
Chapter 4

Approximation in Lp-norms on Carathéodory sets

In this chapter we consider the topic on approximation of functions on Carathéodory
sets by rational functions or polynomials in Lp-norms for 0 < p < C1.

For a bounded measurable set E � C let us denote by Lp.E/ the space of all
measurable functions f WE ! C such that

kf kp;E D kf kLp.E/ D

�Z
E

jf .z/jp dA.z/

� 1
p

< C1;

while by Ap.E/ we denote the space consisting of those functions in Lp.E/ that are
holomorphic in the interior ofE. In the case thatE is a domain, the spacesAp.E/ are
usually called Bergman spaces. For p > 1 they are Banach spaces, but for p 2 .0; 1/
the quantity kf kp;E is only a quasi-norm. The history and the state-of-the-art of the
theory of Bergman spaces may be found in the books [41] and [66].

4.1 Approximation in Bergman spaces

Our first goal in this section is to prove and discuss the following result, which is due
to O. J. Farrell [45, 46] and A. I. Markushevich [84], see also [85, Chapter v].

Theorem 4.1 (Farrell). Let G be a Carathéodory domain and let 0 < p < C1. For
every function f 2 Ap.G/ there exist a sequence .pn/ of polynomials such that

lim
n!1

Z
G

jf .z/ � pn.z/j
p dA.z/ D 0:

In order to find the original proof of this theorem given by Farrell, it is con-
venient to pass thought both his papers [45] and [46]. The case that p D 2 was
considered independently by Markushevich, however, there are some evidences that
he has proved the corresponding result in the general case too. Markushevich’s proof
given in his later book [85, Chapter v] uses some tools which are very useful in the
case of Hilbert spaces.

Before proving Theorem 4.1 let us make some historical remarks concerning the
matter. Let G be a bounded domain in the complex plane. As far as we know the
first results on approximation of functions in the class Ap.G/, for a given domain
G � C and a number p 2 .0;1/, by polynomials were obtained in the beginning
of the 1920s by T. Carleman [23]. He considered the case of Jordan domain starlike
with respect to the origin. Since his result is completely covered by Theorem 4.1, we
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are not going to comment it or on the technique used in Carleman’s proof. It is worth
mentioning here, that in the case when G D D, p > 1, and f 2 Ap.D/, then one can
take the sequence of Taylor polynomials of f (with the center at the origin) as the
desired approximating sequence in Theorem 4.1. Notice also, that in the general case,
if f 2 Ap.D/ with p 2 .0; 1�, the sequence of the Taylor polynomials of f does not
converge to f . The details of these constructions may be found in [41, page 31]. Let
us notice however, that the proof in the case 0 < p <1 and G D D does show that
f� converges to f as �! 1, where f�.z/ D f .�z/.

Proof of Theorem 4.1. Let the sequence .Jn/ of Jordan curves such that D.Jn/ con-
verges to G (in the sense of kernel convergence), the sequence .'n/ of conformal
maps from D.Jn/ onto D, and the conformal mapping ' from D onto G be as in the
proof of Theorem 3.25. Let gn, n 2N, be the function gn D ' ı 'n defined onD.Jn/.
Then, gn.z/! z and g0n.z/! 1 locally uniformly in G. Consider the function

fn D .f ı gn/ .g
0
n/
2=p

defined in D.Jn/, where the branch of g0n
2=p is taken in such a way that is positive at

the point z0 D '.0/. Let
Cp D max¹2p�1; 1º;

so that jaC bjp 6 Cp.jajp C jbjp/ for every point a; b 2 C. Fix now " > 0 and take
K � G to be the closure of some Jordan domain such that

Cp

Z
GnK1

jf .z/jp dA.z/ < "=3; (4.1)

where K � K1 � G, and K1 also is the closure of some Jordan domain. Choosing
K1 in such a way that G n gn.K1/ � G nK for all n > n0 with some n0 2 N, one
has Z

G

jf � fnj
p dA 6

Z
K1

jf � fnj
p dAC

Z
GnK1

jf � fnj
p dA

6
Z
K1

jf � fnj
p dAC Cp

Z
GnK1

jf jp dAC Cp

Z
GnK1

jfnj
p dA:

(4.2)

The last integral in (4.2) can be estimated using (4.1) and (2.1) as follows:Z
GnK1

jfnj
p dA D

Z
GnK1

jf .gn.z//j
p
jg0n.z/j

2 dA.z/ D

Z
gn.GnK1/

jf jp dA

6
Z
Gngn.K1/

jf jp dA 6
Z
GnK

jf jp dA 6
"

3Cp
:

(4.3)

For n> n1 with some n1 2N. Since f .z/� f .gn.z//g0n.z/! 0 uniformly on z 2K1
we have Z

K1

jf � fnj
p dA.z/ <

"

3
; (4.4)
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for n > n2 with some n2 2 N. Using (4.4), (4.3), and (4.2) we obtainZ
G

jf .z/ � fn.z/j
p dA.z/ < "; n > n3: (4.5)

For n > n3 D max¹n0; n1; n2º.
Each function fn is holomorphic in D.Jn/ which is an open simply connected

neighborhood of yG. Then, applying again the Runge’s theorem, we conclude that
there exists a polynomial Pn such thatZ

yG

jfn.z/ � Pn.z/j
p dA.z/ < ";

for n > n3. Using this together with (4.5) we obtainZ
G

jf � Pnj
p dA 6 2Cp";

for n > n3, which completes the proof.

Let us observe that Theorem 3.25 can be regarded as the limiting case of The-
orem 4.1 when p D C1.

It would be interesting to compare Theorems 3.25 and 4.1 with each other, as well
as with Runge’s theorem, at least in some simple cases. For instance, let us take pD 1
and put G D D. In this case, the polynomials nzn, n 2 N, converge to zero locally
uniformly in D, but they do not converge on Lp.D/ for any p > 0. On the other hand
the polynomials zn converge to zero locally uniformly in D and also converges in
Lp.D/ for each p > 0. They do not, however, satisfy the estimate of Theorem 3.25.
The polynomials zn=n converge to zero locally uniformly in D and they satisfy the
estimate of Theorem 3.25. Finally, the polynomials pnznk

n
with p > 0 and k 2 N,

converge in Lp.D/ when p 6 k and diverge when p > k.
Since the convergence of some sequence of holomorphic functions defined on a

given open set U in Lp.U /-norm (for some p > 0) implies the locally uniform con-
vergence of this sequence in U , one can additionally conclude in Theorem 4.1 that
the sequence .Pn/ converges locally uniformly in G to f . The possibility of poly-
nomial approximation in such theorem in the case when the set C n xG has bounded
components looks a bit surprising. For example, if we suppose G to be the left-hand-
side domain in Figure 2 (the cornucopia), then the function 1=z can be approximated
in Ap.G/ by a sequence of polynomials but, of course, it cannot be approximated by
polynomials locally uniformly inG. Notice also, that in a given Carathéodory domain
G there may exist a compact set K � xG such that yK is not contained in xG and the
Lp.G/-convergence of some sequence of polynomials does not imply the uniform
convergence of this sequence on yK. It is worth comparing this observation with the
next proposition.
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Proposition‘ 4.2. Let U be an open set in C andK � U be a compact set. Let p > 0
and f 2 Ap.U /. Assume that there exists a sequence .Pn/ of polynomials such that

lim
n!1

Z
U

jf � Pnj
p dA D 0: (4.6)

Then, f has an analytic extension to U [ yK. Denoting again this extension by f one
has

lim
n!1

Z
U[ yK

jf � Pnj
p dA D 0:

Proof. It is enough to consider the case yK nU ¤;. Take such r>0 that dist.K;@U />
2r . We need the following statement asserting that functions in a Bergman space
cannot grow too rapidly near the boundary (see [41, Theorem 1]).

Lemma 4.3. Let p > 0. For each function f 2 Ap.U / and for each compact set
K � U , we have

kf kK 6
kf kp;U

�1=p dist.K; @U /2=p
: (4.7)

In particular, if a sequence of functions .fn/, fn 2 Ap.U /, converges to f in Ap.U /,
then fn� f locally in U .

Consider the compact set

K1 D K [
[
z2K

D.z; r/ � U

and apply (4.7) to K1. Then, one has

kf � PnkK1 D sup
z2K1

jf .z/ � Pn.z/j 6 cr
Z
U

jf � Pnj
p dA; (4.8)

for some constant cr depending on U , K, and p.
Then, (4.8) and (4.6) imply that .Pn/ is a Cauchy sequence on K1. By the max-

imum modulus principle the sequence .Pn/ must converge uniformly to some holo-
morphic function g on Int.cK1/. Since yK � Int.cK1/ then .Pn/ converges uniformly
on yK, so it converges in the space Lp. yK/. By (4.8) it follows that g.z/ D f .z/ on
K, and the usage of the inequalityZ

U[ yK

jf � Pnj
p dA 6

Z
U

jf � Pnj
p dAC

Z
yK

jg � Pnj
p dA

finishes the proof.

We mention three simple examples showing the situation with polynomial ap-
proximation in Lp-norm in the case of non-Carathéodory domains.
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Example 4.4. We mention three simple examples showing the situation with poly-
nomial approximation in Lp-norm in the case of non-Carathéodory domains.

(i) TakeG1DD n .�1;0� and g.z/D 1=z, z 2G1. Then, g 2Ap.G1/ for each
p, 0<p <2, but g cannot be approximated in theLp-norm by polynomials
for any p 2 .0; 2/.

(ii) Let g.z/ D log z, z 2 G1 (where log stands for the principal branch of the
log-function). Then, g cannot be approximated in the Lp-norm by polyno-
mials for any p > 0.

