
Chapter 3

Uniform and pointwise approximation on Carathéodory
sets

3.1 Uniform approximation by polynomials

Problems on approximation of analytic functions by polynomials and rational func-
tions were always of special importance during the development of contemporary
analysis, but they have attracted special attention after the classical results about
approximation in the complex domain obtained by Weierstrass and Runge at the end
of 19th century. Let us recall, that Weierstrass proved that any continuous function
defined on Œ0; 1� may be uniformly approximated on this segment by a sequence of
polynomials. The Runge’s theorem is as follows.

Theorem 3.1. Let K � C be a compact set, and let E � C1 n K be a set which
contains, at least, one point of each component of C1 n K. If f 2 H.K/, then for
every "> 0 there exists a rational functionR with poles onE such that kf �RkK<".

This theorem was published in 1885, [116], the same year as the aforesaid result
by Weierstrass. There are several proofs of Runge’s theorem, see, for instance, [118,
pages 171–177] for the proof which is close to the original one. See also [115, Chapter
13] for the proof using certain functional analysis methods, and [33, Chapter VIII] for
a more direct and elementary proof.

The following properties follow directly from Runge’s theorem. Let� be an open
set in C, letE be a set which contains one point of each component of C1 n�. Then,
for every function f 2H.�/ one can find a sequence .Rn/ of rational functions with
poles lying only in E, such that Rn � f locally in �. In the special case when the
set C1 n� is connected (note that this means that � is a simply connected set, but
not necessarily a connected one), one can take E D ¹1º and a sequence .Kn/ of
compact subsets of � such that

S1
nD1Kn D �, and thus obtain a sequence .Pn/ of

polynomials such that Pn � f locally in �. Let us observe that the set C1 n �
may have uncountably many components: for instance one can consider� D C nK,
where K � Œ0; 1� is the linear 1=3-Cantor set.

Note that the condition that the set C1 n� is connected cannot be relaxed in the
latter statement. Namely, one has the following theorem.

Theorem 3.2. Let U �C be an open set, and assume that for every f 2H.U / there
exists a sequence .Pn/ of polynomials such that Pn � f locally in U . Then, the set
C1 n U is connected.
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Indeed, assume that the set C1 n U is not connected, then C1 n U D K [ Y ,
where K is a compact subset of C, Y is closed set,1 2 Y , and K \ Y D ;. By the
separation theorem, see [136, page 108], there exists a Jordan curve J � U such that
K � D.J /. Let a 2 K, then the function h.z/ D 1=.z � a/ cannot be approximated
by a sequence of polynomials uniformly on J . Indeed, let C D sup¹jz � aj W z 2 J º
and � D 1=.2C /. If there exists P 2 P such that kh � P kJ < �, then the inequality

j1 � p.z/.z � a/j < �jz � aj 6
1

2

holds for all z 2 J . Therefore, by the maximum modulus principle, this inequality
also holds for z D a, but this is a contradiction.

For further considerations we need to introduce several algebras of functions. Let
K � C be a compact set. Denote by P.K/ the algebra of all functions which can be
approximated uniformly on K by polynomials, so that P.K/ is the closure in C.K/
of the subspace P jK . Next, let R.K/ be the algebra consisting of all functions which
can be approximated uniformly on K by rational functions with poles lying outside
K. Furthermore, we put A.K/ D C.K/ \H.Kı/. It is clear that

P.K/ � R.K/ � A.K/ � C.K/: (3.1)

All aforesaid algebras A.�/, R.�/ and P.�/ may be defined in the same way for any
closed subset of C1.

It can be readily verified that P.xD/DA.xD/ andR.T /D C.T /. Furthermore, the
equality P.K/ D C.K/ implies that the set C n K is connected, while the Runge’s
theorem says that P.K/ D R.K/ whenever the set C nK is connected.

The question on for which compact sets K the approximation property P.K/ D
A.K/ is satisfied is quite natural. The investigation of this question was started in the
1920s by J. L. Walsh, who dealt with two important cases when K is the closure of
a generic Jordan domain, and when K is a closed arc. In [129–131] Walsh proved
several results, and his most general statement in this topic is as follows (for proofs
and further details see [134, Chapter II]).

Theorem 3.3. Let Y � C1 be a closed set such that @Y is a finite union of Jordan
curves or closed arcs, no two of which have more than finitely many common points.
Then, A.Y / D R.Y /. More precisely, let E � C1 n Y be a set that contains at least
one point of each component of C1 n Y . Then, for every f 2 A.Y / there exists a
sequence .Fn/ of rational functions with poles lying outside E such that Fn� f on
Y .

Let us comment how this result was proved in a particular case. If Y D xG for
some Jordan domain G, the proof runs as follows. Take a function f 2 A.Y / and
a sequence .Gn/ of Jordan domains such that Gn ! G. Let  n be conformal map
fromGn ontoG as it was considered in Theorem 2.10. Then, each function f ı n is
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holomorphic in some neighborhood of Y (each function in its own one). Next, given
an arbitrary " > 0 Runge’s theorem implies that there exists a polynomial Pn such
that jf . n.z// � Pn.z/j < "=2 for all z 2 Y . Finally, the fact that  n.z/� z on Y
and the uniform continuity of f on Y yield that jf . n.z//� f .z/j < "=2 for z 2 Y .

The topological conditions imposed in Theorem 3.3 turned out to be not essential,
since the following result was established in 1931 by F. Hartogs and A. Rosenthal,
see [62]. If K � C is a compact set such that Area.K/ D 0, then R.K/ D C.K/.
What about compact sets X with empty interior for which R.X/ ¤ C.X/? Let us
recall that the first example of such kind was constructed by A. Roth [110, page
97]. It was a compact set of the form X D xD n

S
n>1Dn, where each Dn b D is

some appropriately chosen open disk. The principal idea underlying Roth’s example
construction turned out to be crucial for a number of further constructions of examples
of the failure of approximation. Let us note the construction of this kind given in
[56, page 26]. In view of the shape of this compact set X , all such examples are
called nowadays a “Swiss cheeses” or “Champagne bubbles”.

Later on Walsh encouraged his student O. J. Farrell to study the problem of poly-
nomial approximation to a function f holomorphic in a domainG but not necessarily
continuous in xG (but assuming only that f is bounded in G) and gave him some
ideas how to proceed in this case. Farrell in [44] considered the problem on uniform
approximation by polynomials of a conformal map from G onto the unit disk. As far
as we know this is the second paper in the mathematical literature, where the notion
of Carathéodory domain is important.

Theorem 3.4 (Farrell). Let G be a bounded simply connected domain in C, and let
g map G conformally onto D. Then, g has a continuous extension Qg to xG and Qg may
be approximated by polynomials uniformly on xG if and only if G is a Carathéodory
domain and all points in @G are simple in the sense of Carathéodory.

Proof. Assume that the desired Qg exists and that it can be approximated by polynomi-
als uniformly on xG. Then, Qg is continuous and Proposition 2.22 implies that all points
in @G are simple. Moreover, j Qg.w/j D 1 for each w 2 @�1. xG/, then jg.w/j < 1 for
w 2 yG \ xG. So, @G D @�1. xG/.

Conversely, fix a point z0 2 G, take a sequence .Gn/ of Jordan domains conver-
ging toG with respect to z0 (see Theorem 2.11) and the corresponding sequence .gn/
of conformal maps from Gn onto D. Since all point in @G are simple, then g has a
continuous extension Qg to xG, and in view of Theorem 2.23 for a given " > 0 there
exists such n that j Qg.z/� gn.z/j< " for all z 2 xG. Since gn 2H.Gn/, it follows from
Runge’s approximation theorem that there exists Pn 2 P such that kPn � gnk xG < ".
Then, k Qg � Pnk xG < 2" as desired.

Furthermore, [44, Theorem IV] may be stated as follows.
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Figure 8. A counterexample to the opposite inclusion in (3.2).

Theorem 3.5. LetG be a Carathéodory domain such that all points in @G are simple
in the sense of Carathéodory, and let f be some conformal map from D ontoG. Then,

P. xG/ � ¹h 2 A. xG/ W h is constant on I. Of .�// for each � 2 Tº: (3.2)

Proof. Denote by B the set in the right-hand side of (3.2) and take h 2 B . Put F D
h ı f . Then, F has a continuous extension zF to xD because h is constant in each set
C.f; �/, � 2 T . Then, zF 2 A.xD/. Given " > 0 let P 2 P be such that k zF �P kxD < ".
Let g D f �1, and let Qg be the continuous extension of g to xG. Put z D Qg.w/ for
w 2 xG. Then,

jh.w/ � P. Qg.w//j D j zF .z/ � P.z/j < "

for each w 2 xG. Since Qg 2 P. xG/, then P ı Qg 2 P. xG/. So, h 2 P. xG/.

The opposite inclusion in (3.2) is not true in the general case. To construct a direct
example, let us consider a sequence

1 > a1 > b1 > a2 > b2 > � � � an > bn > anC1 > � � � > 0

such that an ! 0, and define the domain G, see Figure 8, in such a way that

xG D xD

� 1[
nD1

²
z D reit W

1

n
< r 6 1; t 2 .bn; an/

³
:

It is clear that the constructed domain G is a Carathéodory domain. The function
h.z/ D

p
1 � z, defined on xG, belongs to P. xG/, but it is not constant in Œ0; 1� which

is the impression of some prime end.

Remark‘ 3.6. The set of the right-hand side of (3.2) seems to be very small in the
case that f is not continuous on xD. It looks quite plausible that this set is equal to the
set of functions F ı f �1, where F 2 A.xD/.
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The following two theorems obtained by Lavrentiev [79] and Keldysh [72], re-
spectively, turned out to be important milestones on the way of studying the problem
of polynomial approximation on compact sets in the complex plane. In what follows
they will be called Lavrentiev’s theorem and Keldysh’s theorem, respectively.

Theorem 3.7. Let K � C be a compact set. Then, P.K/ D C.K/ if and only if
Kı D ; and C nK is connected.

Theorem 3.8. Let G � C be a bounded domain. Then, P. xG/ D A. xG/ if and only if
the set C n xG is connected.

Finally, the problem on characterization of such compact sets K � C for which
it holds P.K/ D A.K/ was completely solved by S. N. Mergelyan in 1952, see [90].
The following theorem summarize several Mergelyan’s statements, it will be called
Mergelyan’s theorem in what follows.

Theorem 3.9. Let K � C be a compact set.

(1) P.K/ D A.K/ if and only if the set C nK is connected.

(2) If C nK has finitely many components, then A.K/ D R.K/.

(3) Assume that there exists a decreasing sequence .ın/ with ın ! 0 such that
for each point b 2 @K there exist an arc 
n � D.b; ın/ \K{ and a number
rn > 0 such that diam.
n/ > rn. Let f 2 A.K/ and let !.f; �/ denotes its
modulus of continuity. If

lim inf
n!1

!.f; ın/

�
ın

rn

�2
D 0; (3.3)

then for every " > 0 there exist F 2 R with ¹F º1 � K{ such that

kf � F kK < ":

Notice that the part (3) of Mergelyan’s theorem yields that R.K/ D A.K/ when-
ever all components of C nK have diameter bigger than some given number ı > 0.

Several proofs of Mergelyan’s theorem may be found in the literature, see, for
instance, [115, Chapter 20], [55, Chapter III], [32, Section 8.6], and [134, Appendix
I]. Moreover, in [24] one can find the dual proof of this theorem, due to L. Carleson,
see also [125, Chapter V].

Observe that using the ideas underlying the proof of Runge’s theorem the state-
ment of the part (3) of Theorem 3.9 may be improved in such a way that all poles of F
can be chosen to belong to some prescribed set containing a point of each component
of C1 nK.

Theorem 3.10. Let K be a Carathèodory compact set, then R.K/ D A.K/.
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Proof. For each ı > 0 let a 2 @K D @�1.K/. Then, take a0 2 �1.K/ such that
ja � a0j < ı=2. Then, a0 can be joined to1 by some infinite polygonal line L. The
part of L that contains a0 and ends in the first point, where L exists D.a; ı/ is an arc
with diameter bigger than ı=2. So, for each sequence .ın/ in conditions of part (3)
in Theorem 3.9 one can take rn D ı=2 and hence (3.3) holds for each function f 2
A.K/. Then, R.K/ D A.K/.

