.

Theorem 2.3. Let f maps D conformally onto a bounded simply connected domain
G. There exists a homeomorphism

Of W xD ! G [Pr.G/

which extends f (that is f .z/D Of .z/ for z 2 D) and for any � 2 T and for any null-
chain .Cn/ representing the prime end Of .�/ the sequence f �1.Cn/, for sufficiently
large n, forms a null-chain in D separating 0 from �.

In the simplest case that G D D, the set Pr.D/ is homeomorphic to T . Going
further we need to recall some notation whose detailed account may be found in
[104, Section 2.5] and [32, Chapter 9]. The impression of the prime end Of .�/ (which
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also is the cluster set of f at the point �) is the set

I. Of .�// D I.f; �/ D C.f; �/ D
\
r>0

f .D.�; r/ \D/;

while the set of principal points of Of .�/ is the set

…. Of .�// D ….f; �/ D CŒ0;�/.f; �/ D
\

0<r<1

f .Œr�; �//:

The global cluster set of f is defined as

C.f / D
\
n>2

f .¹z 2 D W jzj > .n � 1/=nº/:

In terms of these sets the prime ends of f are classified as follows:

First kind: ….f; �/ is a singleton and ….f; �/ D I.f; �/;
Second kind: ….f; �/ is a singleton, but ….f; �/ ¤ I.f; �/;

Third kind: ….f; �/ is not a singleton and ….f; �/ D I.f; �/;
Fourth kind: ….f; �/ is not a singleton, but ….f; �/ ¤ I.f; �/.

In the case that @G is a Jordan curve we have the following result, which is often
called Carathéodory–Osgood–Taylor theorem (in several textbooks this theorem is
also called Carathéodory extension theorem for Jordan domains).

Theorem 2.4. Let f map D conformally onto a bounded domain G. The following
conditions are equivalent:

(i) f has a continuous injective extension to a mapping from xD onto xG;

(ii) @G is a Jordan curve;

(iii) @G is locally connected and has no cut points.

We refer the reader, depending on his expertise, to [19, page 309], [77, Chapter II],
or [104, Chapter 2], where several proofs of this theorem with different levels of
details may be found. The question when f has a continuous extension to xD, perhaps
without injectivity, was also solved by Carathéodory. The next result is referred as
Carathéodory continuity theorem.

Theorem 2.5. Let f map D conformally onto a bounded domain G in the complex
plane. Then, the following four conditions are equivalent:

(i) f has a continuous extension to a mapping from xD onto xG;

(ii) there exists a continuous map  on T such that  .T / D @G;

(iii) the set @G is locally connected;

(iv) the set C nG is locally connected.
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The implication (iii))(ii) in Theorem 2.5 is a special case of the Hahn–Mazur-
kiewicz theorem (see [94, page 59]). The implication (ii))(iii) is a general fact on
continuous images of locally connected compacta. A complete proof of the other
equivalences may be found, for instance, in [104] or in [94].

The next question which is natural to pose for an arbitrary conformal map f is the
question whether the boundary values f exist on the boundary of the domain, where
f is defined except, may be, some “relatively small” set. This question may be solved
in different manners, depending on the tools used. We will need the following result
concerning the matter. Let us recall the definition of Hardy spaces in D. For p > 0
the space Hp D Hp.D/ consists of all functions f 2 H.D/ such that Mp.f / <1,
where

Mp.f / D sup
r!1

Z
T
jf .r�/jp dmT .�/:

For all p > q > 0 the inclusions H1 � Hp � H q � N hold, where N D N.D/
is the Nevanlinna class in D. We recall that any function f 2 N.D/ has the form
f D f1=f2, where f1; f2 2 H1.D/.

Given a point � 2 T and ˇ with 0 < ˇ < �=2, then the Stolz angle S� .ˇ/ is the
set ®

z 2 D W jarg.1 � x�z/j < ˇ; jz � �j < 2 cosˇ
¯
:

Let now h be a function from D to C1. One says that h has angular limit (or, in other
words, boundary value) at the point � 2 T , if for each ˇ 2 .0; �=2/ the limit

lim
S�.ˇ/3z!�

h.z/

exists and is independent on ˇ. This common value is denoted by h.�/.

Theorem 2.6. The following statements hold.

(1) Let h 2 N.D/. Then, the angular limit h.�/ ¤1 exists for mT -a.a. � 2 T .

(2) If f maps D conformally into C, then f 2Hp for every p < 1=2, and there-
fore f .�/ ¤1 exists for a.a. � 2 T .