(iii) Take G2 D D n .D.0; 1=2/ [ Œ0; 1// and g.z/ D 1=z, z 2 G2. Then, g
cannot be approximated in the Lp-norm by polynomials for any p > 0.

The verification of all these statements may be done using (4.7).

The construction given in the first of the aforesaid examples may be refined and
generalize by the following way.

Proposition‘ 4.5. Let G be a Carathéodory domain and let E be some end-cut of G
such that Area.E/ D 0, and let GE be the corresponding slitted domain G n E . Then,
the set of polynomials is not dense in Ap.GE/ for any p > 0.

Proof. Take a conformal map g from GE to the unit disk. Then, g 2 Ap.GE/ for
each p > 0. Assume that there exists a sequence of polynomials .Pn/ that converges
in Ap.GE/ to the function g. Therefore, .Pn/ is a Cauchy sequence in Ap.G/. So, it
needs to converge uniformly on compact subsets of G to a function Qg 2H.G/ which
coincides with g on G n E . But this is impossible since in each cut point a 2 E , the
function g cannot be extended continuously to a neighborhood of a.

In view of this proposition one can ask whether the condition that a given domain
G is a Carathéodory domain, is necessary in order to have polynomial approximation
in Ap.G/. The answer to this question is negative, as it may be observed from several
constructions of so-called moon-shaped domains.

Recall, that a domain M � C is called a moon-shaped domain, if it has the form
M DD.J1/ nD.J2/, where J1;2 are two Jordan curves such that J1 \ J2 D ¹�º and
J2 � D.J1/ [ ¹�º. In what follows it would be appropriate to say that the domain
M is determined by the curves J1 D J1.M/ and J2 D J2.M/. It will be also useful
to write D1 D D1.M/ D D.J1/ and D2 D D2.M/ D D.J2/ in the situation under
consideration.

The simplest example of a moon-shaped domain is the domain

Mr WD D nD.r; 1 � r/; (4.9)

for 0 < r < 1, see the left-hand side domain on Figure 9. In this situation J1 D T ,
while J2 D ¹z W jz � r j D 1 � rº.
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Mr

0 r

M�

Figure 9. Two moon-shaped domains: Mr and M�.

In the following two propositions we collect several results about moon-shaped
domains, which are closely related with the topic on Lp-polynomial approximation
being discussed.

Proposition‘ 4.6. LetM be a moon-shaped domain, let p 2 .0;1/ and s D 2=.pC
2/. The set of polynomials is dense in Ap.M/ if and only if there exists b 2 D2.M/

such that both functions '.z/D .z � b/s and  .z/D .z � b/�s can be approximated
by polynomials in Ap.M/.

Sketch of the proof. The necessity of the stated condition is clear. For proving its suf-
ficiency, let us note that the function ' maps conformally the given domain M onto
some domainW D '.M/. Since s < 1 thenW is a Jordan domain. Putw D '.z/, z 2
M , then zD '�1.w/D bCw1Cp=2. Take f 2Ap.M/ and put f1.w/D f .'�1.w//.
Since '.z/p.'0.z//2 D s2 for every z 2M , one hasZ
W

jwf1.w/j
p dA.w/ D

Z
M

j'.z/jpjf .z/jpj'0.z/j2 dA.z/ D s2
Z
M

jf .z/jp dA.z/:

Then,wf1 2Ap.W /. Take any " > 0. Since the set of polynomials is dense inAp.W /
(becauseW is a Jordan domain), there exists a polynomial P.w/D

Pn
kD0 akw

k such
thatZ

W

jwf1.w/ � P.w/j
p dA.w/ D s2

Z
M

ˇ̌̌̌
f � a0 �

nX
kD1

ak'
k�1

ˇ̌̌̌p
dA < ":

Thus, the possibility of approximation of both function ' and  by polynomials in
Ap.M/ implies the possibility of approximation in the desired sense of any function
f 2 Ap.M/.

Note that in the case p D 2 it can be shown that is it sufficient to approximate
just  in order to have the conclusion in Proposition 4.6. This will be used in proving
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part (3) of the next proposition. At the same time the mentioned arguments cannot
be used in the case p ¤ 2. In view of this reason it is not clear how to modify the
construction of the domain M� to obtain a corresponding example that covers the
case p ¤ 2 in part (3) of Proposition 4.7.

Proposition 4.7. The following approximation properties hold.

(1) Let M be a moon-shaped domain, while � be the common point of J1.M/

and J2.M/. If there exist a rectifiable Jordan curve � in M [ ¹�º such that
� 2 � , and a number ˛ > 0 such thatZ

�

dist�˛.z; @M/ jdzj < C1;

then the set of polynomials is not dense in Ap.M/ for every p > 0.

(2) The set of polynomials is not dense in Ap.Mr/ for any p > 0 and for any
r 2 .0; 1/.

(3) There exists a moon-shaped domain M� such that the set of polynomials is
dense in A2.M�/.

Sketch of the proof. Part (1) The proof of this statement can be obtained following
the pattern of the verification of Example 4.4, which is based on usage of (4.7); the
case p D 2 may be found in [91, page 116].

Part (2) Using the notation of the previous part, let us take

� .t/ D
r

2
C

�
1 �

r

2

�
eit ; t 2 Œ0; 2��; r 2 .0; 1/;

It can be verified that this curve satisfies the conditions of the previous statement for
every ˛ < 1

2
.

Part (3) Denote by arg the branch of the argument function defined on C n ¹0º
such that argz 2 .��;�� for z ¤ 0. Let us construct a sequence .˛n/with 0 < ˛n < 1,
a sequence of polynomials .Pn/, and three sequences of sets .Dn/, �n and �n as
follows. Let ˛0 D 1=4 and

D1 D ¹z 2 D W jz � ˛0j > 1 � ˛0; jargzj > �=2º:

According to Runge’s theorem there exists a polynomial P1 such that

kz�1=2 � P1k2;D1 < 1=
p
2:

Next there exists a sufficiently small ˛1 2 .0; 1/ and the domain

�1 D ¹z 2 D W jz � ˛1j > 1 � ˛1; jargzj < �=2º

such that
kz�1=2 � P1k2;�1 < 1=

p
2:
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Finally, let˝1 WD ¹z 2D W jz � ˛1j> 1� ˛1; jargzj> �=4º. Assume, that all desired
objects are already constructed for n D 1; : : : ; N � 1, N > 2. Put DN D DN�1 [
˝N�1. There exists a polynomial PN such that

kz�1=2 � PN k2;DN < 2�N=2;

and a (sufficiently small) number ˛N 2 .0; 1/ such that

kz�1=2 � PN k2;�N < 2�N=2;

for the domain �N D ¹z 2 D W jz � ˛N j > 1 � ˛N ; jargzj < �=2N º. Defining

˝N D
®
z 2 D W jz � ˛N j > 1 � ˛N ; jargzj > 1=2NC1

¯
we finish the construction. Now, we are able to define the domain M� as

S1
nDDn.

Since M� � Dn [�n for every integer n > 0 one has

kz�1=2 � Pnk2;M� < 2
.1�n/=2:

Then,  .z/ D z�1=2 belongs to A2.M�/, so the proof of (3) is completed.

It is also worth mentioning here yet another example given in [71] (see also [91]).
Taking ˛ > 4 and � 2 .0; 1/ let

�˛;� WD
®
z D x C iy 2 C W y2 D .�C x/.1 � x/˛

¯
:

The moon-shaped domainM determined by J1DT and J2D�˛;� is homeomorphic
to the domain M� defined in the proof of the part (3) of Proposition 4.7. But it was
proved in [71] that the set of polynomials is not dense in A2.M/. So, the question
on Lp-approximation by polynomials depends on certain metric properties of the
domain under consideration.

At the end of this section we present yet another two proofs of Theorem 4.1 in
the Hilbert space setting, namely, in the case that p D 2. We do it in order to high-
light certain special properties of Carathéodory domains and their conformal maps on
which these proofs are based. The first proof was given by A. I. Markushevich [83],
and it is based on the following lemma.

Lemma 4.8. Let G be a Carathéodory domain and z0 2 G. Take a sequence .Gn/ of
Jordan domains such that Gn ! G with respect to z0, and let gn be the conformal
map from Gn onto D normalized by the conditions gn.z0/ D 0 and g0n.z0/ > 0 for
every n 2 N. Moreover, let g be the conformal map from G onto D with the same
normalization, so that gn� g locally in G. Then,

lim
n!1

gkng
0
n D g

kg0 in A2.G/; for k 2 N0: (4.10)
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Proof. Taking k > 1, one has

jgkng
0
n � g

kg0j2 6
�
jgkn.g

0
n � g

0/j C j.gkn � g
k/g0j

�2
6 2jgnj2kjg0n � g

0
j
2
C 2jg0j2jgkn � g

k
j
2

6 2jg0n � g
0
j
2
C 2k2jg0j2jgn � gj

2:

We have used here that jgn.z/j < 1 and jg.z/j < 1 for each z 2 G. In fact, these
inequalities also hold for kD0. Since g0n.z/! g0.z/ for each z2G and

R
G
jg0nj

2dADR
G
jg0j2 dA D � we have that

R
G
jg0n � g

0j2 dA! 0. In order to verify this one can
use, for instance, the following fact on convergence which may be found in [115, page
76].

Lemma 4.9. Let � be a positive measure on some set E, let p 2 .0;1/, and let
f 2 Lp.E; �/, fn 2 Lp.E; �/, n > 1, and, finally let fn.x/ ! f .x/ for �-a.a.
x 2 E and kfnkp ! kf kp as n!1. Then, kf � fnkp ! 0 as n!1.