Corollary 3.11. Let U be a Carathéodory open set, then R.@U / D C.@U /.

The problem on characterization of those compact sets K for which it holds
R.K/ D A.K/ was solved in 1967 by A. G. Vitushkin in terms of the analytic capa-
city of the setsD.a; r/ nK andD.a; r/ nKı. We are not going to enter this topic, and
we refer to [128] and [56, Chapter VIII] for the corresponding explanation. But one
ought to pay attention to the following thing. For proving his result Vitushkin have
proposed and elaborate the special approach to approximation, which is based on
localization of singularities of the function being approximate, and further approxim-
ation of each localized functions. Using this approach one can obtain another proof of
Theorem 3.10 without using Mergelyan’s theorem. An example of the proof of such
kind (in a different situation of approximation by polyanalytic rational functions) may
be found in [28, Proposition 2.5]. In view of this it would be interesting to obtain the
proof of Theorem 3.10 that avoids both the application of Mergelyan’s theorem and
Vitushkin’s localization technique, at least in the case thatK D xG for a Carathéodory
domain G.

3.2 Uniform harmonic approximation

An investigation of the problem on approximation of continuous functions by har-
monic ones was started by Walsh in the 1920s. For an open set U let Har.U / D
Har.U;R/ be the set of all real harmonic functions on U . Next, for a compact set
K � C we denote by Har.K/ the set of functions ujK , where u 2 Har.V / for some
(depending on u) open set V containing K, and by Har.K/ the closure of Har.K/ in
C.K/. Then, Har.K/ � C.K/ \ Har.Kı/. By definition, a harmonic polynomial is
ReP , where P 2 P. For example the real polynomial x3 � 3xy2 C x2 C 2xy � y2

is harmonic, since it is a real part of z3 C .1 � i/z2. Here, and in the sequel a real
polynomial means a polynomial in two real variables x and y with real coefficients.
A good reference for study of harmonic functions from the point of view of complex
analysis is the book [107].

Let us also recall that a domain G � C is called n-connected, if the set C1 n
G has n components. A domain G is called finitely connected, if it is n-connected
for some integer n > 1. Notice also that if G is a domain in C, while K is some
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component of the set C1 n G and K does not contain 1, then K needs to be a
compact subset of C.

A bit of background about Dirichlet problem and harmonic measure

Let us recall some facts about harmonic functions, harmonic measure and the Dirich-
let problem that we will use in what follows. Let U be a non-empty bounded open set
of C and f W@U ! R[ ¹˙1º be an arbitrary function. Following the traditional ter-
minology we will call such f a boundary function. Let us denote by xUf the set of all
functions h which are superharmonic or identically equal to C1 in each component
ofU with lim infy!x h.y/> f .x/ for all x 2 @U , and which are bounded from below
on U . Furthermore, let xHf be the function defined as follows: xHf D inf¹h W h 2 xUf º.
One says that xHf is the upper solution of the generalized Dirichlet problems in U for
the boundary function f . Next, similarly, one can define the set Uf as the set of
all functions h which are subharmonic or identically equals �1 in each component
of U with lim supy!x h.y/ 6 f .x/ for all x 2 @U , and bounded from above on U .
Using this set we define the function Hf WD sup¹h W h 2 Uf º. Such function Hf is
called the lower solution of the generalized Dirichlet problem in U with the boundary
function f . These definitions, as well as proofs of almost all results mention here in
connection with Dirichlet problem may be found in [67, Chapter 8]. If xHf D Hf

and if both these functions are harmonic on U , then f is called a resolutive bound-
ary function, while the function Hf D xHf D Hf is called the solution of Dirichlet
problem with boundary function f (or, shortly, Dirichlet solution for f ). The corres-
ponding method to obtain a harmonic function from a boundary function f is called
the Perron–Wiener–Brelot method.

Wiener’s theorem says that any function f 2 C.@U / is a resolutive boundary
function. Having this in mind we have the following statement, see [67, Lemma 8.12].

Lemma 3.12. For z 2 U and f 2 C.@U / letLz.f /DHf .z/. Then,Lz is a positive
linear functional on the space C.@U / and there exists a unique Borel probability
measure �z on @U such that for all z 2 U and f 2 C.@U / it holds

Hf .z/ D Lz.f / D

Z
f d�z :

Moreover, we have (see [67, Theorem 8.14]).

Lemma 3.13. If W is a component of U , then the class of Borel subsets of @U of
�z-measure zero is independent of z 2 W .

Now, for z 2U we define the set Fz of all sets having the form .E nN/[ .N nE/

withE � @U andN � B , whereN and B are Borel sets such that �z.B/D 0. Then,
F WD

T
z2@U Fz is a � -algebra containing all Borel subsets of @U , and the measure

�z can be uniquely extended to F .
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Definition 3.14. The measure �z defined above is called the harmonic measure on
@U relative to U and z, and it will be denoted in what follows by !.z; �; U /.

Using Lemma 3.13 and the standard Radon–Nikodym theorem one can see that
for every component W of U the measures !.z1; �; U / and !.z2; �; U / are mutually
absolutely continuous for any points z1; z2 2 W . Moreover, the Radon–Nikodym
derivative h WD d!.z1; �; U /=d!.z2; �; U / satisfies

!.z1; �; U / D h � !.z2; �; U /; and C�1 6 jh.z/j 6 C for a.a. z 2 @W; (3.4)

whereC > 0 is some constant depending on z1, z2,W andU . Furthermore, !.z; �;U /
has no atoms for each z 2 U .

A keynote property of the harmonic measure is the following result.

Theorem 3.15. Let U be a non-empty bounded open set. A boundary function f is
resolutive if and only if it is !.z; �; U /-integrable for some z 2 U . If f is resolutive,
then for all z 2 U it holds

Hf .z/ D

Z
@U

f .�/ d!.z; �; U /:

To study the behavior of Hf .z/ when z ! � 2 @U we need the notion of regular
point. Recall that a point � 2 @U is said to be a regular point, if limz!� Hf .z/D f .�/

for every function f 2 C.@U /. A bounded set U is said to be regular (or Dirichlet)
open set, if every point of @U is a regular one.

There are several sufficient conditions to conclude that a given point is regular,
for example if there is a (half-opened) segment Œa; �/�C nU with � 2 @U . However,
the more useful condition is the following one given by A. Lebesgue.

Theorem 3.16. Let � 2 @U be such a boundary point that there exists a continuum L

(consisting of more than one point) such that L n ¹�º � C n U . Then, � is a regular
point. In particular, if U is a simply connected set, then it is a Dirichlet open set.

The proof of this theorem may be found in [33, Chapter X].
It follows from this theorem that any nonempty bounded open set U � C such

that no component of @U reduces to a singleton is a Dirichlet set. For such open set
U and for a function f 2 C.@U / let us define

Of .z/ D

´
f .z/ if z 2 @U;

Hf .z/ if z 2 U:
(3.5)

Then, Of 2 C. xU/ \ Har.U /. Moreover, for every z 2 U it holds

Of .z/ D

Z
@U

f .�/ d!.z; �; U /: (3.6)

In fact, we have the following corollary.
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Corollary‘ 3.17. Let U be a Carathéodory open set. Then, all points in @U are reg-
ular. So, U is a Dirichlet open set. Moreover, if B is a bounded connected component
of C n U , then !.z; @B;U / D 0 for every z 2 U .

Uniform approximation by harmonic functions

Let us start with one suitable generalization of the fact, that the open connected set U
is simply connected if and only if for every function h 2H.U / there exists a sequence
.Pn/ of polynomials such that Pn� h locally in U . We have

Theorem 3.18. Let G be a finitely connected domain, let Ej , j D 1; : : : ; N , N > 1,
are all bounded components of C nG, and let aj 2 Ej for each j D 1; : : : ;N . Then,
any function u 2 Har.G/ can be uniquely expressed in G in the form

u.z/ D Re h.z/C
NX
jD1

cj log jz � aj j; z 2 G; (3.7)

where h 2 H.G/ and c1; c2; : : : ; cN are real numbers.
Furthermore, let K � C be a compact set, and let G1; G2; : : : be all bounded

components of the set C n K (if exist). Let aj 2 Gj for each j . Then, the set of
functions of the form (3.7), where h runs over R.K/ and cj 2 R, is dense in Har.K/.
In particular, if C n K is connected, then the harmonic polynomials are dense in
Har.K/.

The first part of this theorem is a very classical result, it is known by the name of
Logarithmic Conjugation theorem. However, it is not clear what is the most relevant
reference to it prior to the paper [6], where one can find the history, the direct proof,
and several consequences of this result. It seems that the first occurrence of the afore-
mentioned result in the mathematical literature was in [132], but the assumption that
the domain under consideration has analytic boundary was made therein.

The result of the second part of Theorem 3.18 is not a difficult fact, its detailed
proof may be found in [18, Section 3.4]. Note, that this result can be proved using
duality arguments as follows. Take a real valued measure � onK which is orthogonal
to the functions Re h, h 2 R.K/, and log jz � aj j for all indices j . One can check
that for the logarithmic potential of �

{�.w/ D

Z
log jz � wj d�.z/;

which is defined a.e. in C, one has {�.w/D 0 for each w … K. This fact together with
the formula Z

g d� D
1

2�

Z
�g {�dA;



Uniform and pointwise approximation on Carathéodory sets 46

which is valid for all compactly supported functions g of class C 2, implies that � is
orthogonal to Har.K/ (the symbol � stands, as usual, for the Laplace operator).

We are going now to proceed with the Walsh–Lebesgue theorem, which is one
of the most famous and most important results about approximation of functions by
harmonic polynomials. The name of Walsh–Lebesgue theorem is associated in the
literature to several related results. In order to be more clear we present here three
such results. The first one was proved in [132]. Later on L. Carleson in [24] made a
new proof because he says that the original proof is not complete. Walsh repeatedly
said in [132, 133] that his proofs are based on Lebesgue’s important work [80]. This
explains the reason why the name “Walsh–Lebesgue theorem” was subsequently
adopted for the next Theorems 3.19, 3.21, 3.22, and 3.23.

Theorem 3.19 (Walsh–Lebesgue theorem; the first of such name). Let K � C be a
compact set with connected complement. Then, for every function u 2 C.@K;R/ there
exists a sequence .Pn/ of harmonic polynomials such that Pn� u on @K.

Scheme of the proof. Let .Kn/ be a sequence of compact sets, each of which has
a boundary consisting of a finite number of C 1-smooth Jordan curves, such that
KnC1 � K

ı
n and

K D

1\
nD1

Kn:

Each continuous function on @K can be approximated uniformly on @K by C 1-
smooth functions. Then, one can assume that u 2 C 1.C/. In each domainKın take un
to be the solution of the Dirichlet problem with boundary data uj@Kn . Each set Kın is
simply connected, then each function un is the real part of some holomorphic func-
tion fn. Each of these functions fn can be approximated by polynomials in view of
Runge’s theorem. The real part of these polynomials are harmonic polynomials, and
they converge uniformly on @K to un. It remains to show that un � u on @K. This
fact is a keynote point of the proof, and it is a consequence of the following lemma
due to A. Lebesgue.

Lemma 3.20. LetK �C be a compact set, and let .Kn/ be such sequence of compact
sets that @Kn consists of a finite number of smooth closed curves, KnC1 � Kın, andT1
nD1 Kn D K. Let u 2 C 1.C/, and let un be the harmonic extension of uj@Kn to

Kın. If each z 2 @K satisfies the conditionZ
S

dr

r
D C1; (3.8)

where
S D

®
r 2 .0;C1/ W @D.z; r/ \K{

¤ ;
¯
;

then un� u on @K.
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The detailed proof of this lemma may be found in [56, pages 35–36]. The condi-
tion (3.8) is called Lebesgue’s condition.

Another proof of Theorem 3.19 was given in [24, pages 168–171]. This proof
follows the pattern of the proof of the part (2) of Theorem 3.18.

Theorem 3.21 (Walsh–Lebesgue theorem; the second of such name). Let K � C be
a compact set such that the set BK of all bounded components of C nK is not empty.
Let E be a set that contains one point for each G 2 BK . Suppose that

(a) the set BK is finite, and u 2 C.@K;R/, or

(b) each component of K is finitely connected, and u 2 C.K;R/ \ Har.Kı/.