(3) Moreover, if f maps D conformally into C, then the boundary values f .�/
exist for all � 2 T , except a set of logarithmic capacity zero.

We are not providing any special reference for these results, the interested reader
can follow, for instance, [104, Theorems 1.7, 8.2, 9.19, and Corollary 2.17], as well
as the explanation given in [105, Chapter ii, Sections 1 and 2]. In fact, one important
ingredient here is the classical Fatou’s theorem that says that any function f 2 H1

has a.e. on T finite angular limits.

Definition 2.7. For a function f 2 H1 let F.f / be the set of all points � 2 T for
which the boundary value f .�/ exists. This set is called a Fatou set of f .
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Carathéodory in [20] considered sequences .Gn/ of simply connected domains
and studied when the sequence of the corresponding Riemann maps converges in
some sense. We ought to recall some results from this subject.

Definition 2.8. Let .Gn/ be a sequence of domains (not necessarily simply connec-
ted) and assume that there exists a 2

T1
nD1Gn. One says that Gn converges to a set

G in the sense of the kernel convergence with respect to a, and G is the kernel of this
sequence, if one of the two following conditions holds.

(1) If there exists � > 0 such that D.a; �/ � Gn for all sufficiently large n, then
G must be a domain, a 2 G, G ¤ C, and the following two conditions must
be satisfied:

(1a) if w 2 G then there exists " > 0 such that D.w; "/ � Gn for large n,

(1b) if w 2 @G, then w D limwn for some sequence of points .wn/ such that
wn 2 @Gn for each n.

(2) If the previous condition (1) is not satisfied then G D ¹aº.

This convergence is well defined, but it clearly depends on the choice of the given
point a. In the case that Gn converges to G with respect to a in the sense of kernel
convergence we will write Gn ! G with respect to a. If it is clear from the context
what a we are dealing with we will simply write Gn ! G.

The notion of kernel convergence has several surprising properties, for instance
it underlies several deep results about convergence of sequences of conformal maps.
The following Carathéodory kernel convergence theorem shows the relations between
concepts of kernel convergence and locally uniform convergence of the corresponding
conformal maps in the case of simply connected domains.

Theorem 2.9. Let .Gn/ be a sequence of simply connected domains, Gn ¤ C, and
let a be a point such that a 2 Gn for each n. Let fn be a conformal map from D onto
Gn such that fn.0/ D a, f 0n.0/ > 0. Then,

fn� f locally in D if and only if Gn ! G with respect to a; (2.2)

where f and G are defined as follows: if G D ¹aº then f is the constant function, so
that f .z/ D a for all z; while in the case that G ¤ ¹aº, so that the domain G must
be simply connected and G ¤ C, the function f is the conformal map from D onto
G with the normalization f .0/ D a and f 0.0/ > 0.

Moreover, in the case that G is a simply connected domain and Gn ! G with
respect to a, it holds that f �1n � f �1 locally in G.

In the proof of this theorem several important tools of the theory of conformal
maps are used, let us notice, for instance Hurwitz’s and Montel’s theorems, Koebe’s
distortion theorem, etc. The proof of Carathéodory kernel convergence theorem may
be found in many sources, see for example [61, page 54] or [104, page 14].
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Let now .Gn/ be a sequence of domains which converges to a Jordan domain G
in the sense of kernel convergence with respect to some point a. In this case, Walsh
(see [129,130] as well as [134, pages 32–34]) was able to obtain a more strong result.
Notice that this theorem is of high importance, but nowadays it seems to be almost
forgotten and did not appear in the mathematical literature during many decades.

Theorem 2.10. Let G be a Jordan domain, a 2 G and let .Gn/ be a sequence of
simply connected domains satisfying xG � Gn such that GnC1 � Gn for all n and
Gn! G with respect to a. Let  n be the conformal map from Gn onto G normalized
by the conditions  n.a/ D a and  0n.a/ > 0. Then,  n.z/� z on xG.

It is not clear, whether it is possible to extend this theorem for more wide class of
domains. The next question looks quite reasonable.

Question I. Will the statement of Theorem 2.10 hold in the case that G is a Carathé-
odory domain with accessible boundary, that is @G D @aG?

2.2 Carathéodory domains and conformal maps

The reason that Carathéodory paid attention to the domains which nowadays are
called by his name is shown in the next result. As far as we know, the paper [20]
contains the first occurrence of the cornucopia (see, for instance, the domain G1 in
Figure 2), in the mathematical literature.