Thus,
R
G
jgn � gj

2 jg0j2 dA! 0, which is a consequence of Lebesgue domin-
ated convergence theorem, since jg0j2 2 L1.G; dA/, and jgn � gj 6 2 and jgn.z/ �
g.z/j ! 0 as n!1 for each z.

Sketched proof of Theorem 4.1 in the case p D 2. Take a function h 2 A2.G/. Using
the conformal map gWG ! D let us “move” the function h to the unit disc. Namely
we consider the function ' in D defined as follows:

'.w/ D .h ı g�1/.w/.g�1/0.w/; jwj < 1:

Since Z
D
j'.w/j2 dA.w/ D

Z
G

jh.z/j2 dA.z/;

then ' 2 A2.D/. Take the Taylor expansion for ' at the origin '.w/ D
P1
kD0 akw

k .
Then, as it was mentioned above, the Taylor polynomials of ' converges in A2.D/ to
'. Hence,Z

D

ˇ̌̌̌
ˇ'.w/ � NX

kD0

akw
k

ˇ̌̌̌
ˇ
2

dA.w/ D

Z
G

ˇ̌̌̌
ˇh.z/ � NX

kD0

akg.z/
kg0.z/

ˇ̌̌̌
ˇ
2

dA.z/! 0:

Fixed N and using Lemma 4.8 each sum
PN
kD0 akg

kg0 can be approximated in the
space A2.G/ by a function

hn D

NX
kD0

akg
k
ng
0
n

for some value of n. Since the function gn is defined on Gn and xG � Gn, one can use
Runge’s theorem to obtain a polynomial Pn which approximates the function hn in
A2.G/.
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The next result is similar to Lemma 4.8. It was proved in [91]. We present here
slightly different proof of this result working in the framework of more direct approach
related with properties of Carathéodory domains.

Lemma 4.10. Let G be a Carathéodory domain, let z0 2 G, and let .Gn/ be some
sequence of Jordan domains such thatGn!G with respect to z0 2G. Let  nWGn!
G be the conformal map normalized by conditions  n.z0/ D z0 and  0n.z0/ > 0,
n 2 N, and let h be some function of class A2.G/. Then, .h ı  n/ 0n converges to h
in A2.G/ as n!1.

Proof. Using the notations of Lemma 4.8 one can note that  n D g�1 ı gn for each
n > 1. Then,  n.z/! z for every z 2 G, so that h. n.z// 0n.z/! h.z/ as n!1
for every z 2 G. Moreover, making the change of variables w D  n.z/ we haveZ

G

jh. n.z// 
0
n.z/j

2 dA.z/ D

Z
 n.G/

jh.w/j2 dA.w/!

Z
G

jh.w/j2 dA.w/

as n!1. At that point we can finish the proof applying Lemma 4.9, as it was done
in the proof of Lemma 4.8.

The second alternative proof of Theorem 4.1 will be presented in Section 4.2,
where we will deal with certain aspects of the subject under consideration related
with the Hilbert space structure of A2.G/.

Approximation on Carathéodory compact sets

The next contribution to the theory of Lp-polynomial approximation on Carathéo-
dory sets was made by S. O. Sinanjan in [123]. He proved the two following theorems,
and the first one is a generalization of Theorem 4.1 for the case that 1 6 p <1.

Theorem 4.11 (Sinanjan). If K � C is a Carathéodory compact set, then the set of
polynomials is dense in Ap.K/ for every 1 6 p <1.

Scheme of the proof. The proof follows more or less directly the pattern of the ori-
ginal proof of Mergelyan’s theorem. Without loss of generality it may be assumed,
that K is a continuum. Let R > 0 be such that K � D.0; R=2/. Take a function
f 2 Ap.K/ and define it also for all points z … K by setting f .z/ D 0. Take and fix
an arbitrary ı > 0. Set

fı.z/ D

Z
C
f .�/Kı.j� � zj/ dA.�/;

where

Kı.r/ D

´
3
�ı2

�
1 � r

ı

�
; if 0 6 r 6 ı

0; if r > ı:
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The function fı possesses the following important properties:

(1) kfıkp 6 3kf kp;

(2) kfı � f kp 6 3!p.f; ı/, where !p.f; ı/ is the Lp-modulus of continuity of
f ;

(3) !p.fı ; r/ 6 3!p.f; r/;
(4) for any function  2 C.C/ with  .z/ D 0 for z 2 C nD.0; 2R=3/ it holds

kx@ ıkp 6 6
!p. ; ı/

ı
I

(5) fı D f in U D ¹z W dist.z;K{/ > ıº, while fı D 0 in U \K{.

In contrast to the original Mergelyan proof in the case under consideration one
needs to consider yet another convolution of the approximable function with the ker-
nel Kı defined above.

f �ı .z/ D

Z
C
fı.�/Kı.j� � zj/ dA.�/:

It follows from the aforesaid properties of the function fı that

kf � f �ı kp 6 kf � fıkp C kfı � f
�
ı kp 6 12!p.f; ı/:

Thus, it is enough to find a polynomial Q such that kf �
ı
�Qkp 6 A1!p.f; ı/ for

some absolute constant A1 > 0.
Take a conformal map from �1.K/

� D �1.K/ [ ¹1º to D. Then, the pre-
images of the circles jwj D 1 � 1=.nC 1/ under this transformation are denoted by
�n, they are analytic curves. Moreover, letDn DD.�n/. Now, the standard Cauchy–
Green formula (see, for instance, [18, page 151]) gives

f �ı .z/ D
1

2�i

Z
�n

f �
ı
.t/

t � z
dt �

1

�

Z
Dn

x@f �
ı
.�/

� � z
dA.�/; z 2 Dn: (4.11)

Next one can choose a sufficiently large integer n in such a way that the following
two conditions are fulfilled:

(a) dist.z; �n/ < ı=2 for each z 2 @K;

(b) the following inequality holdsZ
K

�
1

2�

Z
Dnn yK

ˇ̌̌̌
x@f �
ı
.�/

� � z

ˇ̌̌̌
dA.�/

�p
dA.z/ < !p.f; ı/

p: (4.12)

Now, take Y D ¹z 2 yK W dist.z; @K/ < 2ıº. At that point we need to recall the
main [90, Lemma 2.2] (see also [115, Lemma 20.2]). The set Y can be covered by
finitely many open discs D.aj ; 2ı/; 1 6 j 6 m with centers aj 2 �1.K/. Since
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K is a Carathéodory compact set, then there exists a continuum (actually an arc)
Lj �D.aj ;2ı/\�1.K/ such that diamLj is comparable with ı. Using furthermore
the conformal maps gj , j D 1; : : : ;m, from C1 nLj to D such that gj .1/ D 0 and
taking suitable linear combinations of gj and g2j , one can find, for each point � 2 Y ,
a holomorphic (even rational) function R� defined on the open set

� WD C1

�[
j

Lj � C1n yK;

that R� satisfies the following properties:

jR� .z/j 6
A1

ı
; for z 2 �; (4.13)ˇ̌̌̌

1

� � z
�R� .z/

ˇ̌̌̌
6

A1ı
2

j� � zj3
; for z 2 �; j� � zj > c1ı; (4.14)

where A1 and c1 are positive constants.
In view of (4.11) we define

Qı.z/ D �

Z
Y

x@f �ı .�/R� .z/ dA.�/;

'.z/ D
1

2�i

Z
�n

f �
ı
.t/

t � z
dt CQı.z/;

where Qı is holomorphic in a neighborhood of yK. Notice, that in order to prove the
theorem it is sufficient to show that Qı is close to the function

'ı.z/ D �
1

�

Z
Y

x@f �
ı
.�/

� � z
dA.�/;

namely, that
kQı � 'ıkp 6 A2!p.f; ı/ (4.15)

for some constant A2 > 0. Indeed, since ' is holomorphic in a neighborhood of yK,
Runge’s theorem allow us to pick a polynomial P such that k' � P kp 6 !p.f; ı/.
Therefore,

kf � P kp 6 kf � f �ı kp C kf
�
ı � 'kp C k' � P kp 6 A3!p.f; ı/;

for some positive constant A3 because of (4.11), (4.12), (4.15), and the fact that
f �
ı
.z/ D 0 for z … Y .
Thus, it remains to verify the estimate (4.15). In view of (4.13) and (4.14) we

have

kQı � 'ıkp 6 kF1kp C kF2kp C kF3kp 6 A1.c1 C 1/kF2kp C kF4kp; (4.16)
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where

F1.z/ D

Z
Y1.z/

jx@f �ı .�/j jR� .z/j dA.�/;

F2.z/ D

Z
Y1.z/

ˇ̌̌̌
x@f �
ı
.�/

� � z

ˇ̌̌̌
dA.�/;

F3.z/ D

Z
Y2.z/

jx@f �ı .�/j

ˇ̌̌̌
R� .z/ �

1

� � z

ˇ̌̌̌
dA.�/;

F4.z/ D

Z
Y2.z/

jx@f �
ı
.�/j

j� � zj3
dA.�/;

and Y1.z/ D ¹� 2 Y W j� � zj < c1ıº, Y2.z/ D ¹� 2 Y W j� � zj > c1ıº. The desired
estimates of F2.z/ and F4.z/ was obtained in [123] as a result of using Hölder’s
inequality. Finally, the estimate (4.15) follows from (4.16), which finishes the proof.
We skip here some details which can be found in [123].

Corollary 4.12. Let U be a Carathéodory open set, and let 1 6 p 6 C1. Then, for
each f 2 Ap. xU/ there exists a sequence of polynomials .Pn/ such that Pn ! f in
Ap. xU/ as n!1.