Then, u can be approximated uniformly onK by functions of the form (3.7) with such
h 2 R that all poles of h are inside E, the points aj 2 E and cj 2 R

Scheme of the proof. The proof of item (a) is given in [18, page 191] using the theory
of representing measure for R.K/. For item (b) we follow the outline proposed by
Walsh. Take a closed disc xD with K � xD and a continuous function u0 defined on
xD that extends u. Then, there exists a real polynomial P that differs from u0 by

less than a given " > 0. The next step is to construct a decreasing sequence .Sj / of
closed sets, each of which is bounded by a finite number of non-intersecting Jordan
polygonal lines (with wedges parallel to coordinate axis), such that K D

T1
jD1 Sj .

Let now hj be the solution for the Dirichlet problem on Int.Sj / with the boundary
function P j@Sj . Then, hj � P on @K. Then, take k 2 N such that the difference
between hk and P is less than " on @K. But hk can be uniformly approximated on
K by a function of such kind that were considered in Theorem 3.18 (for the points
of E). It remains to modify this approximating function in such a way to settle its
singularities to the given points in E. Then, the approximation is obtained on @K, but
since u 2 C.K/ \ Har.Kı/, the approximation also holds on K.

Next result is stated in [133, page 518] and it is the oldest result were the notion
of Carathéodory set plays a role. It can be proved using Theorem 3.19.

Theorem 3.22 (Walsh). Let G � C be a bounded simply connected domain, and let
K be a compact set in C. Then, the following statements hold.

(a) Each function u 2 C. xG;R/ \ Har.Int. xG// can be uniformly approximated
on xG by harmonic polynomials if and only if G is a Carathéodory domain.

(b) Each function g 2 C.K;R/ can be uniformly approximated on K by har-
monic polynomials if and only if K is a Carathéodory compact set and
Kı D ;.

Proof. Let us prove the statement of part (a). For proving the statement of part (b)
see the next theorem.
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Assume that G is a Carathéodory domain, then Int. xG/D G, and so, u 2 Har.G/.
Put K D yG. If the set C n xG is connected then applying Theorem 3.19 we obtain a
sequence .un/ of harmonic polynomials such that un� u on @K D @G D @ xG. Since
u and all un are harmonic functions, the maximum modulus principle for subhar-
monic functions (see, for instance, [67, Theorem 7.10]) yields that this convergence
is uniform on xG.

Suppose now that the set C n xG is not connected. By Proposition 1.5, part (a),
each bounded component G1 of the set C n xG is simply connected and @G1 � @G.
Then, we can solve, for each G1, the Dirichlet problem with boundary values uj@G1 .
Therefore, one can define a function QuWK ! R as u.z/ for z 2 xG and Qu.z/ D
.uj@G1/

^.z/ given by (3.5). The key point is thatKı D G [
S
j Gj . So, Qu 2 C.K/\

Har.Kı/. Since C n K is connected and @G D @K, then there exists the sequence
.un/ of harmonic polynomials that converges uniformly on K to u, then in particular
on xG.

Let now there existsw 2 @G such thatw … @G1. Take r > 0 such thatD.w; 2r/\
@G1 D ;. Let �WC ! R be a continuous function such that � � 1 on D.w; r/ and
Supp.�/ � D.w; 2r/. Consider as before the solution y� of the Dirichlet problem in
G with boundary function �j@G . If there exists such a sequence .un/ that un� � on
xG then un � 0 on @G1. Then, un � 0 on G{

1. In particular, un.w/! �.w/ D 1,
which gives a contradiction.

As a consequence, of the previous result we have the next theorem, which was not
explicitly stated in [133]. Occasionally it is also referred as Walsh–Lebesgue theorem
(see, for instance, [99, Section 1]) and nowadays it is this statement that is perceived
by experts in the theory of approximation by analytical functions as the most complete
and general form of the Walsh–Lebesgue theorem.

Theorem 3.23 (Walsh–Lebesgue theorem; the third of such name). Let K � C be
a compact set. Then, each function from the space C.K/ \ Har.Kı/ can be approx-
imated uniformly on K by harmonic polynomials if and only if K is a Carathéodory
compact set.

Proof. Let K be a Carathéodory compact set. The keynote ingredient here is Propos-
ition 1.8, because one has Int. yK/ D Int.K/ [

S
j Gj and @Gj � @K D @�1.K/.

If g 2 C.K/ \ Har.Kı/, then we define the function Og on yK in such a way that
Og.z/D g.z/ if z 2K, while Og.z/ is the solution of the Dirichlet problem with bound-
ary function gj@Gj for z 2 Gj . Then, Og 2 Ah. yK/ then the proof is finished as before,
applying Theorem 3.19.

Going further assume that @K ¤ @ yK. Then, take a disk D.a; r/ � Int. yK/ with
a 2 @K. Next, taking b 2D.a; r/ nK, let us consider the function g 2C.K/ such that
g.z/ D log jz � bj for each z 2 K. Then, there exists a sequence .qn/ of harmonic
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polynomials such that kg � qnkK ! 0 as n!1. Then, by the maximus modulus
principle

kqn � qmk yK D kqn � qmk@K ! 0

as n;m!1. Then, .qn/ is a Cauchy sequence on yK, then it converges uniformly on
yK to the function g1 2 C. yK/ \ Har.Int. yK//. But g1.z/ D log jz � bj if z 2 D.a; r/

which is a contradiction.

Corollary 3.24. Let K be a Carathéodory compact set. If f 2 C.K/, then there
exists a unique u 2 C. yK/ \ Har.Int. yK// such that u.z/ D f .z/ for each z 2 K.

We must mention here that in [133] the condition in the part (b) of Theorem 3.21
stated by Walsh is different. He stated that “The compact K contains no region of
infinite connectivity not included in a larger region of finite connectivity belonging
to K. Then, in particular if K has no interior points, an arbitrary function f .x; y/
continuous on K can be so approximated”. But the result with this formulation is not
true, as one can see using the Deny’s criterion for uniform approximation by functions
harmonic in a neighborhood of K, see [36].

Ending our discussion on Walsh–Lebesgue theorem, let us mention the papers
[95–97], where several interesting generalizations of this theorem were obtained in
the situation when one deals with an approximation on boundaries @X of compact
sets X in C with connected complement by functions of the form P. 1/CQ. 2/,
where P and Q are polynomials in the complex variable, and  1 and  2 are two
homeomorphisms of C to C.

3.3 Pointwise polynomial approximation

Let us revert to the topic of approximation of functions by polynomials in the com-
plex variable. We have seen in Theorem 3.2 that the locally uniform convergence of
sequences of polynomials for each holomorphic function in a given open set implies
certain topological restrictions on this set. But what can happen if we only suppose
the pointwise convergence instead of the locally uniform one? Of course, the answer
will depend on certain additional assumptions (such as, for instance, a boundedness of
the corresponding sequence of approximating polynomials). In the most general case,
when we did not demand anything else, the answer to this question was obtained by
Montel: For any open set U � C each function f 2 H.U / can be approximated
by some sequence .Pn/ of complex polynomials in such a way that Pn.z/! f .z/

for every z 2 U . The proof of this fact may be obtained as follows. Let us take first
some sequence .Yn/ of compact sets such that C n Yn is a connected set, Yn � U ,
and U D lim infn!1 Yn. A possible way to construct such sequence may be found
in [85, Chaper IV, Section 2.3]. Next, Runge’s theorem yields that for each n there
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exists a polynomial Pn such that kpn � f kYn < 1=n. Thus, the sequence .Pn/ is as
demanded. Notice that in such general setting we cannot conclude that .Pn/ tends to
f locally uniformly in U .

The most deep and important case of the aforesaid question arises when we
assume that the function under approximation is bounded, and demand to approx-
imate it by bounded sequence of polynomials. In this situation the picture changes
completely. It became clear after works [45,46] by O. J. Farrell in 1934–1935, where
he proved the next Theorem 3.25. It is necessary to read simultaneously both papers
to obtain the proof. However, these important papers are rarely mentioned in forth-
coming works in the topic under consideration, so it causes errors in the attribution
of who and what actually proved, see, for instance, [106,112]. Farrell also mentioned
that certain ideas of Carleman (see [23]) were of utility to prove both Theorems 3.25
and 4.1 below.

Theorem 3.25 (Farrell). Let G ¤ ; be a simply connected domain in C. The follow-
ing conditions are equivalent.

(a) For every function f 2 H1.G/ there exist a sequence of polynomials .Pn/
such that Pn.z/! f .z/ for each z 2 G, and lim supn!1 kPnkG 6 kf kG .

(b) G is a Carathéodory domain.

Proof. Let G be a simply connected domain and put T D @G1. Consider Q to be
such component of C n T that G � Q. Let f be some fixed conformal map from G

onto D. If the approximation properties stated in the part (a) holds, then there exists
a sequence .Pn/ of polynomials such that Pn.z/! f .z/ and jPn.z/j 6 2 for each
z 2G and for each n 2N large enough. Then, jPm.z/j6 2 for all z 2 xG and for some
m 2N, andPm¤ 0, so thatG needs to be bounded. Since @Q� xG, Montel’s theorem
(on the characterization of compact subsets of H.G/) shows that there exist a partial
subsequence .Pnk / and a holomorphic function f0WQ!C such thatPnk .z/! f0.z/

for each z 2 Q. Therefore, f0 D f in G, so that f0 is non-constant. Moreover, since
Q � yG, then

jf0.z/j D lim sup jPnk .z/j 6 lim sup kPnkkQ 6 lim sup kPnkk yG 6 1;

for each z 2Q. If we assume thatG is not a Carathéodory domain, then @G n T ¤ ;.
Then, there exist b 2 @G n T which is an accessible point from G by some end-cut E

and there exists " > 0 such that D.b; "/ � Q. Then,

jf0.b/j D lim
E3z!b

jf0.z/j D lim
z!b
jf .z/j D 1;

but this is a contradiction since jf0j cannot achieve at the point b its maximum mod-
ulus over Q. Thus, the implication (a))(b) is proved.
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We are going now to prove the inverse implication. Take a function f 2H1.G/.
Fix z0 2 G. Let us take, as usual, the sequence of Jordan curves .Jn/ such that
D.Jn/ ! G with respect to z0 (in the sense of kernel convergence). Let K D yG.
Since D.Jn/ is a Jordan domain then K � D.Jn/ for all n > 1. Let us take the con-
formal maps 'n from D.Jn/ onto D and the conformal map ' from D onto G such
that 'n.z0/ D 0 and '0n.z0/ > 0, while '.0/ D z0 and '0.0/ > 0. Put gn D ' ı 'n.
Then, the function f ı gn is holomorphic on D.Jn/, that is in an open neighborhood
ofK. Applying Runge’s theorem, one can find a sequence of polynomials .Pn/, such
that

kf ı gn � PnkK <
1

n
: (3.9)

From (3.9) it follows that kPnkK 6 1
n
C kf kK D

1
n
C kf kG , which gives the con-

clusion of the theorem.
Notice that gn � z in G. If Y � G is a compact set then, for big enough n, one

has
jf .gn.z// � f .z/j <

1

n
; z 2 Y: (3.10)

From (3.9) and (3.10) we obtain that .Pn/ converges uniformly on compact subsets
of G to f . This implies the pointwise convergence in G.

Paying more attention into the proofs given above and doing a bit more, the fol-
lowing result can be obtained.

Corollary‘ 3.26. Let G be a simply connected domain in C.

(a) Let f map G conformally onto D. Assume that there exists a sequence of
polynomials .Pn/ such that

sup
n2N
kPnkG 6 C and lim

n!1
Pn.z/ D f .z/; z 2 G; (3.11)

for some constant C . Then, G is a Carathéodory domain.

(b) Conversely, if G is a Carathéodory domain, then each function h 2 H1.G/
can be approximate by a sequence of polynomials .Pn/ satisfying (3.11).
In particular, if f is a conformal map from G onto D, one can take the
corresponding sequence in such a way that C D 1 in (3.11).