Theorem 2.11. Let G ¤ ; be a bounded simply connected domain. Then, G is a
Carathéodory domain if and only if there exists a sequence .�n/ of Jordan curves
such that

�n � �1. xG/; D.�nC1/ � D.�n/

for each n, and D.�n/! G as n!1 with respect to any fixed point a 2 G. This
equivalence does not depend on the choice of a.

If G is a Carathéodory domain, let gn be the conformal map from D.�n/ onto
D with the normalization gn.a/ D 0 and g0n.a/ > 0, and let g be the conformal map
from G onto D with the same normalization. Then, gn� g locally in G as n!1.
In fact,

xG � W WD

1\
nD1

D.�n/; (2.3)

but it can happen that xG ¤ W .

Proof. Let us take a nonempty bounded simply connected domain G satisfying all
conditions of the theorem. In order to prove that G is a Carathéodory domain, let
us take an arbitrary point w 2 @G. By condition (1b) of Definition 2.8 there exist a
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sequence of points .wn/ such that wn 2 @D.�n/ D �n � �1. xG/, and wn ! w as
n!1. Also there exists another sequence .w0n/ such that w0n 2 G � C n G1. xG/
and w0n ! w as n!1. So, w 2 @�1. xG/. Since G is simply connected, then G is
a Carathéodory domain by definition.

Assume now that G is a Carathéodory domain. The domain G01 D �1. xG/ [

¹1º is simply connected in C1. So, one can take a conformal map h from D ontoG01
with the normalization h.0/D1. Let us now define �n WD h.¹t W jt j D n=.nC 1/º/.
Then, each �n is a Jordan curve such that xG �D.�nC1/ �D.�n/. Since .D.�n// is
a decreasing sequence of domains it converges to the component of

T1
nD1D.�n/ that

contains a, which is G. The remaining conclusions follow from Theorem 2.9.

Let now G be a Carathéodory domain, and let f be some conformal map from D
ontoG. Take a point w 2 @G. According to [104, Proposition 2.14] one has w 2 @aG
if and only if there exists a curve  W Œ0; 1�! xD having the properties .s/ 2 D for
s 2 Œ0; 1/ and .1/ D t for some t 2 @D, such that lims!1� f ..s// D w. Moreover,
it follows that t 2 F.f / and f .t/ D w.

Proposition‘ 2.12. Let G be a Carathéodory domain, and w 2 @aG. Then, there
exists a unique point t 2 F.f / such that f .t/ D w.

Proof. The existence of two points t and t 0 ¤ t such that '.t/ D '.t 0/ D w would
imply that the point w is accessible from both sides of G. But Proposition 1.14 says
that the boundary of the (Carathéodory domain) G does not have points which are
accessible points from both sides of G.

Corollary‘ 2.13. Let G be a Carathéodory domain. Then, @G is locally connected
if and only if @G is a Jordan curve. In particular, if @G is rectifiable then @G is a
Jordan curve.

Proof. Assume that @G is locally connected and take a conformal map f from D
onto G. By Theorem 2.5, f has a continuous extension to xD. Let f1W @D ! @G be
the restriction of such extension. By Proposition 2.12, f1 is injective, and since it is
defined in a compact set, then f1 is a homeomorphism from @D onto @G, so that @G
is a Jordan curve. The second assertion is a consequence of the general fact that a
continuum with finite length is locally connected.

A Carathéodory domain may have prime ends of all four kinds, as it can be seen
at Figure 4, where the domain G1 gives the desired example.

The class of non-degenerate continua E possessing the property that there exists
a bounded univalent function f in D and a point � 2 T such that C.f; �/ D E, was
studied and characterized in details, see for instance, [30, Proposition 5]. Next result
establishes some restriction to the size of C.f; �/ when f is the Riemann map onto
some Carathéodory domain.
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Figure 4. The Carathéodory domain G1 has prime ends of all four kinds.

Proposition‘ 2.14. The following properties are satisfied.

(1) If G is a Carathéodory domain and f is a conformal map from D onto G,
then the set C.f; �/ is a Carathéodory continuum for each point � 2 @D.

(2) Conversely, if K is a Carathéodory continuum, then there exists a Carathéo-
dory domainG and a conformal map f WD!G such that f has a continuous
extension to xD n ¹1º and C.f; 1/ D ….f; 1/ D @K.

Proof. (1) Fix a point � 2 @D and let z 2K WD C.f; �/. SinceK � @G D @G1, then
there exists a sequence .zn/ such that zn 2 G1 for all n, and z D limn!1 zn. Each
point zn can be joined to1 by an infinite polygonal line L such that L � C n G �
C nK, so zn 2 �1.K/. Therefore, @K D K � @�1.K/ � K.