This result is a consequence of Sininjan’s theorem and the fact that K D xU is
a Carathéodory compact set in the case under consideration. Even in the case that
U is a domain this result cannot be obtained as a consequence of Theorem 4.1. The
difference can happen if @U has positive area.

In [123] the following conjecture was made: for p 2 .1; 2/ and for every compact
set K, the set of functions holomorphic in a neighborhood of K is dense in Ap.K/.
V. P. Havin in [63] solved this problem by proving the fact that Rp.K/ D Ap.K/ for
each compact set K and p 2 .1; 2/. Here, Rp.K/ stands for Lp-closure of rational
functions with poles lying outside K. The problem when Rp.K/ D Ap.K/ for p 2
Œ2;C1/ has a long history, and finally this problem was solved in terms of certain
capacity conditions (or, in other words, in terms of .1; q/-stability), see, for instance,
[65]. Since these results do not concern the class of Carathéodory sets, we will not
continue this line of exposition.

Let us also say a few words about the case of harmonic polynomials. If E is a
measurable set in C, let us denote by Aphar.E/ the set of all harmonic in Eı functions
of the class Lp.E;R/ The first result that the authors are aware of in connection
with Lp-approximation by harmonic polynomials were obtained by A. L. Šaginjan
in [117]. He proved that every bounded harmonic function on a given domain G
belongs to Aphar.G/ if G satisfies either of the following two conditions:

(i) G is a Carathéodory domain;

(ii) G is a moon-shaped domain and the real harmonic polynomials are dense
in Ap.G/.
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The next contribution was made by Sinanjan in [123, pages 99–101]. The respect-
ive result states as follows.

Theorem 4.13. LetK be a Carathéodory compact set. Then, the set of real harmonic
polynomials is dense in the space Aphar.K/ for every p > 1.

Question IV. Whether the results stated in Theorems 4.11 and 4.13 hold true also
for p 2 .0; 1/?

4.2 Some studies related with Hilbert space structure of A2.G/

If G ¤ ;, then A2.G/ is a separable Hilbert space with respect to the standard inner
product hf; gi in L2.G/, so that

hf; gi D

Z
G

f Ng dA:

We will use in this section all standard results from the Hilbert space theory without
any special introduction and giving no references.

First of all let us give the second alternative proof of Theorem 4.1 in the case that
p D 2 using some Hilbert space technique. In order to do that we need to show that
the system of functions ¹1; z; z2; : : : º is complete in A2.G/. The proof presented is
due to A. L. Shaginyan, see [91].

Yet another proof of Theorem 4.1 for p D 2. Take a function h 2 A2.G/ and assume
that hh; zmi D 0 for each m > 0. Then, it is enough to show that h D 0.

Given a big enough number R > 0, for w with jwj > R we haveZ
G

h.z/

z � w
dA.z/ D �

1X
nD0

1

wnC1

Z
G

h.z/ zn dA.z/ D �

1X
nD0

hzn; hi

wnC1
D 0:

Then, Z
G

h.z/

z � w
dA.z/ D 0 (4.17)

for every point w 2 G1, since G1 is a connected set.
Going further, take a sequence .�n/ of rectifiable Jordan curves such that the

domains Gn WD D.�n/ converges to G with respect to some fixed point z0 2 G (in
the sense of kernel convergence). Then, take as usual the sequence . n/, nWGn!G,
of conformal maps normalized by conditions  n.z0/D z0 and  0n.z0/ > 0. Multiply-
ing (4.17) by h. n.w// 0n.w/, integrating over �n and applying Fubini’s theorem
and Cauchy integral formula we obtainZ

G

h.z/ h. n.z//  
0
n.z/ dA.z/ D 0 (4.18)
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for all n > 1. By Lemma 4.10 we know that .h ı  n/ 0n ! h as n!1 in A2.G/.
Then, Nh.h ı  n/ 0n ! Nhh as n!1 in A1.G/. By (4.18) one has

R
G
jhj2 dA D 0,

which yields h D 0.

The next result is standard but it shows the special role that Carathéodory domains
play in the theory.

Proposition 4.14. Let G be a bounded domain in C. Then, the following hold.

(1) In the space A2.G/ there exists an orthonormal sequence of polynomials
.Pn/ such that degPn D n for all n > 0.

(2) This sequence .Pn/ is uniquely determined whenever one demands that the
coefficient of Pn at zn is positive.

(3) If G is a Carathéodory domain, then this sequence .Pn/ is an orthonormal
basis.

Proof. The construction of the desired system .Pn/ is nothing else, then the stand-
ard Gram–Schmidt orthogonalisation process applied to the sequence of functions
¹1; z; z2; : : : º in the space A2.G/. So, we need to verify the part (3) only.

Let G be a Carathéodory domain. We need to prove that the orthonormal system
.Pn/ such that degPn D n, n> 0, is a basis inA2.G/. Take a function h 2A2.G/ and
assume that hh; Pni D 0 for every n > 0. Since any polynomial Q of degree m may
be represented as a linear combination of P0; P1; : : : ; Pm, then hh;Qi D 0, but since
h can be approximated by a sequence of polynomials, then hh; hi D 0, and hence
h D 0. Thus, .Pn/ is complete and hence it is an orthonormal basis for A2.G/.

Going further let us observe that the space A2.G/ has a reproducing kernel for
every nonempty domain G. Recall, that the reproducing kernel for A2.G/, which is
usually called the Bergman kernel forG, is a functionKWC2!C such thatK.�;w/ 2
A2.G/ for every w 2 G and h.w/ D hh;K.�; w/i for every h 2 A2.G/ and w 2 G.
It is well-known, that if .vn/ is some orthonormal basis in A2.G/, then K.z; w/ DP1
nD0 vn.w/vn.z/.

Let now G be a Carathéodory domain. According to Proposition 4.14 there exists
the orthonormal basis .Pn/ in A2.G/ consisting of polynomials (with degPn D n).
In this case, we have

K.z;w/ D

1X
nD0

Pn.w/Pn.z/: (4.19)

Using this representation of reproducing kernel we are able to obtain the explicit
expression for the conformal radius of G and for the corresponding conformal map
from G onto D.0;R/.

Take a point a 2 G, let R be the conformal radius of G with respect to a, and
let g0 be the conformal map from G onto D.0; R/ with the standard normalization
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g0.a/ D 0 and g00.a/ D 1. It follows from Proposition 2.1 that

inf
²Z

G

jh0.z/j2 dA.z/ W h 2A2.G/; h.a/D 1

³
D

Z
G

jg00.z/j
2 dA.z/D �R2: (4.20)

Let us define the functions

Km.z; w/ D

mX
nD0

Pn.w/Pn.z/; m 2 N0: (4.21)

Then, using (4.20) for some appropriate h and making a bit of computations, we haveZ
G

ˇ̌̌̌
Km.z; a/

Km.a; a/

ˇ̌̌̌2
dA.z/ D

1Pm
nD0 jPn.a/j

2
> �R2:

It gives

Ma WD

1X
nD0

jPn.a/j
2 6

1

�R2
:

Now, since g00 2 A
2.G/ we have, in particular, g00.z/D

P1
nD0 cnPn.z/ for all z 2 G,

where cn D hg00; Pni. Therefore,

�R2 6
Z
G

ˇ̌̌̌
K.z; a/

Ma

ˇ̌̌̌2
dA.z/ D

1

Ma

6
1X
nD0

jcnj
2
D

Z
G

jg00j
2 dA.z/ D �R2:

Therefore, Ma D 1=.�R
2/ and K.z; a/ D Mag

0
0.z/ for all z 2 G. So that we have

proved the following result.

Proposition 4.15. Let G be a Carathéodory domain, let a 2 G, let R be the con-
formal radius of G with respect to a, and let g0 be the conformal map from G onto
D.0;R/ with the standard normalization g0.a/ D 0 and g00.a/ D 1. Then,

R D
1

p
�Ma

; where Ma D

1X
kD0

jPk.a/j
2
I

K.z; a/ DMag
0
0.z/ for all z 2 GI

g.z/ D
1

Ma

1X
kD0

Pk.a/

Z z

a

Pk.�/ d� for all z 2 G:

The representation of K.z; w/ in terms of conformal mapping (and vice-versa)
given in this proposition may be adapted in a clear way for conformal mappings
normalized by other ways. Thus, if g is the conformal map from G onto D such that
g.a/ D 0 and g0.a/ > 0, then

g0.z/ D

r
�

K.a; a/
K.z; a/; K.z; a/ D

g0.a/

�
g0.z/: (4.22)
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In the case of a general conformal mapping g from G onto D (without special nor-
malization) one has

K.z; a/ D
g0.z/g0.a/

�.1 � g.a/g.z//2
: (4.23)

In the simplest case thatG DD.0;R/ for someR > 0 the corresponding function
K.�; �/ and basis .Pn/ in A2.G/ may be easily computed:

Pn.z/ D

p
nC 1

p
�RnC1

zn; n > 0 and K.z;w/ D
R2

�.R2 � z Nw/2
:

Remark 4.16. Going further we need to make the following observation.

(1) Let G1 and G2 be two simply connected domains, and let  WG2 ! G1 be a
conformal map. Then, the map f 7! .f ı  / . 0/2=p provides an isometry
of Ap.G1/ onto Ap.G2/ for each p, 0 < p < C1.

(2) For instance, if ¹vn W n 2Nº is some orthonormal system in A2.G1/, then the
system ¹.vn ı  / 0Wn 2 Nº is an orthonormal system in A2.G2/.

(3) Let G be a simply connected domain, and let g be a conformal map from G

onto D such thatg.a/D0 andg0.a/>0 for some a2G. Since .
p
.nC1/=�zn/

is the orthonormal basis in A2.D/, then the system of functions

!n.z/ D

r
nC 1

�
g.z/n g0.z/; n 2 N0

forms an orthonormal system in A2.G/.