Proof. Let us start with the part (a). We will use all notations introduced in the proof
of the implication .a/) .b/ in Theorem 3.25. So, we take the partial sequence .Pnk /
and the function f0 such that Pnk � f0 on Q. Assume that @G n T ¤ ;, then for
each accessible point w 2 @G n T we know that jf0.w/j D 1. By continuity this is
true for all w 2 @G n T . Then, take b1 2 @G n T such that f 00.b1/ ¤ 0. Therefore, is
it to possible to find " > 0 and a small closed disk W such that

W � D.b1; "/ \G � D.b1; "/ \G � Q
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and f0 is a holomorphic homeomorphism from W onto its image, so that 1 C " <
jf0.z/j for all z 2 W . Since the sequence .Pnk / converges uniformly on W , then

1C
"

2
6 jPnk .z/j; z 2 W; k > k0:

Taking limits when k !1 the previous estimate yields that there exist many points
z, where jf .z/j > 1C "=2, which is a contradiction.

It remains to prove last assertion in the part (b). Let f be the conformal map from
G onto D. Since f ı gn D 'n is holomorphic inD.Jn/, then k'nk yG 6 cn < 1. Then,
take the corresponding polynomial Pn in such a way that

k'n � Pnk yG < 1 � cn;

for every N > 1. Thus, kPnk yG 6 1.

This result for C D 1 is covered by the original proof in [45, 46], and it is [106,
Theorem 2]. The author of the paper [106] and, highly likely, its referee were unaware
that the respective result already has been proved 60 years prior to the publication of
that paper.

Similar arguments can be used to prove the following result.

Proposition‘ 3.27. Let G be a simply connected domain in C. Assume that there is
a subset E � @G such that xE D @G and for each point a 2 E the function f .z/ D
p
z � a can be boundedly approximated on G by a sequence of polynomials. Then,

G is a Carathéodory domain.

In [47] Farrell gave the estimate of the norm kf � pnkG in terms of one special
metrical concept. For a given domain G and a function f 2 H1.G/ let

D.f; @G/ D sup
z2@G

diamC.f; z/;

where C.f; z/ is the cluster set of f at the point z.

Theorem 3.28. Let G be a Jordan domain and f 2 H1.G/. Then, there exists a
sequence .Pn/ of polynomials such that Pn� f in G and

lim sup
n!1

kf � PnkG 6 D.f; @G/: (3.12)

Sketch of the proof. Fix z0 2 G and let .Gn/ be the usual sequence of simply con-
nected domains such that Gn ! G with respect to z0. Take the conformal map
 nWGn ! G such that  .z0/ D z0 and  0.z0/ > 0. For the function fn defined
by the formula fn.z/D f . n.z// one can find an appropriate polynomial Pn in such
a way that

jPn.z/ � fn.z/j 6
1

n
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for all z 2 xG. Since  n� z on xG in view of Theorem 2.10, we have Pn� f locally
in G.

The estimate (3.12) is obtained as a consequence of the following fact. If w0 2
@G, if .zn/ is any sequence tending to w0, and if .Pkn/ is a suitable subsequence of
.Pn/, then

lim sup
n!1

jf .zn/ � Pkn.zn/j 6 diamC.f;w0/:

The omitted details may be found in [47].

Question III. Whether it is true, that if G is a Carathéodory domain such that C n xG
is connected and f 2H1.G/, then there exists a sequence .Pn/ of polynomials such
that Pn� f in G and

lim sup
n!1

kf � PnkG 6 D.f; @G/:

It seems that the answer is affirmative, but the proof given in the case of Jordan
domains cannot be adapted directly.

Continuing the analysis of Farrell’s results let us observe that the Carathéodory
hull U � of an open set U can be defined as follows:

U � D Int
®
z0 W jp.z0/j 6 sup

z2U

jp.z/j; for each p 2 P
¯
:

As far as we know, the first occurrence of a related notion to Carthéodory hull
(without the corresponding name) was in Theorem D in Farrell’s work [46]. In this
paper it was considered the component of the Carathéodory hull of a given domain
that contains this domain itself. The concept of a Carathéodory hull of a set has
appeared with this name in [120]. In [31] the set U � was called the outer envel-
ope of U . In [111, 112] this concept also appeared without name. Perhaps the name
of “extended Carathéodory–Farrell hull” of U will be more honest and appropriated
because ifG is a Carathéodory domain, thenG is only a component of a (sometimes)
bigger open set G�. However, in order to avoid a new name creation, the name of a
Carathéodory hull is enough good and has been adopted to denote this set. Let us also
note that the notation U � for the Carathéodory hull of U coincides with the notation
of [98], although in that paper it is not given a special name for this object.

The following properties are interesting and easy to prove (recall Proposition 1.5,
see also [112]).

Lemma 3.29. Let G be a bounded open set in C. Then, the following hold.

(i) G� D C n�1. xG/, C n yG D �1. xG/, and @G� D @�1. xG/.

(ii) G� is a Carathéodory open set and .G�/� D G�.

(iii) The set G� is simply connected.
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The next lemma clarifies the usefulness of the concept given in Definition 1.4.

Lemma 3.30. Let G be a bounded open set, let f 2 H.G/, and let .Pn/ be such
sequence of polynomials that

sup
n2N
kPnkG 6 C and Pn.z/! f .z/; for all z 2 G (3.13)

for some constant C . Then, the following hold.

(a) Pn� f locally in G as n!1.

(b) There exists a function f � 2H.G�/ such that f �jG D f , that is f � extends
f to G�.

Proof. (a) Take a partial sequence .Pnk / of the sequence .Pn/. By Montel’s theorem
there exists a new partial sequence .Pn0

k
/ of this subsequence .Pnk / such that Pn0

k
�

g locally in G for some function g 2 H.G/. But g.z/ D f .z/ in each component of
G, then g D f onG, and so, Pn0

k
� f onG. Since it is true for all partial sequences

of .Pn/, the proof is completed.
(b) Let us observe that (3.13) together with the maximum modulus principle

implies that kPnk yG D kPnk xG 6 C for all n. Then, there exists a partial sequence
.Pnk / such that Pnk � f � locally in G� for some function f � holomorphic on G�.
SinceG �G�, then f � is an extension of f . Notice, that such extension in not unique
in a general case.

The final result by Farrell can be stated as follows.

Theorem 3.31. Let G � C be a domain, and let f 2 H1.G/. The following condi-
tions are equivalent.

(a) There exist a sequence of polynomials .Pn/ such that (3.13) is satisfied.

(b) The function f is the restriction of some function belonging to H1.G�/.

Near thirty years after publication of the above results, L. Rubel and A. Shields
in [111, 112] obtained their generalization for a general bounded open sets. The fol-
lowing result is called nowadays Farrell–Rubel–Shields theorem.

Theorem 3.32. Let U ¤ ; be a bounded open subset of C, and f 2 H1.U /. The
following conditions are equivalent.

(a) There exists a sequence of .Pn/, Pn 2 P, such that supn kPnkU 6 kf kU and
Pn.z/! f .z/ for all z 2 U .

(b) There exists such function f � 2 H1.U �/ that f D f �jU .

The case that the set U is connected corresponds to the original Farrell’s proof.
There are two key points that distinguish the Rubel and Shields results from Farrell’s
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ideas. The first one is the following thing. If U is an open set, then U � is a Carathé-
odory open set, and hence each function f 2 H1.U �/ can be bounded pointwise
approximated by polynomials in U �, but not only in U . The sequences of polyno-
mials constructed in Farrell’s proof cannot give directly the convergence in U �. The
second key point is related with the following observation. If U has infinitely many
components Gj , then each f jGj can be approximated by a sequence of polynomials
.Pj;n/. However, each of such sequence depends on j and it is not clear how to deal
with all sequences. Rubel and Shields gave a clever idea how to avoid simultaneous
work with several components of U .

Nowadays a proof of Theorem 3.32 using many important tools from the theory
of uniform algebras consist in proving an abstract version of such theorem. From this
abstract version the following result may be obtained which also gives Theorem 3.32
(the details of these proofs may be found in [56, pages 152–154]).

Theorem 3.33. LetK be a finitely connected compact set in C, and let f 2H1.Kı/.
Then, there is a sequence .fn/, fn 2 R.K/, such that supn kfnkK 6 kf k1 and
fn.z/! f .z/ for all z 2 Kı.

Now, we will describe the pattern of the proof of Rubel–Shields theorem. We
need to introduce yet one auxiliary construction.

Definition 3.34. Let U be a Carathéodory open set and let B be a component of
U . The cluster K.B/ is defined as the union of all components Q of U for which
Q � EB , where EB is the component of xU that contains B .

In order to illustrate this definition let us consider the outer snake (or cornucopia)
Q1 twisting around D with Q1 � D.0; 3=2/ and another outer snake Q2 with Q2 �
D.3; 1/; for example of the model for such Q1 and Q2 see G1 on Figure 2. Take
U D D [Q1 [Q2. Then, K.D/ DK.Q1/ D D [Q1 and K.Q2/ D Q2.

The next result corresponds to Theorem 2.11 in the case of general Carathéodory
open sets. It may be found in [112].

Theorem 3.35. Suppose U be an open set.

(a) Let U be a Carathéodory open set. For each component B of U take a point
wB 2 B . Then, there exists a sequence .Un/ of bounded simply connected
open sets possessing the following properties:

(i) xU � Un � xUn � Un�1, n > 2;

(ii) If B is any component of U and if Bn is the component of Un contain-
ing B , then xB � Bn � xBn � Bn�1, n > 2, and Bn ! B with respect
to wB .

(b) If U is an open set such that there exists some sequence of open sets .Un/
satisfying the properties .i/ and .ii/, then U is a Carathéodory open set.
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Notice, that in the frameworks of conditions of this theorem one has K.B/ � Bn
for every n 2 N.

The following lemma is one of key ingredients of the proof of Theorem 3.32.

Lemma 3.36. Let E be a finite subset of U and let B be a component of U . Assume
that f D 1 in all the other components ofU and kf kU 6 1. Then, for each given "> 0
there exists a polynomial P such that jP.z/j6 1 for each z 2U and jf .z/�P.z/j<
" for each z 2 E.

Sketched proof of Theorem 3.32. We need to prove that if U is a Carathéodory open
set and f 2 H1.U / with kf kU 6 1, then there exists a sequence of polynomials,
uniformly bounded by 1 in U , and converging to f at each point of U . Let us assume
that Lemma 3.36 is already proved.

Denote by C1;C2; : : : some enumeration of all components ofU , take a countable
dense set ¹z1; z2; : : : º � U and put En D ¹z1; z2; : : : ; znº. Define the functions gk ,
k 2 N, in such a way that gk.z/ D f .z/ for z 2 Ck and gk D 1 in U n Ck . Take
(and fix) some " > 0 and n 2 N. By Lemma 3.36 for every k 2 N there exists a
polynomial Pk such that kPkkU 6 1 and jgk.z/ � Pk.z/j < "=n for each z 2 En.
Let now fn D g1g2 � � � gn so that fn D f on C1 [ C2 [ � � � [ Cn, while fn D 1 on
each Ck with k > n. For the polynomial zPn D P1P2 � � �Pn we have k zPnk 6 1 in U
and

fn � zPn D

nX
jD1

P1 � � �Pj�1 � .gj � Pj / � gjC1 � � �gn;

which gives
jfn.z/ � zPn.z/j < " for each z 2 En:

Then, by Montel’s theorem, each partial subsequence of . zPn/ converges to a function
h such that f D h on E, so zPn� f in U .

It remains now to prove Lemma 3.36. To do this it is sufficient (in view of Runge’s
theorem) to verify the next statement.

Lemma 3.37. LetE a finite subset of U and let B be a component of U . Assume that
f D 1 in all other components of U and kf kU 6 1. Then, for any " > 0 there exists
a simply connected domain Q with xU � Q, and a holomorphic function g in Q with
kgkQ 6 1 such that jf � gj 6 " on E.