(2) Let K be such that @�1.K/ D @K, then �0 D �1.K/ [ ¹1º is a simply
connected domain in C1. Let hWD ! �0 be a conformal map such that h.0/ D 1.
Going further let us take an open ribbon S �D which spirals to T and such that 0… xS .
Let  WD ! S be a conformal map such that C. ; 1/ D …. ; 1/ D T . Then, G D
h ı  .D/ is the desired domain. In fact, it is clear that f D h ı  has a continuous
extension to xD n ¹1º. Moreover, take w 2 @a�0 � @K, and let E be an end-cut ending
at w. Then, h�1.E/ is an end-cut that ends at some point of @G. Then, h�1.E/ cuts
infinitely many points of S and of D n S . Then, w 2 @G1 \ @G. This situation holds
for each point of a dense set, then @K � @G1 \ @G. Thus,

@G1 D .@G \�
0/ [ @K � @G [ @K;

which means that G is a Carathéodory domain.
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Let us recall that a continuum K is said to be indecomposable if it cannot be
written in the form K D M [ N , where M and N are proper subcontinua of K
(for more information about this notion see [78, Chapter V]) and [68, Section 3.8].
A Carathéodory continuum can be indecomposable. One of the simplest example
of such continua is the Knaster buckethandle, see [78, Example 1, page 204]. Let us
denote this continuum byKb . Applying Proposition 2.14 we can see that there exists a
Carathédory domainG and a conformal map f WD!G such that f has a continuous
extension to xD n ¹1º and ….f; 1/ D C.f; 1/ D Kb is an indecomposable continuum.
A related example is given in [29, Proposition 4] but therein the set ….f; 1/ is a
singleton, C.f; 1/ D @G and @G is an indecomposable continuum however G is not
Carathéodory domain. Thus, to obtain a more involved example it is necessary to have
some free space between G and �1. xG/. This can be done using the construction of
the Lakes of Wada, see [68, Section 3.8]. We need to make some modification of this
construction for further considerations.

Example 2.15. Consider the compact set

X0 D

²
z W �2 6 Re z 6 4; jImzj 6

3

2

³��
D
�
� 1;

1

2

�
[D

�
1;
1

2

�
[D

�
3;
1

2

��
:

To preserve the poetic flavor of the original example, we will imagine that X0 is
an island in the ocean and the small discs are three lakes, the first one having blue
water, the second one green, while the third one red. Let us dig a system of canals
in X0 following the next procedure. For k 2 N define the system of time moments
tk D .k � 1/=k, and the sequence of distances dk D 1=k, so that tk ! 1 and dk ! 0

as k !1. Let V1 be the canal (considering as an open set) that brings water from
the ocean to every point of the land within distance d1 of every point of X0, and let
X1 D X0 n V1. At the time moment t2 let V2 be the canal that brings water from the
blue lake to every dry point within distance d2 of every point of X1. The first steps
of this construction is illustrated by Figure 5. For time moments t3 and t4 let us do
the same, but using water from the green lake and from the red lake, respectively.
Thereafter let us repeat this cycle of construction of canals infinitely many times until
we arrive to the time t D 1. It is possible to make this construction in such a way
that the entrances to the canals in the blue lake are two sequence of open intervals
on @D.�1; 1

2
/ which are mutually disjoint and accumulate only at the points �1

2
and

�
3
2

. Then, take Wblue, a simply connected domain formed by the blue lake together
all canals with blue water, and put X WD @Wblue.

Let us accent some properties of the domain Wblue constructed in Example 2.15.
Denote byWgreen the union of the green lake with all of the canals starting therein and
by Wred the respective union for the corresponding red lake, then Wgreen and Wred are
simply connected bounded components of the set C nWblue. The construction of the
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�
3
2 �

1
2

Figure 5. The first steps of the construction of the compact set X D @Wblue.

canals from the ocean implies that

@Wblue D @Wgreen D @Wred D @�1.Wblue/;

which yields that Wblue is a Carathéodory domain. Furthermore, @Wblue is a indecom-
posable continuum. If f is a conformal map from D ontoWblue, then f is continuous
on xD except two points, says �1 and �2, where C.f; �1/D C.f; �2/D X D @Wgreen D

@Wred, while C.f; �/ � X for all � 2 T .
By a suitable modification of the construction given in Example 2.15 it is possible

to obtain a Carathéodory domain G D f .D/, for a conformal mapping f such that
the (closed) set T .f / D ¹� 2 T W C.f; �/ D @Gº is infinite. By a certain theorem
by Rutt (see more details in [29]) in the case that the set T .f / is not empty, the set
@G is an indecomposable continuum, or the union of two indecomposable continua.
Moreover, if @G is indecomposable, then T .f /¤ ;. We do not know how big the set
T .f /may be for a Carathéodory domain in a general situation. We do not even know
the answer to the following question.