Example 4.17. In order to obtain yet another example of the orthonormal basis .Pn/
in A2.G/ for certain special domain G, let us consider the Cassini’s oval ¹z W jz � 1j �
jz C 1j < ˛º with ˛ 2 .0; 1�. Let G D O˛ be the component of this Cassini’s oval
lying in the right half-plane. The function gWO˛ ! D defined by g.z/ D .z2 � 1/=˛
gives the conformal map such that g.1/ D 0 and g0.1/ > 0. Then, according to the
statement of the part (3) of Remark 4.16, an orthogonal basis in A2.O˛/ is formed
from the polynomials

Pn.z/ D
2
p
nC 1

˛nC1
p
�
z.z2 � 1/n; n > 0:

The Bergman kernel for O˛ may be also expresses explicitly:

K.z;w/ D
4˛2 Nwz

�.˛2 � . Nw2 � 1/.z2 � 1//2
:

Let us now briefly describe the concept of a Bieberbach polynomials and their
relations with Carathéodory domains. Let G be a domain in C and let a 2 G. For
each n > 2, let

Pn.a/ D ¹P 2 P W degP D n; P.a/ D 0; P 0.a/ D 1º:
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Definition 4.18. A polynomial �n 2 Pn.a/ solving the following extremal problemZ
G

j� 0n.z/j
2 dA.z/ D inf

²Z
G

jP 0.z/j2 dA.z/ W P 2 Pn.a/

³
(4.24)

is called the nth Bieberbach polynomial (with respect to G and a).

The solution �n of the extremal problem (4.24) always exists, because it is the
primitive of a polynomial which is the orthogonal projection of 0 onto P0n.a/D ¹P

0 W

P 2 Pn.a/º in A2.G/.
It turned out that in the case of Carathéodory domains the Bieberbach polynomi-

als possess certain interesting and important properties, as it is shown in the following
statement. For a given domain G � C let us recall that .Pn/ is the orthonormal basis
in A2.G/ consisting of polynomials with degPn D n and that the functionKn.z;w/,
n 2 N0 is defined by (4.21).

Proposition 4.19. Let G be a Carathéodory domain, a 2 G and let g0 map G con-
formally onto D.0; R/, where R is the conformal radius of G with respect to a (so
that g0.a/ D 0 and g00.a/ D 1). Then,

�n.z/ D �n.zIG; a/ D

n�1X
jD0

Pj .a/

Kn�1.a; a/

Z z

a

Pj .�/ d�:

Moreover, � 0n ! g00 in A2.G/, and hence �n� g0 locally in G.

The proof of this proposition may be found in several sources, for example in [61,
Chapter iii, Section 1].

If G is a bounded domain in C such that the space A2.G/ admits an orthonormal
basis consisting of polynomials, one can prove the existence of Bieberbach polyno-
mials for such a domain. So, Carathéodory domain is one of the most suitable class
of domains when the aforementioned condition is always fulfilled.

Let us make one more remark about the conditions of Proposition 4.19. Let G be
a Carathéodory domain and let E be some end-cut of G such that Area.E/ D 0. Take
G1DG n E . Then, the conditions determining the Bieberbach polynomials forG and
for G1 are the same (the corresponding extremal problem “does not see” E), but it is
clear that conformal maps from G onto D and from G1 onto D differ significantly.
So, certain condition that prevent “cuts” in domains under consideration is needed if
we want to have results similar to Proposition 4.19, where the condition that G is a
Carathéodory domain guaranties that G has no “cuts”.

Let us give two examples showing how the Bieberbach polynomials look like.

(1) Let G D D and a 2 D, and let bn D
Pn�1
kD0.k C 1/jaj

2k for n 2 N, then

�n.zID; a/ D
z � a

bn
C

1

bn

n�1X
kD1

Nak
�
zkC1 � akC1

�
:
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(2) Furthermore, the Bieberbach polynomials may be explicitly computed if the
domain under consideration is D.�˛;ˇ /, where �˛;ˇ is the ellipse with semi-
axes ˛ and ˇ for some ˛ > ˇ > 0 having foci at the point ˙1 (so that ˛2 �
ˇ2 D 1).
Let Tn and Un, n > 1 stand for the Tchebyshev polynomials of the first and
second kind, respectively. We recall, that Tn.z/D cos.narccosz/ if jRezj<1,
and Un.z/ D .nC 1/�1T 0nC1.z/ D .1 � z

2/�1=2 sin..nC 1/ arccos z/.
It holds that the Bergman kernel for the domain D.�˛;ˇ / is

K.z; a/ D
4

�

1X
nD0

T 0nC1.z/Un.a/

�nC1 � ��.nC1/
; � D .˛ C ˇ/2;

while the respective Bierberbach polynomials have the form

�n.zID.�˛;ˇ /; a/ D
1

Kn�1.a; a/

n�1X
jD0

.TjC1.z/ � TjC1.a//Uj .a/

�jC1 � ��.jC1/
:

Moreover, if g mapsD.�˛;ˇ / conformally onto D with g.0/D 0 and g0.0/ >
0, then

g.cosw/ D
�

2
p
d

1X
nD0

.�1/n cos..2nC 1/w/
�2nC1 � ��.2nC1/

;

where w belongs to the rectangle ¹w W 0 < Rew < �; jImwj < cº such that
cosh c D ˛, while

d D

1X
nD0

2nC 1

�2nC1 � ��.2nC1/
:

The proof of these statements uses the fact that the system .cnUn/, where

cn D
4�

nC 1

�
�nC1 � ��.nC1/

�
forms a basis in the space A2.D.�˛;ˇ //, see [93, page 258].

According to Farrell’s theorem (see Theorem 3.4) in order to have uniform con-
vergence of the sequence .�n/ on xG, it is necessary that G is a Carathéodory domain
and all prime ends of G are simple. A natural question arises now: Are these condi-
tions sufficient to have uniform approximation of the corresponding conformal map-
ping by Bieberbach polynomials? The answer to this question is negative. In [71] a
starlike Jordan domain G was constructed whose boundary is analytic except at one
point such that the corresponding sequence of Bierberbach polynomials diverges on
some dense subset of @G. We refer the reader who is interested in more information
about Bierberbach polynomials, to the book [127].
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One moment problem in A2.G/ and in A1.G/

Observe that Proposition 4.14 yields immediately the following proposition.

Corollary 4.20. Let G be a Carathéodory domain. Let h 2 A2.G/ be such thatZ
G

h.z/ Nzm dA.z/ D 0; for each m D 0; 1; 2; : : : : (4.25)

Then, h D 0 in G.

Indeed, let .Pn/ be the orthogonal basis in A2.G/ given by Proposition 4.14.
Thus, (4.25) implies the property hh; Pmi D 0 for each m 2 N0. Then, h D 0 in
A2.G/.

It is natural to consider the following question.

Question V. Let G be a Carathéodory domain and let h 2 A1.G/. Is it true that the
condition (4.25) implies that h D 0 in G?

We are able to give a partial answer to this question by proving the follow-
ing statement. The proof presented below is based on some results about pointwise
approximation and it is quite short and simple. A different proof without using these
tools may be found in [124, page 261].

Theorem 4.21. LetG be a Carathéodory domain and let ' be a conformal map from
G onto D such that k'0kG 6 C for some constant C > 0. If the function h 2 A1.G/
is such that (4.25) is fulfilled, then h D 0 in G.

In order to prove this theorem we need the following lemma.

Lemma 4.22. Let G be a simply connected domain and assume that there exists
a 2 G such that the Bergman kernel K.�; a/ is bounded. Then, for all b 2 G the
function K.�; b/ is also bounded. Moreover, if h 2 A1.G/ then

h.a/ D

Z
G

h.z/K.z; a/ dA.z/; a 2 G:

Proof. Let ga be the conformal map fromG ontoD.0;Ra/with ga.a/D0, g0a.a/D1
(so thatRa is the conformal radius ofG with respect to a). Taking into account (4.22)
and the hypothesis that K.�; a/ is bounded, we obtain jg0a.z/j D �R2ajK.z; a/j 6
C for each z 2 G. Here, and in the sequel in this proof C; C 0; : : : stand for some
positive constants which may differ in different formulae. Take an arbitrary b 2 G
and consider the analogous conformal map gb constructed with respect to b. Then,
gb ı g

�1
a maps D.0;Ra/ onto D.0;Rb/, therefore this function is the restriction of a

Möbius transformation, and hence,

j.gb ı g
�1
a /0.w/j 6 C
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for each w 2 D.0;Ra/. Then, for every w 2 D.0;Ra/ and z D g�1a .w/ we have (in
view of (4.22)) that

jK.z; b/j D
1

�R2
b

jg0b.z/j 6 C jg
0
a.z/j 6 C

0:

So that K.�; b/ is bounded.
Let now h 2 A1.G/. Put g WD ga and R WD Ra and define G.r/ WD ¹z 2 G W

jg.z/j < rº for 0 < r < R. Now, using (4.22) once again we obtain

�R2
Z
G

K.z; a/ h.z/ dA.z/

D lim
r!R

Z
G.r/

g0.z/ h.z/ dA.z/

D lim
r!R

Z
D.0;r/

g0.g�1.w// h.g�1.w//j.g�1/0.w/j2 dA.w/

D lim
r!R

Z
D.0;r/

h.g�1.w//

g0.g�1.w//
dA.w/ D �R2h.a/;

where we have used (2.1) and, further, the mean area value property in D.0; r/.