Let B be the component mentioned in Lemma 3.36. According to Theorem 3.35
one can take .Un/, .Bn/, .'n/ and ', where 'n is the conformal map from Bn onto D
normalized at some pointwB 2B as 'n.wB/D 0, and ' is the conformal map fromB

onto D normalized by the same way. Passing to an appropriate subsequence of .'n/,
we obtain that 'n�  in K.B/, where  D ' in B . Let now ¹Qj º be the collection
of all components that formed K.B/. It holds that  D �j with j�j j D 1 in Qj for
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all indices j . Since E is finite, it meets only finite number of components of K.B/,
says for definiteness,Q1; : : : ;Qn. Put E 0 D '.E \B/ � D, so that E 0 is a finite set.
Consider the function F D f ı '�1 such that kF kD 6 1. Using [112, Lemma 3.13]
one can find a new function F1 which is close to F on E 0, while it is close to 1 near
the points �1; : : : ; �n. Finally, for sufficiently large n the function g defined in such
a way that g D F1 ı 'n in Bn and g D 1 in Un n Bn is the desired approximant for
f in Lemma 3.37. All omitted technical details may be found in [112, Lemmas 3.11,
3.12, and 3.13].

Example 3.38. Let G be the outer cornucopia, and U D G� D G [ D. Then, there
exists a sequence .Pn/ of polynomials, uniformly bounded by 1 such that Pn.z/! 0

if z 2 G and Pn.z/! 1 if z 2 D.

The next statement is an application of Rubel–Shields theorem. But we encourage
the interested reader to find a proof using only Farrell’s ideas, as well as the another
one basing only on Runge’s theorem.

Corollary 3.39. Let G be a Carathéodory domain and let f 2 H1.G/. Then, there
exists a sequence of polynomials .Pn/ such that Pn � f locally in G and for each
bounded component B of C n xG one has P 0n.z/! 0 for each z 2 B .

We end this section mentioning several interesting and important concepts related
with the topic on bounded pointwise approximation. The first one is the concept of a
Farrell set, which was introduced by Rubel and studied, for example, in [126]. Later
on, O’Farrell and Perez–Gonzalez defined Farrell pairs for general open sets and
the notion of a Farrell–Rubel–Shields set. Notice that the family of Farrell–Rubel–
Shields sets includes the family of Carathéodory domains. The paper [98] gives a
comprehensive theorem on pointwise bounded-on-a-subset approximation for Far-
rell–Rubel–Shields sets.

3.4 Uniform algebras on Carathéodory sets

We start this section by mentioning some connections between the Walsh–Lebesgue
theorem and the theory of uniform algebras. We recall some notions of that theory,
whose exhaustive exposition may be found in [18, 56, 69, 125].

A uniform algebra A on a compact Hausdorff space X is a uniformly closed
(with respect to the norm kf k D sup¹jf .x/j W x 2 Xº) subalgebra of C.X/ which
contains constants and separates points ofX . A setE �X is called a boundary for A

if for each f 2 A there exists y 2 E such that jf .y/j D kf k. The minimum closed
boundary of A (which always exists) is called the Shilov boundary of A. A subset
F � X is called a peak set for A if there exists a function f 2 A such that kf k D 1
and F D f �1.1/. A point x 2 X is a peak point of A if ¹xº is a peak set.
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If A is a uniform algebra on a compact space X , the maximal ideal space of
A can be identified with the space of non-zero complex-valued homomorphism of
A, which will be denoted by MA. If 	 2 MA, then 	 is continuous and k‰k D
1 D 	.1/. Moreover, there exists a probability measure � on X such that 	.f / DR
X
f d� for each f 2 A. This measure is call a representing measure for 	 . The set

of such measures is convex and weak-star compact but, in general, is not a singleton.
The Choquet boundary of A is the set of all those x 2 X for which the evaluation
functional �x.f / D f .x/ has a unique representing measure, of course it is needed
to be the unit point mass ıx supported at the point x. Moreover, if X is a metrizable
space, the Choquet boundary of A is also the set of all peak points of A. It can be
proved that it is a boundary for A and its closure coincides with the Shilov boundary.

Recall that A is called a Dirichlet algebra on X , if Re A is dense in C.X;R/,
while A is called a logmodular algebra on X , if®

logjf j W f is an invertible element of A
¯

is dense in C.X;R/.
Let K be a compact subset of C. We are going to discuss here several results

related to [39]. For better understanding of the matter we emphasize the following
facts.

(1) Let g 2 P.K/. Then, there exists a sequence of polynomials that converges
uniformly to g. By the maximum modules theorem this sequence also con-
verges uniformly on yK to an extension Og 2 P. yK/ of g which has the same
norm. The isometry g 7! Og allow us to identifyP.K/withP. yK/ or even with
P.@K/. These identifications will be used in what follows without explicit
reference.

(2) Returning to the algebras appearing in (3.1) let us note that the maximal ideal
spaces for all of them are identified withK. Moreover, the Shilov boundaries
for P.K/, R.K/, A.K/ and C.K/ are @ yK, @K, @K and K, respectively. For
P.K/ and C.K/ the Choquet boundaries coincide with their Shilov bound-
aries, but for R.K/ and A.K/ the Choquet boundaries are more involved
(see [56, page 205]).
For better understanding the next Proposition, we prove that the Choquet
boundary of P.K/ is @ yK. First note that if x is a peak point of P.K/, then
x 2 @ yK. Let x 2 @ yK and let � be a representing measure of �x . Since �
is real, then Re g.x/ D

R
Re g d� for each g 2 P.K/. Because P.K/ is a

Dirichlet algebra, then r.x/ D
R
yK
r.y/ d�.y/ for each continuous function

r 2 CR.@ yK/. It means that � is also a representing measure of �x for the
algebra CR.@ yK/, so � D ıx .
If A is a Dirichlet algebra on X , then A is also a logmodular algebra on X ,
and X is the Shilov boundary of A.
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Theorem 3.23 tell us that P.K/ is a Dirichlet algebra on @ yK.

In view of the aforesaid, all ingredients are readily available to obtain the follow-
ing statement which is worth comparing with [39, Theorem 4].

Proposition 3.40. Let K be a compact set in C, and let � D @K. The following
conditions are equivalent.

(a) K is a Carathéodory compact set.

(b) The Choquet boundary of P.K/ is � .

(c) The Shilov boundary of P.K/ is � .

(d) P.K/ is a Dirichlet algebra on � .

(e) P.K/ is a logmodular algebra on � .

(f) Each point of � is a peak point for P.K/.

Now, we are interested in the question about maximal subalgebras. We recall
the concept of maximality in the theory of uniform algebras. Let K be a compact
subset of C. A closed subalgebra A of the algebra C.K/ is called maximal if for each
closed subalgebra B of C.K/ such that A�B it holds either B DA or B D C.K/.
In [56, page 38] it is assumed that A ¤ C.K/, but seems more appropriate not to use
this convention.

The question on maximality of the algebra P.K/, where K is a compact subset
of C, was initiated by J. Wermer, who proved that A.xD/ is maximal, considering as a
uniform algebra on its Shilov boundary, T , or with more generality for every closed
subalgebra of C.T / that contains an injective function. This result is known as Wer-
mer’s maximality theorem, see the first proof of it in [135]. Later on E. Bishop [15]
(see Theorem 6 of the cited work) established the following result.

Theorem 3.41. Let K be a compact subset of C such that both sets Kı and C nK
are connected. Then, P.@K/ is maximal on C.@K/.

Proof. We follow the proof which was done by Bishop that used ideas due to Hoff-
man. Other proof may be found in [125] (see Theorem 25.12 in this book). Let B be
some closed subalgebra of C.@K/ such that P.@K/ � B and put G D Kı. Then, we
need to prove that B D C.@K/ or B D P.@K/. We know that every function from
P.@K/ can be extended to some function belonging to A.K/. Then, for every point
a 2 G the mapping 'aWP.@K/! C defined by 'a.h/ D h.a/, is a homomorphism
of the algebra P.@K/. Now, we distinguish two cases.

Case 1. Assume that 'a can be extended to the algebra B for any a 2 G. Then,
j'a.h/j 6 khk@K for all h 2 B. Therefore, 'a can be extended to a bounded linear
functional (with norm equals 1) on the spaceC.@K/. It means that there exists a meas-
ure �a (with k�akD1) on @K such that

R
h.z/�a.z/D'a.h/ for every h2B. Since
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�a.@K/ D 'a.1/ D 1, and since k�ak D 1, we have that �a is a positive measure
(see [18, page 80]). Therefore, for each polynomial P we have

ReP.a/ D Re'a.P / D Re
Z
Pd�a D

Z
ReP d�a: (3.14)

Let us denote by Of the harmonic complex extension of f given by Corollary 3.24 of
f toK. Take h 2B and consider Oh 2 C.K/\Har.Kı/. By Theorem 3.23 and (3.14)
one has Oh.a/ D

R
Ohd�a D

R
h d�a D 'a.h/ and, moreover, since 'a is a multiplic-

ative functional, bzh.a/ D a Oh.a/. Thus, Oh and z Oh are harmonic in G. Hence,

0 D @x@.bzh/ D @x@.z Oh/ D @.zx@ Oh/ D x@ OhC z@x@ Oh D x@ Oh:
InG, which yields that Oh is holomorphic inG. Since C nK is connected, we conclude
from Mergelyan’s theorem that Oh 2 P.K/.

Case 2. Assume that there exists a point a 2 G such that the homomorphism 'a
cannot be extended to B. Consider in such a case the principal ideal in B

J D ¹h 2 B W h.z/ D h1.z/.z � a/; z 2 @K; h1 2 Bº:

Assume that J ¤ B, then there exists a maximal ideal M such that J �M. Then,
there exists such homomorphism˚ WB!C that ker˚ DM. Then,˚.j/D a (where,
as before, j.z/ D z) and therefore ˚.P / D P.a/ for each P 2 P.@K/. It means that
˚ is an extension of 'a which contradicts our assumption in Case 2. Thus, J D B

and 1 2 J. It means that 1=.j � a/ 2 B. In view of Mergelyan’s theorem C.@K/ is
the algebra generated by j and 1=.j � a/. Then, B D C.@K/.

In fact, the property that P.K/ is a maximal subalgebra of C.K/ imposes quite
rigid topological restrictions on the compact setK. We prove now the converse state-
ment for Wermer’s maximality theorem, which was essentially obtained in [27].

Theorem‘ 3.42. Let K be a compact subset of C. If P.K/ is a maximal subalgebra
of C.K/, then K is a Carathéodory compact set without interior. If, moreover, K D
@�, where � is a nonempty bounded open set in C, then neither x� nor � does not
separate the plane and both sets @� and � are connected.

Proof. If P.K/ D C.K/ then Kı D ; and K D yK. Then, @K D @ yK.
Assume therefore that P.K/ ¤ C.K/. In such a case the set C n @ yK has a

bounded component. If Kı D ; this is a consequence of Lavrentiev’s theorem. If
Kı ¤ ; we can choose a bounded component of Kı. So, one has

P.@ yK/ ¤ C.@ yK/: (3.15)

By (3.15) there exists a measure � on @ yK such that � ? P.@ yK/ and � ¤ 0

(the symbol ? expresses the fact of orthogonality of � to the corresponding set of
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functions). Let us now assume that @K n @ yK ¤ ; or Kı ¤ ; and let us take a 2
@K n @ yK or a 2 Kı. Then, there exists a function f 2 C.K/ such that f .a/ D 1 and
f j
@ yK
D 0.

Let now B be the closure of the set of functions having the form
Pm
jD0 qjf

j ,
where q0; : : : ; qm are polynomials and m 2 N. Since f … P.K/, then B ¤ P.K/.
Moreover, since f j

@ yK
D 0, thenZ

K

 
mX
jD0

qjf
j

!
d� D

Z
@ yK

q0 d�C

mX
jD1

Z
@ yK

qjf
j d� D 0:

Thus, B ¤ C.K/, and so, P.K/ is not maximal. Thus, @K D @ yK and Kı D ;.
Let now K D @�, where � ¤ ; is a bounded open set.
Assume that x� separates the plane. Let G be a bounded component of the set

C n x� and �1 be some component of �. Take z1 2 �1 and z2 2 G. Consider the
closed subalgebra B which is generated by P.K/ and by the function g1.z/ D
1=.z � z1/, z 2 K. Clearly g1 … P.K/. Taking into account that @G � K, and g1j xG
is holomorphic in xG, an application of the Maximum modulus principle gives that the
function h.z/ D 1=.z � z2/, z 2 K, does not belong to B. Therefore, P.K/ is not
maximal, which gives a contradiction. Thus, x� does not separate the plane.