Question II. Whether there exists a Carathéodory domain for which the set of prime
ends of the first kind would be empty (so that the respective conformal map f cannot
be continuously extended to any point of T )?

The usual example of a domain of such kind (see, for example, [32, page 184]) is
clearly not a Carathéodory domain.

Examples of this kind should not surprise the reader, since they are quite natural
in a certain sense. To see this we need to use some results from plane topology.

Definition 2.16. One says that a set E � C possesses the non-separation property if
for each closed subset F � E, such that F ¤ E, the set E{ [ F is connected, that is
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the set E n F does not separate the plane. Otherwise, one says that E possesses the
separation property.

Every Jordan curve possesses the non-separation property, but is it possible to
assert the converse? This question was an open problem for some time at the begin-
ning of the XX century. Its solution allows us to state the following result related with
Carathéodory domain, which needs to be compared with [39, Proposition 10].

Theorem‘ 2.17. Let K be a Carathéodory compact set. Then, one of the two follow-
ing mutually exclusive conditions is fulfilled:

(1) K possesses the separation property;

(2) K D @G for each component G of C nK.

Moreover, if C n K contains only two components, then K is a Jordan curve,
while in the case that C n K contains at least three components, the set K is an
indecomposable continuum or the union of two indecomposable continua.

Proof. If Kı ¤ ;, then the condition (1) holds for such K. Therefore, let us consider
the compact setsK possessing the non-separation property and having empty interior.
If the set C nK has only one component, then K D @�1.K/. Assume now that the
set C nK has a bounded component. Then, @G � K. If K ¤ @G, then @G separates
the plane, and hence K D @G.

To show that the conditions (1) and (2) are exclusive let us assume that the com-
pact setK satisfy (2) and let F be some closed subset ofK, different ofK. Then, the
set

K{
[ F D

[
G

G [ F;

where G runs over all components of the set C nK, is connected because G � G [
F � xG and both setsG and xG are connected. So,K does not satisfy the condition (1).

Assume now that K{ D G [�1.K/, where G is simply connected domain. If
the set @G DK is not locally connected then there exists a sequence .Fn/ of mutually
disjoint closed sets with Fn �K, and a closed set F �K, F ¤K, such that Fn! F

in the Hausdorff metric. Then,

K n F D K and K{
[ F D .G [ F / [�1.K/

with .G [ F / \�1.K/ D ;. Then, K possesses the separation property, which is
impossible. Therefore, @G is locally connected, which yields, according to Corol-
lary 2.13, that @K is a simple closed curve.

In the case that there exist three components of the set C nK, or more, than its
common boundary is K and we need to refer the theorem stated in [78, page 590] in
order to finish the proof.
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Let E � D be an end-cut ending at some point � 2 T , and let f 2 C.D/. The
cluster set CE.f; �/ of f following E is defined as follows:

CE.f; �/ D

1\
nD1

f

�²
z 2 E W jz � �j <

1

n

³�
:

This set does not depend on the choice of the initial point of E , so we can always
assume that the initial point of E is the origin. It is easy to prove, and it is well-known
(see, for instance, [32, Theorems 4.6 and 4.7]) that C.f; �/ D CE.f; �/ for some E .
Moreover, by definition ….f; �/ D CŒ0;��.f; �/.

The following result was communicated to us by Ch. Pommerenke.

Proposition‘ 2.18. Let G be a Carathéodory domain, and let f be a conformal
map from D onto G. Assume that there exist two points, say �1 and �2, in T such that
�1 ¤ �2 and for each j D 1; 2 there is an end-cut Ej in D ending at �j and possessing
the property

CE1.f; �1/ [ CE2.f; �2/ � E;

for some continuumE � @G. Then, for one of the open arcs� of T n ¹�1; �2º one has

I.f; �/ � E (2.4)

for each point � 2 � .

Proof. We may assume that E1 \ E2 D ¹0º. Take F D f .E1/[ f .E2/[E. Then, F
is a continuum that separates the plane. Let V be the bounded component of F { such
that f .E1/[ f .E2/� xV . Let U �D be the domain whose boundary is E1 [ E2 [ x� ,
where � is one the arc of T n ¹�1; �2º chosen in such a way that f .U / � V .