Proof‘ of Theorem 4.21. Put z1 D '�1.0/. In view of (4.22) we have

jK.z; z1/j 6
1

�
j'0.z/'0.z1/j 6 C1;

where C1 D C 2=� . By virtue of Lemma 4.22 just proved, K.�; w/ is bounded for all
w 2 G. Fix a 2 G and take the conformal map g from G onto D.0; R/ such that
g.a/ D 0, g0.a/ D 1. By Lemmas 4.22 and (4.22), one has

h.a/ D

Z
G

h.z/K.z; a/ dA.z/ D
1

�R2

Z
G

h.z/g0.z/ dA.z/:

Since g0 is bounded (because K.z; a/ is also bounded), Theorem 3.25 tells us that
there exists a sequence of polynomials .Pn/ such that Pn.z/! g0.z/ and jpn.z/j 6
C 0 for each z 2 G and for some positive constant C 0. Then,

h.a/ D

Z
G

h.z/ g0.z/ dA.z/ D lim
n!1

Z
G

h.z/ pn.z/ dA.z/ D 0:

Because this holds for each a 2 G we have h D 0.

One estimate for polynomials forming orthogonal basis in A2.G/

The main aim of the subsection is to prove the following result.
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Theorem 4.23. Let G be a Carathéodory domain, and let .Pn/ be the orthogonal
basis consisting of polynomials such that each Pn has degree n and its coefficient at
zn is positive. Then, for each h 2 H.C/ there exists a sequence .an/ such that

h.z/ D

1X
nD0

anPn.z/;

where the series converges locally uniformly in G. Moreover, for every � > 1 there
exists C > 0 such that

jPn.z/j 6 C�n; n D 0; 1; 2; : : : ; z 2 xG:

Before proving this theorem we need to recall one construction related with the
certain lemma due to Bernstein. Let K be a continuum and let �01.K/ D �1.K/ [
¹1º. Then, there exists a unique conformal map ˚ from �01.K/ onto C1 n xD such
that ˚.1/ D1 and ˚ 0.1/ > 0. For a given number � > 1 let us define the set

L� D ¹z 2 �1.G/ W j˚.z/j D �º:

Lemma 4.24 (Bernstein). Let K be a continuum and let F WG1.K/! C be holo-
morphic function having a pole of order n > 1 at infinity. Assume that

lim
�!1C

sup
z2L�

jF.z/j DM < C1:

Then, for every � > 1 it holds that jF.z/j 6M�n for each z 2 L�.

Proof. Put f .w/ D F.˚�1.w//=.˚�1.w//n for jwj > 1. Then, f is bounded in
C1 n D and lim supjwj!1C jf .w/j D lim�!1C supz2L� jF.z/j D M . Finally, the
maximum modulus theorem implies that jF.˚�1.w//j6M j˚�1.w/jn for each jwjD
� as desired.

Proof of Theorem 4.23. Let zn D
Pn
kD0 b

n
k
Pk for each n, and let .a0n/ be the Taylor

coefficients of h. Then, ak D
P
n>k a

0
nb
n
k

. Let us prove the growth estimate for Pn.
Let g be some fixed conformal map from G onto D. Put G.r/ WD g�1.D.0; r// for
0< r < 1. For r 2 .0;1/ take some conformal map˚r fromG

.r/
1 [ ¹1º onto C1 n xD,

and take some conformal map ˚ from G1 [ ¹1º onto C1 n xD. Take an arbitrary
� > 1 and define Lr;� WD ¹z W j˚r.z/j D �º and L� D ¹z W j˚.z/j D �º. Furthermore,
let Gr;� WDD.Lr;�/ and G� WDD.L�/. Then, xG � Gr;� for some r sufficiently close
to 1. Note that from (4.19) we have jPn.z/j2 6 K.z; z/ and (4.23) implies that

lim
�!1

sup
z2Lr;�

jPn.z/j 6 sup
z2G.r/

jg0.z/j
p
�.1 � jg.z/j2/

D Cr < C1:

Therefore, one can apply Lemma 4.24 to K D G.r/ in order to obtain that jPn.z/j 6
Cr�

n for each z 2 Gr;� and for each n > 0. Since xG � Gr;�, the proof is finished.
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4.3 Topics on weighted Bergman spaces

Let U be an open set, and let wWU ! Œ0;1/ be a measurable function (a weight).
For p, 1 6 p < C1, the weighted space Ap.U;w/ is defined as follows:

Ap.U;w/ D
²
f 2 H.U / W kf kp;w D

�Z
U

jf .z/jp w.z/ dA.z/
�1=p

< C1

³
:

In order that the space Ap.U;w/ to be complete with respect to the norm k � kp;w one
needs to assume that w satisfies the condition that for each compact set K � U there
exists a constant cK > 0 such that

cK jf .a/j
p 6

Z
U

jf .z/jp w.z/ dA.z/ for each a 2 K and f 2 Ap.U;w/: (4.26)

This inequality may be regarded as an analogue of the estimate (4.7). It yields, in
particular, that the convergence in Ap.U;w/ implies the locally uniform convergence
in U . This fact shows that the space Ap.U;w/ is a Banach space for all p under
consideration, while for p D 2 it is also a Hilbert space with respect to the inner
product hf; gi D

R
U
f Ngw dA.

One important family of weights is the family ¹w D jhj W h 2 A1.U / and h 6� 0º.
In this case, (4.26) holds, and its proof is analogous to the proof of (4.7).

In the case, where pD 2 it is convenient to consider the weighted Bergman spaces
A2.U;w/ with respect to the weight w D jhj2, where h 2 A2.U / and h 6� 0. Such
weights are called an analytic weights.

Denote by P p.U; w/ the closure of the set P jU in Ap.U; w/. The following
question arises in a natural way: to describe U , p and w such that

P p.U;w/ D Ap.U;w/: (4.27)

Note that for w D 1, Theorem 4.1 gives a sufficient condition for (4.27), which is
thatU needs to be a Carathéodory domain. But the problem just stated is very far from
completely solved. In this section we are going to present some results concerning the
matter which have certain connections with Carathéodory sets.

The equality (4.27) implies some restrictions on w and to U .

Proposition 4.25. The following statements hold.

(a) Let wD jhj2 with h2A2.U /. If h has zeros inU , thenP 2.U;w/¤A2.U;w/.
(b) If U is not simply connected, then (4.27) does not hold for any p > 1 and for

any weight w.

From now on we will assume that the open set U is simply connected, while
wWU ! .0;C1/. Let now G be a Carathéodory domain and E be some end-cut in
G with Area.E/D 0. Then, in view of Proposition 4.5, we have P 2.�/¤ A2.�/ for
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� D G n E . Thus, the hypothesis that G is a Carathéodory domain plays some role
in the theory. However, for a w ¤ 1 the situation is more complicated, as it may be
seen from the following example.

Example 4.26. Take t 2 .0; 1/ and consider the function

ht .z/ D exp
�
z C 1

z � 1

�t
for z 2 D:

If 0 < t < 1 then P p.D; jht j/ D Ap.D; jht j/ and P p.D; jh1j/ ¤ Ap.D; jh1j/ for
each p with 1 6 p < C1.

The proof of the fact that P 2.D; jh1j/ ¤ A2.D; jh1j/ is given in [73], where it
was proved that the function

f .z/ D exp..1C z/=.2.1 � z///

does not belong to P 2.D; jh1j/. This proof may be also extended to all values of p
under consideration. The first assertion follows from one result of Hedberg, that we
will see in Example 4.37.

Let us discuss the case p D 2 and w D jhj2, h 2 A2.U /, in more detail. In this
case, the map f 2 A2.U; jhj2/ 7! f h 2 A2.U / is an isometry between the respective
Hilbert spaces. This fact allow us to use the general Hilbert space tools for study
the approximation problem under consideration. In particular, the equality (4.27)
can be verified using the construction of orthogonal basis, or Bessel’s inequality, or
Parseval’s formulae in A2.G/ or in A2.U;w/. The following lemma shows how con-
formal maps may be used in the theory.

Lemma 4.27 (Keldysh). Let G be a simply connected domain, let f maps D con-
formally onto G, and let w be defined on G. Put g D f �1. If P 2.D; w ı f / D
A2.D;w ı f / and if gm g0 2P 2.G;w/ for eachm 2N0, then P 2.G;w/DA2.G;w/.

Outline of the proof. Let F 2 A2.G;w/. Using (2.1) we haveZ
G

jF.z/j2 w.z/ dA.z/ D
Z

D
jF.f .v//j2 w.f .v//jf 0.v/j2 dA.v/ < C1;

so .F ı f /f 0 2 A2.D;w ı f /. Then, given " > 0 one can find a polynomial Q such
that Z

D
jF.f .v//f 0.v/ �Q.v/j2 w.f .v// dA.v/ D

D

Z
G

jF.z/ �Q.g.z//g0.z/j2 w.z/ dA.z/ < ":

Since .Q ı g/g0 is a sum of functions of the type gmg0 2 P 2.G;w/, m 2 N0, we
conclude that F 2 P 2.G;w/.



Topics on weighted Bergman spaces 101

Going further and working with space A2.U; jhj2/, let us consider the sequence
. k/, k.z/D h.z/zk , k2N0. Then, the Gram–Schmidt procedure inA2.U / applied
to this sequence gives a new sequence .'k/, 'k.z/D h.z/qk.z/, qk 2 P, degqk D k,
and we can assume that the coefficient at zk of qk is positive. In [124, Section 3.1.8]
one can find all details of this procedure. But for general simply connected open set
U the sequence .'k/ is not a basis for A2.U /. Let us formulate the criterion in order
that the equality (4.27) holds for U D D and p D 2.