Let us assume that� separates the plane. In such a case C n�DF1 [F1, where
F1 is a closed set such that x�1 � F1 and F1 is a nonempty compact set such that
F1 \ F1 D ;. Since F1 \ @� is not empty, take a point z 2 F1 \ @�. Since @�
is a Carathéodory compact set then z 2 @.@�/ D @� D @.c@�/. Thus, there exists a
sequence of points ¹znº such that zn … c@� and zn ! z as n!1. Since zn 2 �1,
then z 2 x�1 \F1D;. Thus, a contradiction arises and therefore� does not separate
the plane.

Going further let us assume that the set @� is not connected. Then, @�DF1[F2,
where F1 and F2 are compacts sets and F1 \F2 D;. Then,�\cFj ¤; for j D 1;2,
because if � \cF1 D ;, then C n� has a bounded component and � will separate
the plane. Then, we consider the closed subalgebra

B D ¹f 2 C.@�/ W f jF1 2 P.F1/º:

If we take the function f .z/ D 1=.z � a/, where a 2 � \cF2, we can see that B ¤

P.F1 [ F2/. Clearly, B ¤ C.@�/, it may be readily verified by considering g.z/ D
1=.z � b/, b 2 � \cF1. Thus, P.@�/ would be not maximal. Therefore, the set @�
is connected. The fact that the set� is connected may be proved by a similar way.

Corollary‘ 3.43. If�¤; is a bounded open set, then P.@�/ is maximal subalgebra
of C.@�/ if and only if � is a Carathéodory domain which does not separate the
plane.
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Notice that a slightly weaker version of Corollary 3.43 (in the case when � is a
priory assumed to be a simply connected domain) was obtained in [39].

Remark 3.44. In the proof of Theorem 3.42 it was shown that if� is a Carathéodory
domain, and if x� does not separate the plane, then� itself does not separate the plane
either. In the general case the properties “� does not separate the plane” and “x� does
not separate the plane” are independent because all four possible situations can occur.
The same can be said concerning connectivity properties of @� and �.

3.5 Orthogonal measures on Carathéodory sets

Many results in approximation theory were obtained in the frameworks of so-called
dual approach, which is based on studies of linear functionals orthogonal to cer-
tain spaces of functions. In the case of uniform approximation on compact sets in
C any linear functional on the space C.X/ has the form f 7!

R
f d�, where � is

some complex-valued Borel measure with support on X . So that it is interesting and
important to study properties of measures on X which are orthogonal to spaces of
polynomials or rational functions, or to some other spaces of functions. One import-
ant and deep theorem in this theory which we will need in what follows is the F. and
M. Riesz theorem (for the proof see, for instance, [115, Chapter 17] or [77, Chapter
II]). For the reader’s convenience we state it in such a way which makes evident the
starting point of the research made by E. Bishop in his three papers that we will
discuss in this section.

Theorem 3.45 (F. and M. Riesz). Let � be a complex measure on T which is ortho-
gonal to all polynomials, that is

R
T P.�/ d�.�/ D 0 for every P 2 P. Then, the

following hold.

(a) The measure � is absolutely continuous with respect to the measuremT , that
is there exists a Borel measurable function u such that

�.E/ D

Z
E

u.�/ dmT .�/ D
1

2�i

Z
E

x� u.�/ d�

for every Borel set E � T .

(b) Let the function f be defined in D by the formula

f .z/ D
1

2�i

Z
d�.�/

� � z
;

and let fr.�/ D f .r�/ for r > 0 and � 2 T . Then, fr ! u as r ! 1 in
L1.T /.

(c) For a.a. points � on T , one has that f .z/! u.�/ when z 2 D tends to �
non-tangentially.
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The aim of Bishop’s research was to obtain a generalization of the F. and M. Riesz
theorem for measures living on boundaries of general compact sets. The first problem
arising in this connection is that if @K is not a rectifiable set, then it is not clear what
is the absolute continuity property (with respect to what measure?) that needs to be
used. In [13–15] E. Bishop has provided a fruitful investigation of the structure of
measures orthogonal to rational functions on Carathéodory compacts sets. He used
many tools in conformal mappings, in the theory of Hardy spaces, in measure theory.
One key point he introduced is the concept of an analytic differential g.z/ dz that
represents some complex measure �. Let us briefly recall this concept. An analytic
differential in a domain � � C is a differential form g.z/ dz, where g 2 H.�/.
One says that the analytic differential g.z/ dz represents the measure � on @� if the
sequence of measures ¹g.z/ dzj�j º converges in the weak-star topology of the space
of measures on x� to �, where ¹�j º is some sequence of rectifiable contours such
that D.�j / � D.�jC1/ � � and D.�j / " � as j !1. Observe, that the analytic
differential g.z/ dz in � is defined even in the case when @� is not a rectifiable
set. This concept is not used nowadays and it has been only occasionally used in the
mathematical literature.

To present the Bishop’s results we need to recall some definitions and fix some
notation. We will use notation from Section 3.2 concerning harmonic measure. Let
nowG be a simply connected domain in C and let f be some conformal map from D
onto G. Assume for a moment, that @G is locally connected. Then, by Theorem 2.5,
f has a continuous extension to xD onto xG. Moreover,

!.w;E;G/ D !.f �1.w/; f �1.E/;D/; (3.16)

for every point w 2 G and every Borel set E � @G. The equality (3.16) is called
the invariance principle of the harmonic measure under conformal mapping. It can
be readily proved by comparing both harmonic functions by its values on @G. The
right-hand side of (3.16) can be readily calculated since

!.a; F;D/ D

Z
F

1 � jaj2

jeit � aj2
dt

2�
; F � T ; a 2 D;

and, moreover, this quantity may be represented in geometric terms. In the case that
@G is not locally connected we have the following result.

Theorem 3.46. Let G � C be a simply connected domain, and let f be a conformal
map from D ontoG. Then, !.z; @aG;G/D 1 for every z 2 G. Moreover, if E � @aG
is a Borel set, then (3.16) holds. In particular, if f .0/ D z0 2 G, then

!.z0; E;G/ D !.0; f
�1.E/;D/ D mT .f

�1.E//: (3.17)

For a proof of this theorem see [104, Section 6.2] and [59, page 206].
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In the case of Carathéodory open sets the following useful property of a harmonic
measure is satisfied.

Proposition 3.47. Let U be a Carathéodory open set, and let W1 and W2 be two
different components of U . Then, the measures !.a; �; U / and !.b; �; U / are mutually
singular for all points a 2 W1 and b 2 W2.

Proof. We know that it is enough to prove the desired assertion for two fixed points
a and b belonging to the different components of U . Take a 2 W1. We have that W1
is a Carathéodory domain, the measure !.a; �; U / is concentrated in @aW1, andW2 is
a component of C nW1. So, we can apply Proposition 1.15 to obtain the result.

Notice that the result stated in Proposition 3.47 is clearly not true in the case,
where the open set U is not assumed to be a Carathéodory open set. To better under-
stand this curious behavior, the reader can remind the open set U D D [ Q1 [
Q2 defined just after Definition 3.34. Another, slightly different, proof of Proposi-
tion 3.47 was given in [15, Lemma 10].

Let now G be a Carathéodory domain, let f be a conformal map from D onto
G such that f .0/ D z0 2 G, and let g D f �1 be the respective inverse mapping. In
what follows we will (often implicitly) use all results about boundary behavior of f
and g obtained in Chapter 2 (in particular, Theorem 2.24 and Corollary 2.25).

Take a function h 2L1.T / and consider the measure hd� on T . Define the meas-
ure f .hd�/ on @G by the formula

f .hd�/.E/ WD

Z
g.E\@aG/

h.�/ d� D

Z
.1E ı f /.�/h.�/ d�

for every Borel set E � @G (where 1E stands of the characteristic function of E), or,
equivalently,Z

 df .hd�/ D

Z
F.f /

 .f .�//h.�/ d� D

Z
T
 .f .�//h.�/ d� (3.18)

for every function  2 C. xG/. Note that (3.17) implies thatZ
@G

 .z/ d!.z0; z; G/ D

Z
T
. ı f /.�/ dmT .�/ D

1

2�

Z 2�

0

. ı f /.ei#/ d#

in our situation.
We define the complex harmonic measure relative to G and z0 as !c.z0; �; G/ D

f .d�/. Then,
!c.z0; �; G/ D 2�ig !.z0; �; G/: (3.19)

Moreover, if h 2 L1.T / then

f .hd�/ D .h ı f �1/ !c.z0; �; G/ D .h0 ı f
�1/ !.z0; �; G/; (3.20)
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where
h0.z/ WD 2�izh.z/:

In view of (3.19), the properties that some measure � on @G is absolutely continuous
with respect to !c.z0; �; G/ and !.z0; �; G/ are equivalent. For simplicity in what
follows we will denote the complex measure !c.z0; �; G/ just by ! assuming that the
point z0 is clear from the context and fixed.

The following results are essentially (but only implicitly) stated in the [13–15]. A
proof of Theorem 3.48 below based on studies of analytic differentials representing
measures can be extracted from the aforementioned papers of Bishop. We consider
that it is interesting and in certain sense important to present a direct proof of this
theorem which is free from the concept of analytic differentials. It was done in [26],
but here we made some modifications. In [15] it was not mentioned that �G D �j@G
(in the second part of Theorem 3.48). This fact was proved in [26]. For an open set U
we denote by C.U / the collection of all components of U .

Theorem‘ 3.48. LetG be a Carathéodory domain, whileX be a Carathéodory com-
pact set in C.

(1) Let � be a measure on @G such that � ? R. xG/. Then, there exists a function
h 2 H 1 such that

� D .h ı g/!: (3.21)

(2) Let Xı ¤ ;, and let � be a measure on @X such that � ? R.X/. Then,

� D
X

G2C.Xı/

�G ; (3.22)

where
�G D �j@G ; �G ? R. xG/;

and the series in (3.22) converges in the space of measures on @X .

(3) Let � be a measure on @X such that � ? R.X/. Then, � D 0 on X nXı and
� ? R.Xı/.

We recall that the Cauchy transform of a measure � is the function

y�.z/ D
1

2�i

Z
d�.w/

w � z

which is well defined forA-a.a. z 2C. It is well known, that y� is holomorphic outside
of Supp.�/ and x@y� D i

2
� in the sense of distributions.

We also recall that for a given class F of continuous functions and for a given
measure � the expression � ? F means that � is orthogonal to F , i.e.,

R
f d� D 0

for each f 2 F .
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Sketched proof of Theorem 3.48. Let us denote by Gj , where j 2 J and J � N0 is
some finite or countable set of indexes, each element of the set C.Xı/. We know
that every Gj , j 2 J , is a Carathéodory domain. In the case of the part (1), one has
J D ¹0º and G0 D G.

For each j 2 J let fj be some conformal mapping from D onto Gj , such that
f 0j .0/ > 0, let  j D f �1j be the inverse mapping and let hj WD .y� ı fj / f 0j .

The proof will consist of several steps.

Step 1. hj 2 H 1 for every j 2 J .

Proof. Take and fix j 2 J . In view of Proposition 1.18 there exists a connected Cara-
théodory compact set Y such thatX � Y andXı D Y ı. Choose some sequence .�m/
of rectifiable contours such that Y � D.�m/ � D.�m�1/ and D.�m/ converges to
Y as m!1. Notice that for any point zj 2 Gj the kernel of the sequence .D.�m//
with respect to zj is exactly Gj .