Let us now assume that (2.4) is false. Take a point �0 2� and a sequence .zn/ such
that zn 2 U and zn! �0 as n!1 such that the sequence .f .zn// converges as n!
1 to some point w 2 . xV nE/\ @G. So, there exists a closed discD.w; r/� V such
thatD.w; r/\F D;. Then, take a point ˛ … xG \D.w; r/. SinceG is Carathéodory,
there exists an infinite polygonal line L � C n xG that starts at ˛ and goes to1. But
therefore

L � V [ .C n xV /; L \ V ¤ ;; L \ .C n xG/ ¤ ;:

which gives a contradiction since L is connected.

In the case that I.f; �1/ \ I.f; �2/ ¤ ; we can take as a candidate for E in the
previous proposition the continuum I.f; �1/[ I.f; �2/. For example, for the domains
G1 andG2 in Figure 4 one can take asE the segments ŒA;B� and ŒC;D�, respectively.

Under the assumptions of Proposition 1.15 it is possible to say more about the
cluster set in the special point.
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Proposition‘ 2.19. Let G be a Carathéodory domain, and f be a conformal map
from D onto G. Assume that B is a bounded component of C n xG such that @aG \
@B D ¹wº. Let � 2 T be such that f .�/ D w. Then, @B � I.f; �/.

Proof. For simplicity let us assume that � D 1, so that f has the radial limit w at 1.
For r 2 .0; 1/ let `.r/ stands for the length of the set f .¹z 2 D W jz � 1j D rº/. One
of key points in the theory of conformal maps is the fact thatZ 1

0

`.r/2

r
dr < C1;

see [104, Proposition 2.2]. Then, there exists a sequences of cross-cuts Cn D f .¹z 2

D W jz � 1j D rnº/ such that `.rn/ ! 0 as n ! 1. Each cross-cut Cn joins some
point ˛n 2 @G with another point ˇn 2 @G, cuts the image f .Œ0; 1�/ in one point,
and, finally, Cn tends to ¹wº. For each n take "n such that�

D.˛n; "n/ [D.ˇn; "n/
�
\ @B D ;;

and "n ! 0 as n!1. Going further we cover @B by a finite sequence of closed
discs of radius "n in such a way that centers of these disks belong to G1. We can
joint the centers of the constructed disks by polygonal lines in order to obtain a new
polygonal line Ln � G1 such that Ln \D.˛n; "n/ ¤ ; and Ln \D.ˇn; "n/ ¤ ;,
and the compact set Ln [D.˛n; "n/ [D.ˇn; "n/ [ Cn separates the plane into two
components. Denote byWn the corresponding bounded component. This process can
be done in such a way, that, moreover,WnC1 �Wn. Then, f .¹z 2D W jz � 1j< rnº/�
Wn. Taking into account the fact @B � C.f /, we conclude that

@B � f .¹z 2 D W jz � 1j < rnº/

for each rn. So, @B � I.f; 1/.

In general, in the above proposition the set I.f; �/ is much bigger than @B .
The next example is new, but it is based on ideas of [26, Example 2]. This example

shows that in the framework of hypotheses of Proposition 2.19 it can happen that
@aG \ @B D ¹wº, but @aG \ @aB D ;, and B has different impressions of inaccess-
ible points from B .

Example 2.20. Take Q D ¹z W 0 6 Im z < �; 0 < Re z < 2º and let I1; I2; : : : be a
sequence of intervals

In D Œian; ibn�; a1 D 2; an < bn < anC1 < �; lim
n!1

an D �:

Let J1; J2; : : : be a sequence of intervals

Jn D Œia
0
n; ib

0
n�; b01 D 1; a0n < b

0
n; b0nC1 < a

0
n; lim

n!1
a0n D 0:
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Let, for each n > 1,

An D ¹z W Im z 2 In; 0 6 Re z 6 1º; zn D
1

nC 2
C i

anC1 C bn

2
;

Bn D ¹z W �1 < Re z < 0; Im z 2 .ia0n; ib
0
n/º; z0n D �

n

nC 1
C i

a0n C b
0
n

2
;

zQ D

�
¹z 2 Q W Im z > Re zº

� 1[
nD1

An

�
[

1[
nD1

Bn;

F D @ zQ n ..0; 2C 2i� [ Œ2C 2i; 2C �i� [ .1C �i; 2C �i�/:

Let now L1; L2; : : : be a sequence of mutually disjoint closed intervals over the seg-
ment ²

z W 0 < Re z <
3

2
; Im z D Re z

³
such that Ln ! 0.