Theorem 4.28. Let h 2 A2.D/ and let h have no zeros in D. The equality

P 2.D; jhj2/ D A2.D; jhj2/

holds if and only if one of the following conditions is fulfilled:

(1) There exists a sequence .un/, un 2 P, such that limn!1

R
D j1� hunj

2 dAD

0.

(2) The sequence .'n/, 'n D hqn, defined above is a basis for A2.D/.

(3) It holds that
P1
kD0 jh.0/j

2jqk.0/j
2 D 1=� .

A few remarks about the proof of Theorem 4.28. Assume that the weight function h
is such that P 2.D; jhj2/ D A2.D; jhj2/. Since 1=h 2 A2.D; jhj2/ then there is a
sequence of polynomials .un/ such thatZ

D

ˇ̌̌̌
1

h
� un

ˇ̌̌̌2
jhj2 dA D

Z
D
j1 � hunj

2 dA! 0:

Since hqn, n 2N0, form an orthonormal system in A2.D/, then qn form an orthonor-
mal system in A2.D; jhj2/. Moreover, the construction of qn implies that the closed
linear span of .qn/ inA2.D; jhj2/ coincides with the closure of P in this space. There-
fore, .qn/ is a basis for A2.D; jhj2/ and hence .'n/ is a basis for A2.D/. If .hqk/ is a
basis for A2.D/, then the Parseval’s equality for f D 1 gives � D

P1
nD1 jh1; hqkij

2.
The fact that h1; hqki D �h.0/qk.0/ implies (3).

Let us check the sufficiency of the conditions stated. Assume that .'n/, 'nD hqn,
is a basis for A2.D/. Take g 2 A2.D; jhj2/ and observe that gh is the sum of its
Fourier series

P
cnhqn in A2.D/. Since the partial sums of this series converges to

gh in A2.D/, then the partial sums
Pm
nD1 cnqn converges to g in A2.D; jhj2/. Thus,

g 2 P 2.D; jhj2/.
Assume now that (1) is satisfied. If limn!1

R
D j1� h.z/un.z/j

2 dA.z/D 0, then

lim
n!1

Z
D
jzm � h.z/zmun.z/j

2 dA.z/ D 0:

So, each polynomial is the limit in A2.D/ of functions hp, where p 2 P. Since
A2.D/ D P 2.D/ then the set of hp, p 2 P, are dense in A2.D/. It means that .hqn/
is a basis for A2.D/.
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If (3) holds, then the conclusion follows from the fact that if Bessel’s inequality
becomes the equality for a certain orthonormal system, then this system is a basis.

For a general simply connected domain we have the following sufficient condi-
tion.

Theorem 4.29. Let G be a simply connected domain, and let h and g be as before.
Assume that gmg0 2 P 2.G/ for each m 2 N0. Then, P 2.G; jhj2/ D A2.G; jhj2/ if
and only if there exists a sequence .un/, un 2 P, such that

lim
n!1

Z
G

j1 � hunj
2 dA D 0: (4.28)

In view of (2.1) we have
R
G
jgm.z/g0.z/j2 dA.z/ D

R
D jz

mj dA.z/ < C1, so
that gmg0 2 A2.G/. Therefore, gmg0 2 P 2.G/ by Theorem 4.1. Then, Theorem 4.29
implies the following consequence.

Theorem 4.30. Let G be a Carathéodory domain and let h be as before. Then, the
equality P 2.G; jhj2/ D A2.G; jhj2/ holds if and only if there exists a sequence of
polynomials .un/ such that (4.28) is satisfied.

Sketch of the proof. The proof of Theorem 4.29 is based on the following observation
which is also a consequence of (2.1).

Let G1 and G2 be two simply connected domains, let f be some conformal map
from G1 onto G2, and let g D f �1. Take h 2 A2.G2/. Then, the spaces A2.G2; jhj2/
and A2.G1; jh ı f j2/ are isometric by means of the map F ! .F ı f /f 0. Its inverse
is R1 ! .R1 ı g/g

0.
The fact that gmg0 2 P 2.G/ means that given " > 0 there exists q 2 P such that

kgmg0 � qk2;G < ". In view of (2.1) one hasZ
G

jgmg0 � qj2 dA D

Z
D
jzm � q.f .z//f 0.z/j2 dA.z/:

That means that the closed subspace generated in L2.D/ by ¹.q ı f /f W q 2 Pº is
the same as the one generated by P. The fact that P 2.G; jhj2/ D A2.G; jhj2/ is equi-
valent (in view of the isometry described above) to the fact that P 21 .D; jh ı f j

2/ D

A2.D; jh ı f j2/, where P 21 .D; jh ı f j
2/ is the closure of the set ¹.q ı f /f 0 W q 2 Pº

which is dense. Then, one can find a basis in P 21 .D; jh ı f j
2/ and after that the proof

may be finished using ideas from the proof of Theorem 4.28.

Let us now present two examples of situation when the condition (4.28) is fulfilled
for a general Carathéodory domain G.

Example 4.31. Let G be a Carathéodory domain, and let ˛1; ˛2; : : : be real numbers
such that ˛k > �1, k 2 N, among which there is only a finite number of negative
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ones, and
P1
kD1 ˛k < C1. Take a sequence of points .zk/, zk … G, in such a way

that ˛k needs to be integer if zk 2 @aG. Finally, fix a point a 2 G. Then, the function

ˆ.z/ D

1X
kD1

˛k log
�
1 �

z � a

zk � a

�
; z 2 G;

where the branch of logarithm is defined on G and equal to zero at a, is well defined,
and the weight

h.z/ D C

1Y
kD1

�
1 �

z � a

zk � a

�˛k
is such that (4.28) is satisfied, and, therefore, the equality A2.G; jhj2/ D P 2.G; jhj2/
holds.

The proof of the fact that this function h satisfies (4.28) is rather involved. All
details may be found in [124, Section 3.2.3]. The starting step of this proof is to
show that h 2 A2.G/ which is not difficult. Later on it is needed to consider three
consecutive cases. The first one is related with the simplest possible function ˆ.z/D
˛ log.1 � .z � a/=.z1 � a// constructed by one point z1. This case is analyzed with
the help of the special analogue of Mergleyan’s key lemma. The second case is related
with the finite set of points ¹z1; : : : ; znº. The important ingredient of the proof in the
general case is the fact that the product of two functions h1 and h2 satisfying (4.28)
is again the function satisfying this property.

Example‘ 4.32. Let G be a Carathéodory domain. If h 2 H.G�/, and h.z/ ¤ 0 for
each z 2G, then the property (4.28) holds for h, and henceA2.G; jhj2/DP 2.G; jhj2/.

It turns out that for general weights w, the assumption that G is a Carathéodory
domain is not necessary in order to have (4.27) because the following result holds.

Proposition 4.33. Let G ¤ ; be a simply connected domain in C. Then, there exists
a weight w such that P 2.G;w/ D A2.G;w/.

Outline of the proof. Let g be (as before) a conformal mapping from G onto D, and
take an increasing sequence .�n/ of positive real numbers. Define Gn D ¹z 2 G W
jg.z/j < �nº. For each k the function gkg0 is holomorphic in Gn, so there exist poly-
nomials Qn;k such that Z

Gn

jgkg0 �Qn;kj
2 dA <

1

2n
:

Also it is possible to find ˛k > 0 such that

˛k

Z
GnGn

jgkg0 �Qn;kj
2 dA <

1

2n
:
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Then, the function hmay be defined onGnC1 nGn as h.z/Dmin¹1;˛1; ˛2; : : : ; ˛nº,
the details of the proof may be found in [73].

Now, we will mention some general results for 1 6 q < C1 that were proved
in [64]. Let G be a Carathéodory domain, let wWG ! .0;C1/ be continuous func-
tions such that w 2 L1.G; dA/. Define

M.w; z; r/ D
1

r2

Z
jwj6r

w.z C �/ dA.�/; z 2 G; r > 0;

where w.z C �/ D 0 if z C � … G.

Theorem 4.34. Let G, w, M be as before, and let g 2 Aq.G;w/.
(1) Let q > 1. If supr>0

R
G
jg.z/jqM.w; z; r/dA.z/ <C1, then g 2 P q.G;w/.

(2) Let q D 1. If
R
G
jg.z/j supr>0M.w; z; r/ dA.z/ < C1, then g 2 P 1.G;w/.

One of the crucial ingredient of the proof of this theorem is the fundamental Mer-
gelyan’s lemma. The proof is obtained as an appropriate combination of this lemma,
duality arguments and standard Lp-estimates.

The next result gives yet another generalization of Theorem 4.1.

Corollary 4.35. Let G and w be as before, let 1 6 p < C1, and assume that w 2
Ls.G/ for some s, 1 < s 6 C1. If v 2 Ap.G;w/ \ Lpt .G/, where 1=s C 1=t D 1,
then v 2 P p.G;w/.

Notice that Theorem 4.34 give a sufficient approximation condition for indi-
vidual functions. For the special classes of weights it is also possible to find sufficient
approximation conditions for classes of functions.

Theorem 4.36. LetG be a Carathéodory domain, and let wD jhj, where h 2 A1.G/
and jh.z/j > 0 for all z 2 G.

(1) If there exist " > 0 such that

sup
r>0

Z
G

jh.z/j�"M.jhj; z; r/ dA.z/ < C1;

then P q.G; jhj/ D Aq.G; jhj/ for all q 2 .1;C1/.

(2) If there exist " > 0 such thatZ
G

jh.z/j�" sup
r>0

M.jhj; z; r/ dA.z/ < C1;

then P 1.G; jhj/ D A1.G; jhj/.

Let us also present some class of weights w D jhj constructed in [64] such that
Aq.G; jhj/ D P q.G; jhj/ for all q 2 Œ1;1/ for a given general Carathéodory domain
G.