Let z0 D fj .0/. Let gm be the conformal mapping from D.�m/ onto D such
that gm.z0/ D 0, g0m.z0/ > 0. By Carathéodory kernel theorem the sequence .gm/
converges to  j D f �1j locally uniformly in Gj . Take a point w 2 D and set zm D
g�1m .w/. Then, the function8<: a.z/ D

1
gm.z/�gm.zm/

�
1

g0m.zm/.z�zm/
for z ¤ zm;

a.zm/ D �
g00m.zm/

2g0m.zm/
2

can be uniformly on X approximated by rational functions with poles lying outside
X . Then, since � ? R.X/, we have

1

2�i

Z
d�.z/

gm.z/ � gm.zm/
D
y�.zm/

g0m.zm/
:

We define the measures �m supported on D by the formula �m.E/D �.g�1m .E \D//
for each Borel subsets E of C. Taking into account the previous formula and the fact
that gm.zm/ D w, we have

1

2�i

Z
d�m.�/

� � w
D y�.g�1m .w//.g�1m /0.w/: (3.23)

Moreover, �m is orthogonal to polynomials and k�mk 6 k�k.
Take now a weak-star limit point � of the sequence .�m/. Then, Supp.�/ � T

and � is orthogonal to polynomials. Thus, one can find a function tj 2 H 1 with the
property � D tjd�jT . Passing to the limit in (3.23) we obtain

hj .w/ D y�.fj .w//f
0
j .w/ D y�.w/ D

1

2�i

Z
T

tj .�/ d�

� � w
D tj .w/

for all w 2 D, so that hj 2 H 1.
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For each j 2 J we define the measures !j WD fj .d�jT / and�j WD fj .hjd�jT /D
.hj ı  j / !j .

Step 2. One has

(i) y�j .z/ D y�.z/ for all z 2 Gj ;

(ii) y�j .z/ D 0 for all z … xGj , (that means that �j ? R. xGj /).

Proof. Take z … @ xGj . Then,

y�j .z/ D
1

2�i

Z
@Gj

hj . j .�// d!j .�/

� � z
D

1

2�i

Z
T

hj .�/ d�

fj .�/ � z
D 0;

because the function w 7! hj .w/=.fj .w/ � z/ belongs to H1.
If z 2 Gj let us take wj D f �1j .z/ 2 D. Then, the function8̂<̂

:
q.w/ D

w�wj
fj .w/�fj .wj /

; for w ¤ wj ;

q.wj / D
1

f 0
j
.wj /

belongs to H1. Therefore,

1

2�i

Z
T

hj .�/ d�

fj .�/ � fj .wj /
D

1

2�i

Z
T

hj .�/ q.�/ d�

� � wj
D hj .wj / q.wj /:

It gives, that for z 2 Gj one has

y�j .z/ D
hj .wj /

f 0j .wj /
D y�.fj .wj // D y�.z/;

which ends the proof.

We are ready now to prove the first assertion of the theorem. Recall, that G D G0
and X D xG in this case. It follows from Step 2, that y�.z/ D y�0.z/ for all z … G,
consequently � � �0 ? R.@G/. Since @G is a Carathéodory compact, in view of
Theorem 3.10 we have R.@G/ D C.@G/ and hence � D �0. For each finite subset
I � J put WI WD

S
j2I Gj . The following assertion is the direct consequence of

[15, Lemma 7].

Step 3. There exists a sequence .rk/ of functions from R.X/ such that krkkX 6 1,
rk � 1 locally in WI and rk � 0 locally in Xı nWI .

Let denote by �I ? R.X/ a weak-star limit in the space of measures on X of the
sequence of measures .rk�/.

Step 4. One has

(i) y�I .z/ D y�.z/ for all z 2 WI ;

(ii) y�I .z/ D 0 for all z 2 Xı nWI .
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Proof. Denote also by .rk�/ the partial sequence that converges in the weak-star
topology to �I . If z … @X , then

y�I .z/D lim
k!1

�
1

2�i

Z
.rk.�/ � rk.z// d�.�/

� � z
C
rk.z/

2�i

Z
d�.�/

� � z

�
Dy�.z/ lim

k!1
rk.z/;

gives the desired assertion.

It follows from Steps 2 and 4, that

y�I .z/ D
X
j2I

y�j .z/; z … @X:

Since R.@X/ D C.@X/, we conclude that

�I D
X
j2I

�j : (3.24)

Taking into account (3.24), Proposition 3.47 and the fact that �j � !j we con-
clude, that �j ? �k for j; k 2 J , j ¤ k. Hence, we haveX

j2I

k�j k D



X
j2I

�j




 D k�Ik 6 k�k;
which means that

P
j2J k�j k <1. Let � D

P
j2J �j . It is clear, that � ? R.X/.

For each j 2 J we have y�.z/D y�j .z/ for all z 2Gj and applying the result of Step 2
we conclude that y�.z/ D y�.z/ on X . Then, � D �.

Take now k 2 J . Since �j ? �k for j 2 J n ¹kº, then for every Borel setE � @X
we have

�j@Gk .E/ D �.E \ @Gk/ D
X
j2J

�j .E \ @Gk/ D �k.E \ @Gk/ D �k.E/:

The remaining part (item (3)) follows from (3.22) if Xı ¤ ;, and from The-
orem 3.10 otherwise.

Thus, the proof is finished.

Moreover, it is possible to find out in [15] certain additional facts concerning the
objects that were introduced in the proof of Theorem 3.48. We present only two of
them. In fact, one has X

j2J

Z
fj .�T/

jy�.�/j d� 6 Ck�k;

for each � 2 .0; 1/, and X
j2J

khj k1 6 Ck�k;

where C > 0 is some absolute constant.
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Remark 3.49. The part (2) of Theorem 3.48 remind us the Decomposition theorem
for orthogonal measures, see [56, Theorem 7.11, Chapter II], see also [60]. We have
not made the connection between both results, probably it can give another proof of
Bishop result. Also it is curious to observe that Bishop’s papers were not mentioned
in Gamelin’s book.

We have seen in Bishop’s Theorem 3.48 that ifG is a Carathéodory domain and �
is a measure on @G such that �?R. xG/, then �� !.a; �;G/ for every point a 2G. It
turns out, that some converse result is also true. More precisely we have the following
result, which must be compared with [38, Theorem 1].

Proposition‘ 3.50. Let � be a non-empty bounded domain in C, and let a 2 �.

(a) If � is a Carathéodory domain, and the set C n x� is not connected, then
there exist � 2 P.x�/? such that � is not absolutely continuous with respect
to !.a; �; �/.

(b) Assume that every measure which is orthogonal to P.x�/ is absolutely con-
tinuous with respect to !.a; �; �/. Then, � is a Carathéodory domain and
the set C n x� is connected.

Proof. (a) Assume that C n x� has a bounded component �1. Then, �1 is a Carathé-
odory domain and its complement is connected. This fact together with the part (1)
of Theorem 3.48 yields that every measure of the form .h ı �/ !, where h 2 H 1, �
is some conformal map from �1 onto D and ! is the complex harmonic measure on
@�1 with respect some point b 2�1, is supported in @�1 � @�, it is orthogonal to P

and it is not absolutely continuous with respect to !.a; �;�/, since !.a; @�1;�/D 0.
(b) Let�0DC n x�1, i.e.,�0 is the interior of the complement of the unbounded

component of the set C n x�. If � is not a Carathéodory domain then there exists
z0 2 �0 \ @�. Consider now the measure

�0 WD !.z0; �; �0/ � ız0 :

Then, for every P 2 P, one hasZ
P.�/ d�0.�/ D

Z
@�0

P.�/ d!.z0; �;�0/ � P.z0/ D 0;

because P is a harmonic function on x�0. Then, � ? P.x�/ and it is not absolutely
continuous with respect to !.z0; �; �/. When we know that � is a Carathéodory
domain, we apply the result of part (a) in order to complete the proof.

Remark 3.51. The class of Carathéodory domains � for which x� does not separate
the plane is (in view of Proposition 3.50) the largest class of domains for which the
well-known F. and M. Riesz theorem may be extended from the unit disk preserving
its formulation.
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At the end of this section we present one refinement of Rudin’s converse of the
maximum modulus principle, where the concept of a Carathéodory set and The-
orem 3.48 plays a crucial role.

Let us briefly recall the story of the aforementioned result. Let � be a bounded
domain in C, and let f 2 C.x�/\H.�/. The classical maximum modulus principle
states that for any z 2 � the inequality jf .z/j 6 kf k@� is satisfied. Moreover, if
this inequality turns into equality at least at one point z 2 �, then the function f is
constant. The question on whether it is possible to invert this principle arises quite
naturally. In other words this is the question on whether it follows from the condition
jf .z/j 6 kf k@� (or from its certain weaker versions; see below) that the function
f 2 C.x�/ is holomorphic in �. One of the best known results of this kind is the
following theorem due to W. Rudin (see [115, Theorem 12.13]). As before, j stands
for the function j.z/ D z.

Theorem 3.52. Let F be a subspace of the space C.xD/. Assume that F satisfies the
following three conditions: .i/ 1 2 F ; .ii/ for every function f 2 F it holds jf 2 F ;
and .iii/ the inequality

jf .z/j 6 kf kT (3.25)

is satisfied for every f 2 F and z 2 D. Then, each function of F is holomorphic in
D.

Let xF be the closure of F in C.xD/. Since the conditions (i) and (ii) of The-
orem 3.52 imply that P � F , then A.xD/ D P.xD/ � xF � A.xD/. So that, if a given
closed subspace X � C.xD/ satisfies all conditions of Theorem 3.52, then X D

A.xD/ D P.xD/.
Rudin’s theorem was a starting point for a number of further studies in the line

of inversion of the maximum modulus principle. These studies were mainly related
with consideration of certain weaker versions of the inequality (3.25) instead of the
original one. Let us mention in this occasion the work by J. Anderson, J. Cima,
N. Levenberg, and T. Ransford [4]. In this paper the inequality jf .z/j 6 Czkf kT ,
where Cz is some positive number (which may depend on the point z 2 D), is con-
sidered in place of the inequality (3.25), and meromorphic functions in D are included
into consideration. The result in question is formulated as follows.

Theorem 3.53 (Anderson, Cima, Levenberg, Ransford). Let U be an open subset of
D and let g 2 C.U [T /. Assume that for any point z 2 U there exists a constant Cz
such that the inequality

jf1.z/C g.z/f2.z/j 6 Czkf1 C gf2kT

is satisfied for all functions f1; f2 2 A.xD/. Then, there exist two functions u;v 2H1

such that g D u=v in U and for a.a. points � 2 T the equality of angular boundary
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values g.�/D u.�/=v.�/ holds. In particular, the function g is holomorphic in U and
extends meromorphically to D.

It is also interesting to extend Rudin’s theorem to domains which are different
from the unit disk. However, this question is unstudied as yet. In [39] A. Dovgoshei
considered it for the first time for Carathéodory domains G which do not separate the
plane. He proved the following statement.

Theorem 3.54 (Dovgoshei). LetG be a Carathéodory domain with the boundary � ,
and let A be a closed subalgebra of the algebra C. xG/ such that 1 2 A and kf k xG D
kf k� for any function f 2 A. The following two conditions are equivalent:

(a) if there exists a function g 2A such that g is injective on xG and holomorphic
in G, then A D P. xG/;

(b) the set xG does not separate the plane.

Notice that in this theorem one considers subspaces of the space C. xG/ possessing
certain additional (with respect to Rudin’s theorem) conditions. Thus, as distinct from
Rudin’s theorem, we are dealing in that case with a closed subalgebra A � C. xG/,
but not with a subspace F � C. xG/. Moreover, in Theorem 3.54 the condition of
closedness of A with respect to multiplication by j is replaced with the condition
that A contains some univalent function. In fact, it was proved in [39] that for a
Carathéodory domain G for which xG does not separate the plane, the condition that
a closed subalgebra A � C. xG/ contains some univalent function, yields that j 2 A.
This result may be obtained as the consequence of Theorem 1.7 (more precisely, as
the consequence of the weaker version of this theorem obtained in [39]). Let us also
notice that the result of Theorem 3.54 in the case when G is a Jordan domain was
previously obtained by Rudin in [113]. It is worth to observe that the assumptions
which are imposed to A in Theorem 3.54 can be weakened and formulated as in
Rudin’s theorem. Indeed, the following result holds, see [51, Theorem 1].

Theorem‘ 3.55. Let G be a Carathéodory domain.

(a) Let G be such that xG does not separate the plane. If a subspace F of the
space C. xG/ satisfies the following three conditions: .i/ 1 2 F ; .ii/ for every
function f 2 F it holds jf 2 F ; and .iii/ the inequality jf .z/j 6 kf k@G is
satisfied for all f 2 F and z 2 G; then each function in F is holomorphic
in G.