Let S1 � zQ be narrow enough closed ribbon starting at L1, entering in B1 until
the point z01 2 S1, continuing thereafter and finishing at z1, always without crossing
the line ¹z W Im z D a2º. Assume that S1; S2; : : : ; Sn are already constructed. Then,
SnC1 � zQ is a narrow enough closed ribbon starting on LnC1 with the following
properties:

(i) z0nC1 2 SnC1;

(ii) SnC1 is always in the left-hand side of Sn. In particular, SnC1 \ Sj D ; for
each j 6 n;

(iii) SnC1 ends at the point z0nC1 without crossing the line ¹z W Im z D anC2º.

(iv) dH .@SnC1; F / < min¹1=n; dH .@Sn; F /º, where dH is the Hausdorff dis-
tance.

This process can be continued indefinitely. Then, take

WC D Int

 
1[
nD1

Sn [ ¹z 2 Q W Re z > Im zº

!
:

Define, finally,G D exp.WC [W� [ .0; 2//, whereW� denotes the reflection ofWC
over the real axes. Now, the pointwD 1 is an accessible point fromG and C n xG DB
is a bounded component from which Œb; a/ and .c; 1� are inaccessible from B .

In Figure 6 the third step of the construction of WC was shown.
Figure 7 shows the domain G and the component B , this picture can help the

reader to get a better understanding of the constructed domain.

Let now g map a given domain G conformally onto D. The question whether
g has a continuous extension to xG, or not, is also very interesting and important,
however it usually not included in textbooks and courses on conformal maps.
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Figure 6. The third step of the construction of WC.

Definition 2.21. LetG be a simply connected domain, and let f be a conformal map
from D onto G. A point w 2 @G is said to be simple in the sense of Carathéodory if
the set ¹� 2 T W w 2 C.f; �/º is a singleton.

The concept of a simple point in the sense of Carathéodory is independent of
the choice of f . For the domain G1, see Figure 4, all points in the arc ŒA; B/ are
not simple in the sense of Carathéodory, while all other points in @G1 are simple
in this sense. To avoid confusion with other uses of the term “simple point” (see,
for example, [115, Chapter 14]), we decide to use the term “simple in the sense of
Carathéodory”.

The next result was obtained in [44], it gives the criterion for continuity of g.
However, this characterization is not completely topological. A proof can be found
in [85].

Proposition 2.22. Let G be a bounded simply connected domain and let g map G
conformally onto D. A continuous extension QgW xG ! xD of g exists if and only if each
point w 2 @G is a simple point in the sense of Carathéodory.

In other words, the existence of a continuous extension of g is equivalent to the
statement that distinct prime ends have disjoint impressions. Figure 1 can help to
better understanding the previous result since there exists a continuous extension of
g for G1, but not for G2.
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b a D �1 c 1
B G

Figure 7. Inaccessible points from the bounded component B .

Proof. For the proof of necessity let us assume that some point w 2 @G is not simple.
Then, w 2 C.f; �1/ \ C.f; �2/, where f D g�1 and �1 and �2 ¤ �1 are two points
in T . One can find two sequences, say .zn/ and .z0n/, such that zn ! �1, z0n ! �2,
while f .zn/! w and f .z0n/! w. In this case, the continuity of Qg would imply that
Qg.w/ D lim zn D �1 and Qg.w/ D lim z0n D �2 which is a contradiction.

The proof of sufficiency. Let us define Qg.w/D �, where � 2 T is the unique point
such that w 2 C.f; �/ in the case that w 2 @G, while Qg.w/ D g.w/ for w 2 G. The
continuity property of Qg is not difficult, but some arguments from the theory of cluster
sets are needed for the proof.

Furthermore, in [44] Farrell proved the following result, which is related to the
theorem about kernel convergence.

Theorem 2.23. LetG be a Carathéodory domain such that each point in @G is simple
in the sense of Carathéodory. Let z0 2 G and let .Gn/ be a sequence of bounded
simply connected domains, such that

xG � GnC1 � Gn;

for n > 1, and Gn ! G with respect to z0. For n > 1, let gn be the conformal map
from Gn to D such that gn.z0/ D 0 and g0n.z0/ > 0. Denote by Qg the extension of the
conformal map from G onto D to xG with Qg.z0/ D 0 and Qg0.z0/ > 0.

Then, gn� Qg on xG.

Assume now thatG is a Carathéodory domain, z0 2G and let f be the conformal
map from D onto G with the normalization f .0/ D z0 and f 0.0/ > 0. Furthermore,
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let f �1WG! D be the corresponding inverse map. The next result is a refinement of
[26, Theorem 1].

Theorem‘ 2.24. Let G be a Carathéodory domain and let .Jn/ be a sequence of
Jordan curves such that D.Jn/! G with respect to some point z0 2 G and xG �
D.Jn/,D.Jn/�D.Jn�1/ for each n > 1. Let fnW xD!D.Jn/ be the extension of the
respective conformal map with the normalization fn.0/D z0 and f 0n.0/ > 0 inherited
from f . Then, the following hold.

(1) If E is an end-cut in G, then f �1n converges uniformly on E to f �1, in par-
ticular, f �1n .z/! f �1.z/ for each point z 2 @aG;

(2) If W is a bounded component of C n xG, then jf �1n j ! 1 uniformly on xW .
However, in general it is not true that f �1n converges to some constant on xW .

Since the proof of this theorem is essentially the same as the respective proof
in [26], we present here only its sketch which highlights the keynote steps.

Sketch of the proof of Theorem 2.24. Without loss of generality we may also assume
that E starts at the point z0. Let now b0 2 @aG be the end point of E . Put % WD f �1.E/
so that % is an arc in D [ ¹�0º, where �0 D f �1.b0/, passing from 0 to �0.

For each m 2 N we consider a point bm 2 Jm which is a nearest point to b0. For
eachm > 1 we put Em WD E [ Œb0; bm� and %m WD f �1m .Em/. Let �m D f �1m .bm/ and
note, that each %m D f �1m .E/ [ f �1m .Œb0; bm�/ is the union of two consecutive arcs
in D [ ¹�mº. It is clear, that the sequence .%m/ accumulates to some subset ƒ of xD.
It means that ƒ is the set of all points w 2 xD such that there exists a sequence .wmj /
of points such that wmj 2 %mj and wmj ! w as j !1.

The set ƒ possesses some special properties. Namely, one has

(i) ƒ is a continuum;

(ii) ƒ � % [ T ;

(iii) % � ƒ;

(iv) The set ƒ \ T is connected.

Therefore, ƒ D %[  , where  is some closed subarc of T . In order to prove the
first assertion we need to show that ƒ D % or, in other words, that  D ¹�0º.

Let w0m be a nearest point of the set %m to t0 and let %0m be the subcontinuum
f �1m .E 0m/, where E 0m is the segment Œfm.w0m/; bm� in the case when fm.w0m/ … E , or
the set E 00m [ Œb0; bm� otherwise, where E 00m is the subarc of E that joints the points
fm.w

0
m/ and b0.

We have that fm.w0m/ ! b0 as m ! 1 and therefore diam.fm.%0m// ! 0 as
m!1.

Notice that %0m is either an arc or the union of two consecutive arcs. Then, apply-
ing [103, Theorem 9.2] to %0m, or to each of the arcs that form %0m, we conclude,
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that diam.%0m/! 0 as m!1, which means, that �m ! �0 as m!1 and hence,
 D ¹�0º.

We are going to prove the assertion of the part (2). Assume that jf �1n j does not
converge uniformly to 1 on xW . Then, there exist a sequence .zk/ in W and a sub-
sequence .f �1nk / such that jf �1nk .zk/j 6 r < 1 for all k. Let wk WD f �1nk .zk/. Taking a
subsequence of .wk/ if it is necessary we may assume that wk ! w0, jw0j 6 r < 1.
Since fnk converge uniformly on the compact set

S1
kD0¹wkº to f we have

f .w0/ D lim
k!1

fnk .wk/ 2
xW :

But f .w0/ 2 G and xW \G D ;, so that we arrive to a contradiction.
For the last assertion we must consider Example 2.15, where Wgreen [ Wred �

D.Jn/. Then, the sequence .f �1n / has two accumulation points, say �1 and �2 with the
notation in the aforementioned example. To prove this some arguments are needed.
However, we omit them, because we believe that this help will be enough for the
reader.

Corollary‘ 2.25. LetG be a Carathédory domain. Then, f and g can be extended to
Borel measurable functions (denoted also by f and g) on D [ F.f / and G [ @aG,
respectively, and such that

g.f .�// D � for all � 2 F.f /;

f .g.�// D � for all � 2 @aG:

The domain G2 in Figure 4, which is not a Jordan domain, has the property
@aG2 D @G2. For such domains one has the following corollary.

Corollary‘ 2.26. Let G be a Carathéodory domain such that @aG D @G, and let f
be some conformal map from D onto G. Then, f �1 can be extended to xG and this
extension belongs to the first Baire class on xG.

Notice, that this corollary generalizes the Carathéodory extension theorem to the
case that the domain under consideration is a Carathéodory domain with accessible
boundary. It is clear, that this class of domain is substantially wider than the class of
Jordan domain.