(b) A closed subspace X � C.x�/ satisfying the conditions .i/–.iii/ from the first
part of the theorem (where F is replaced by X) coincides with P. xG/ if and
only if xG does not separate the plane.

The proof of the direct statement in Theorem 3.55 is essentially based on the
usage of Wermer’s maximality theorem for Carathéodory domains that do not separate
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the plane. As it was shown previously in Theorem 3.42, the condition that xG does not
separate the plane cannot be dropped whenever we want to preserve the maximality
theorem statement.

Since the notion of a Carathéodory domain has appeared in the same topics in
complex analysis and theory of uniform algebras with theorems by Rudin, Wermer
and Anderson–Cima–Levenberg–Ransford, it is quite natural to consider Carathéo-
dory domains in the respective context. In fact, we have the following result, see
[51, Theorem 2].

Theorem‘ 3.56. Let G be a Carathéodory domain with the boundary � , and let U
be an open subset of G. Let g 2 C.U [ � /. Assume that for any z 2 U there exists a
constant Cz such that the inequality

jf1.z/C g.z/f2.z/j 6 Czkf1 C gf2k� (3.26)

is satisfied for any function f1; f2 2 A. xG/. Then, there exist two functions u; v 2
H1.G/ such that the equality

g.z/ D
u.z/

v.z/
(3.27)

holds everywhere in U and a.e. on � in the sense of conformal mappings. The latter
means that for a.a. points � 2 T the following equality of angular boundary values
holds g.f .�//D u.f .�//=v.f .�//, where f is some conformal map from the disk D
onto G. In particular, the function g is holomorphic in U and extends meromorphic-
ally to G.

In the case, when M � G is some finite set and U D G nM , Theorem 3.56
gives the description of meromorphic functions in G with poles in M . In particular,
if the set M is empty, then the respective description of holomorphic functions in G
originates from this theorem.

Observe that in the case whenG is a Jordan domain with rectifiable boundary, the
equality (3.27) may be realized directly as the equality of angular boundary values
a.e. on @G.

Corollary 3.57. LetG be a Carathéodory domain for which xG does not separate the
plane. Assume that a function g 2 C. xG/ is such that for any functions f1; f2 2 A. xG/
and for any point z 2 G the inequality

jf1.z/C g.z/f2.z/j 6 kf1 C gf2k� (3.28)

is satisfied. Then, the function g is holomorphic in G.

Notice, that the assertion of Rudin’s theorem may be derived from this corollary,
see [51, Section 3] for the details.
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3.6 Approximation by polyanalytic functions

The topic on approximation of functions by polyanalytic polynomials and polyana-
lytic rational functions is the subject of active studying in contemporary complex
analysis and approximation theory. The concept of a Carathéodory set appears in this
topic very naturally. In this section let X be a compact set in the complex plane, and
let n > 1 be an integer. We define

Pn D PCNz PC � � � C Nzn�1 P;

Rn D RCNzRC � � � C Nzn�1R :

The spaces Pn and Rn are modules of dimension n over P and R, respectively,
generated by the powers of the function Nz. For a given integer d > 1 we will also
consider modules Pn;d and Rn;d generated by powers of Nzd instead of powers of Nz.
For instance,

P2;d D PCNzd P; R2;d D RCNzd R; : : : :

Let us recall, that a function f is said to be polyanalytic of order n (or, for the
sake of brevity, n-analytic) in an open set U � C, if it is of the form

f .z/ D f0.z/C Nzf1.z/C � � � C Nz
n�1fn�1.z/;

where f0; : : : ; fn�1 2 H.U /. The functions f0; : : : ; fn�1 are usually called holo-
morphic components of f . As usual, n-analytic functions whose holomorphic com-
ponents are polynomials and rational functions will be called polyanalytic polynomi-
als and polyanalytic rational functions, respectively. In fact, a polyanalytic rational
function is not, in the general case, a quotient of two polyanalytic polynomials. It
can be readily verified that the set of all n-analytic function on an open set U coin-
cides with the set of all functions f 2 C.U / each of which is satisfies in U (in the
sense of distributions) the (elliptic) partial differential equation x@nf D 0. One ought
to notice right now, that elements of modules generated by Nzd for every d > 1 no
longer belong to the kernel of some elliptic differential operator with constant coef-
ficients, but (under suitable additional assumptions) they belong to the kernel of the
elliptic operator f 7! x@. Nz1�dx@f /.

Furthermore, for a closed set E � C we will denote by Rn;d;E the set of all
functions g 2Rn;d such that all poles of all holomorphic components of g lies outside
E. Finally, we put Rn;E D Rn;1;E and define the space

An.X I Nz
d / D C.X/ \ .H.Xı/C NzdH.Xı/C � � � C Nzd.n�1/H.Xı//;

and let An.X/D An.X I Nz/, so that An.X/ is the set of all functions which is continu-
ous on X and n-analytic on its interior.
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LetK be an arbitrary compact set in C containingX . It can be shown, that the uni-
form closures on X of the spaces Pn;d jX and Rn;d;K jX are contained in An.X I Nzd /.

Thus, the problem on to describe such compact setsX for which the set Pn;d jX is
dense in An.X I Nzd / is of interest. We refer the reader to the recent survey paper [88],
where the history of this problem and its state-of-the-art are established in details.
Here, we only state two results, which highlight the role of Carathéodory sets in this
topic. Before doing this let us present the following result which may be directly
derived from the main results of [25] using the Runge’s pole–shifting method.

Theorem 3.58. Assume X to be such that the set C n X is connected. Then, the
following hold.

(1) For any integer n > 1 the space Pn jX is dense in An.X/.

(2) For any integer d > 2 the space P2;d jXD.PCNzd P/jX is dense inA2.X I Nzd /.

For formulation of next results we need the concept of a d -Nevanlinna domain.
This is the special analytic characteristic of bounded simply connected domains in the
complex plane which was originally introduced in the case d D 1 in [49] and [28],
and later in [8] for d > 1. It will be clear from what follows, that this concept turned
out to be crucial for the aforementioned problem.

Definition 3.59. Let d 2 N. A bounded simply connected domain G � C is called
a d -Nevanlinna domain if there exists two functions u; v 2 H1.G/ such that the
equality

Nzd D
u.z/

v.z/

holds almost everywhere on @G in the sense of conformal mappings. The latter

means, that the equality of boundary values f .�/
d
D .u ı f /.�/=.v ı f /.�/ holds

for almost all points � 2 T , where f is some conformal mapping from D onto G.

The class of 1-Nevanlinna domains is just the class of Nevanlinna domains. Notice
that properties of Nevanlinna domain and d -Nevanlinna domains has been studied in
detail during the two last decades (see, for instance, [8–12, 50, 86, 87]).

Let us mentioned several simple examples. In fact, D is a d -Nevanlinna domain
for all d > 1. At the same time, any domain bounded by an ellipse which is not a
circle is not a d -Nevanlinna for any d > 1. Take any fixed d > 1. For a real a > 1 let
ga be the single valued branch of the function d

p
a � z defined on C n Œa;C1/ and

such that ga.0/ > 0. Then, the domain ga.D/ is a d -Nevanlinna, but not a Nevanlinna
domain. At the first glance it seems that the concept of a Nevanlinna domain gives
a slight refinement of the concept of a Schwarz function of an analytic arc (see, for
instance, [35]), but it turns out that there exists Nevanlinna domains with not analytic,
not smooth, not rectifiable boundaries and, moreover, Nevanlinna domains G such
that the Hausdorff dimension of the set @aG could take any value in Œ1; 2�.
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In the following statement we combine the results of [28, Theorem 2.2], [16,
Theorem 4], and [26, Theorem 4]. Let C0X be the set of all connected components of
the set Int. yX/ that are not contained in X , that is

C0X D ¹� 2 C.Int. yX// W � 6� Xº:

Theorem‘ 3.60. The following statements hold.

(1) Let X be a compact set in C such that the set C0X is not empty. Then, the
subspace Pn jX is dense in An.X/ if and only if for every � 2 C0X the space
Rn;x� jX\x� is dense in An.X \ x�/.

(2) Let G be a bounded simply connected domain in C. If G is a Nevanlinna
domain, then Rn; xG j@G is not dense in C.@G/ for any integer n > 0.

(3) Let G be a Carathéodory domain in C. The subspace Rn; xG j@G is dense in
C.@G/ if and only if G is not a Nevanlinna domain.

The same results hold in problem of approximating functions by elements of the
space P2;d D PC NzdP. In fact, we have (see [8, Theorems 1, 2, and Propositions 2,
3]).

Theorem‘ 3.61. The following statements hold.

(1) Let X be a compact set in C such that the set C0X is not empty. Then, the
subspace P2;d jX is dense in A2.X I Nzd / if and only if for every � 2 C0X the
space R2;d;x� jX\x� is dense in A2.X \ x�I Nzd /.

(2) Let G be a bounded simply connected domain in C. If G is a d -Nevanlinna
domain, then the space R2;d; xG j@G is not dense in C.@G/.

(3) Let G be a Carathéodory domain in C. The subspace R2;d; xG j@G is dense in
C.@G/ if and only if G is not a d -Nevanlinna domain.

Notice that this result is established for modules of dimension 2 only. The general
case remains open.

Remarks and hints concerning the proofs of Theorems 3.60 and 3.61. The first state-
ments in Theorems 3.60 and 3.61 are proved using the following scheme consisting
of two steps (see [16] and [8], respectively): at the first step it was proved that any
measure on X which is orthogonal to Pn (respectively, to P2;d ) is also orthogonal to
Rn;X (respectively, to R2;d;X ). The respective construction was essentially elaborated
in [28] in the proof of Theorem 2.2 of this paper. At the second step, using the spe-
cial refinement of the Vitushkin’s localization technique, it was proved that the space
Rn;X jX is dense in An.X/ (respectively, the space R2;d;X jX is dense in A2.X I Nzd /).
The condition that Rn;x� jX\x� is dense in An.X \ x�/ (and the respective condition
in the second case) allow us to construct the desired approximants.
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In order to prove the second statements in both Theorems 3.60 and 3.61 it is suffi-
cient to show, that if G is a d -Nevanlinna domain, then the function . Nzd � Nad /=.z �
a/, a 2G, cannot be approximated uniformly on @G by rational functions of the class
R2;d; xG . The detailed exposition of this proof is in the proof of Theorem 4 in [26] and
of the proof of Proposition 2 in [8].

Let us present the schematic exposition of the proof of the third statements of the-
orems under consideration, because in the respective constructions show the reasons
why the Carathéodory domain and Nevanlinna domain concepts are important and
crucial for the aforementioned topic.

Let f be a conformal mapping from D onto G. We recall, that Corollary 2.25
states that the functions f and f �1 can be extended to mutually inverse Borel meas-
urable functions on D [ F.f / and G [ @aG, respectively. Let ! D f .d�/ the com-
plex harmonic measure with respect to f .0/, see (3.19). If the space R2;d; xG is not
dense in C.@G/, then there exists a non-zero measure � on @G such that � ? R1; xG
and Nzd� ? R1; xG . In view of (3.21) there exists two functions h1; h2 2 H 1 such that
� D .h1 ı f

�1/ ! and Nzd� D .h2 ı f
�1/ !. Therefore, for almost all � 2 T one

has f .�/dh1.�/ D h2.�/. Going further, replacing the quotient h2=h1 by f2=f1 with
f1; f2 2H

1 and defining the functions u and v inG as follows: u.z/D f2.f �1.z//,
v.z/ D f1.f

�1.z// one obtains that Nzd D u.z/=v.z/ almost everywhere on @G in
the sense of conformal mappings, as it is demanded.

Finally, let X be a Carathéodory compact set. In such a case the set C0X is exactly
the set of all bounded connected components of the set C n X . Thus, the following
statement is a direct corollary of Theorems 3.60 and 3.61:

Corollary‘ 3.62. Let X � C be a Carathéodoty compact set.

(1) The space Pn jX is dense in An.X/ if and only if each bounded connected
component of the set C nX is not a Nevanlinna domain.

(2) The space P2;d jX is dense in A2.X I Nzd / if and only if each bounded connec-
ted component of the set C nX is not a d -Nevanlinna domain.