Topics on Hardy spaces 105

Example 4.37. Let G be a Carathéodory domain, q 2 Œ1;1/, and let v 2 H.G/ be
such that Re v > 0 in G. Put h.z/ D e�v.z/ and assume that there exist two positive
constants, says c1 and c2, such that jImvj 6 c1 Re v C c2 in G. Then, P q.G; jhj/ D
Aq.G; jhj/.

In order to prove that P q.G; jhj/ D Aq.G; jhj/ we need firstly to show that v 2
P q.G; jhj/. Notice, that the function v1 D .v � 1/=.v C 1/ is bounded by 1 in G.
Then, vm1 2 P

q.G; jhj/ for all m 2 N. It gives that

v D
1C v1

1 � v1
D 1C 2

1X
nD1

vn1 2 P
q.G; jhj/:

By induction one can prove that vn 2 P q.G; jhj/. Now, for each z 2 G, we have

NX
nD0

tnv.z/n

nŠ
! etv.z/ D

1

jh.z/jt
:

This convergence holds in Lq.G; jhj/ for each t such that 0 6 t 6 th D .qc1 C q/�1,
it can be proved using Lebesgue’s dominated convergence theorem. Thus, jhj�th 2
P q.G; jhj/. Some more argument is needed to conclude the desired approximation
result from Theorem 4.36 with " D 1=.c1 C 1/.

4.4 Topics on Hardy spaces

We start by recalling some basic facts about Hardy spaces in general domains in the
complex plane. An appropriate reference for the next statements is [54]. During this
section p will denote a number belonging to .0;1/ (we will mention below only the
special restrictions on p, if needed). Let G � C be a bounded domain. By definition
Hp.G/ is the space consisting of all functions f 2 H.G/ for which there exists a
positive harmonic function u in G such that jf .z/jp 6 u.z/ for each z 2 G. Such
function u is called a harmonic majorant of jf jp in G. If f 2 Hp.G/, then there
exists a unique least harmonic majorant uf such that jf jp 6 uf in G. Then, we put
kf kHp.G/ D .uf .z0//

1=p , where z0 2 G is some fixed point. In the case that p > 1
this quantity is a norm in Hp.G/ and the resulting topology is independent on the
choice of z0.

Lemma 4.38. Let K be a compact subset of G. Then, there exist a constant C D
C.K; p/ such that for every f 2 Hp.G/ and z 2 K one has kf kK 6 Ckf kHp.G/.

Using this lemma it may be readily obtained that Hp.G/ is a Banach space for
p > 1. Also it is well-known that Hp.G/ is conformally invariant, that is if ' is
a conformal map from some domain G1 onto another domain G2, then Hp.G1/ D

¹g ı ' W g 2 Hp.G2/º and both these spaces are isometric.
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Lemma 4.39. Let f 2H.G/. Then, f 2Hp.G/ if and only if for each C 1-exhaustion
.�n/ of G there exists a constant C such that for some point a 2 G one hasZ

@�n

jf jp.�/ d!.a; �;�n/ 6 C:

In the case when G D D the spaces Hp.D/ are the classical Hardy spaces in the
unit disk, and they are denoted usually by Hp .

Lemma 4.40. If f 2 Hp then there exists a sequence of polynomials .Pn/ which
converges to f in norm in Hp .

The principal part of the proof of this lemma is to prove the fact that fr ! f in
Hp as r ! 1, where fr.z/ D f .rz/, see, for instance, [77, page 71]. After that it
remains to observe that the Taylor series of fr converges uniformly on xD, and hence
the Taylor polynomials of f give the desired approximation.

Let us also recall, that the Hardy spaces Hp.T / on the unit circle are the spaces
consisting of all functions h 2 Lp.T / such that

R
T h.�/

x�n dmT .�/ D 0 for every
integer n < 0. According to Fatou’s theorem, every function f 2 Hp has a.e. on
T angular boundary values, which determine a function in the class Hp.T /. The
mapping which maps a function f 2 Hp to its boundary function is an isometric
isomorphism between the spacesHp andHp.T /. When pD1, this mapping is also
a weak-star homeomorphism. In what follows, functions in Hp and their boundary
functions will be denoted by the same symbols.

Weak-star generators inH1

The space H1 is isometric to H1.T /, while this space is a subset of L1.T / which
is isometric to the dual space ofL1.T /. Then, we can consider the weak-star topology
in L1.T /, with a basis of neighborhoods of zero formed by sets²

f 2 L1.T / W

ˇ̌̌̌Z 2�

0

f .eit /gj .e
it / dt

ˇ̌̌̌
< rj ; j D 1; : : : ; n

³
for all possible choice of numbers r1; : : : ; rn > 0 and functions g1; g2; : : : ; gn 2
L1.T /. The weak-star topology in H1 is that induced by the isometry. For some
mote detailed explanation of weak topologies see, for instance, [114, Chapter 3].
Notice also, that the aforesaid week topologies are not metrizable in the general case.
Then, the sequences are not enough to manage with this topology. For sequences in
H1 the convergence in the weak-star topology can be easily characterized.

Lemma 4.41. The following statements hold.

(a) Let fn 2 H1. Then, the sequence .fn/ converges in the weak-star topology
to f if and only if this sequence is uniformly bounded in D and fn.z/! f .z/

for each z 2 D.
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(b) Let f˛ 2 H1 be a net. Then, if .f˛/ converges in the weak-star topology
to some f , then sup˛;z2D jf˛.z/j is finite and f˛.z/! f .z/ for each point
z 2 D.

This is a well-known result. The proof of the part (a) may be found in [120]. The
proof of the part (b) is similar.

The next definition was given by D. Sarason in [119].

Definition 4.42. Let ' 2 H1. Then, the following hold.

(a) ' is a weak-star generator if the set ¹P ı ' W P 2 Pº is weak-star dense in
H1.

(b) ' is a (weak-star) sequential generator if every function in H1 is the weak-
star limit of a sequence of polynomials in '.

It is clear that a sequential generator is a weak-star generator, but the converse
is very far to being true, as it will be shown later. The main reason to introduce
the concept of a weak-star generator was because of its relations with the theory of
invariant subspaces for certain multiplication operators. Let us recall, that for a given
function ' 2 H1 the operator S' WL2.T /! L2.T / acts as follows: S' W h 7! 'h,
while the Toeplitz operator T' WH 2 ! H 2 is defined as follows: T' W h 7! PC.'h/,
where PC stands for the orthogonal projection from L2.T / to H 2. In the special
case when ' D j the operator Sz is called the bilateral shift, while the operator Tz is
called the unilateral shift. The study of shift-invariant subspaces in H 2 was initiated
by Beurling, Helson–Lowdenslager and Halmos. The following simple fact whose
proof may be found in [69, page 106] shows the specific role of the unilateral shift in
the topic under consideration.

Lemma 4.43. Let E a closed subspaces of H 2. Then, E is Tz-invariant if and only
if it is T'-invariant for all ' 2 H1.

The descriptions of shift-invariant (closed) subspaces ofH 2 and L2.T / are well-
known; they are given by the following nowadays become classical results whose
proofs may be found in [69, Chapter 7].

Theorem 4.44 (Beurling). Let E be a non-empty closed subspace of H 2. Then, E is
Tz-invariant if and only if E D K� D �H 2, where � is an inner function.

We recall, that a function� 2H1 is said to be inner, if j�.�/j D 1 for a.a. � 2T .

Theorem 4.45. Let W be a closed Sz-invariant subspace of L2.T /.

(a) If zW DW , thenW D ¹f 2L2.T / W f jB D 0º, where B � T is some Borel
set.

(b) If zW ¤ W , then W D FH 2, where F is a measurable function on T of
modulus 1.
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For non closed subspaces the situation is fairly different. Let us mention in this
connection the next result obtained in [119].

Proposition 4.46. Let ' 2 H1. Then, the following are equivalent.

(a) ' is a weak-star generator of H1.
(b) The operator S' has the same invariant subspaces as Sz .
(c) The operator T' has the same invariant subspaces as Tz .

Two simple necessary conditions for a function ' to be a weak-star generator of
H1 were obtained in [119].

Proposition 4.47. Let ' 2H1 be a weak-star generator ofH1. Then, the following
hold.

(i) ' in univalent on D.
(ii) There exists a set I � T such that mT .I / D 0 and 'jTnI is injective.

If some function ' satisfies the second condition of this proposition we will call
it univalent almost everywhere on T .

Sketch of the proof of Proposition 4.47. Let ' be a weak-star generator of H1 and
assume that '.a/ D '.b/ for some a; b 2 D with a ¤ b. Then, there exist a fam-
ily ¹P˛º of polynomials such that the net P˛.'/ converging to z in the weak-star
topology. Fix a 2 D. Then, the point evaluation functional f 7! f .a/, defined for
each f 2 H1, is weak-star continuous because f .a/ is obtained via the standard
Poisson formula and the Poisson kernel belongs to L1.T /. This continuity implies
a D limP˛.'.a// D limP˛.'.b// D b, which gives a contradiction.

Because the evaluation at an arbitrary point eit is not defined for f 2 H1 in
the general case, the proof of the second condition needs to be different from the
previous one. Let E be the closed span of the elements ¹1; '; '2; : : : º in L2.T /. So
that S'E � E. If ' is a weak-star generator then, by Proposition 4.46, the space E is
also Sz-invariant, and hence z 2E. Then, there exists a sequence .Pn/ of polynomials
that converges to z in L2.T /. So, there is a partial subsequence (that will be denoted
by the same symbol) such that

Pn.'.e
it //! eit for a.e eit 2 T : (4.29)

If we assume that for each measurable set M � T of positive measure there exist
two points eit 2 M and eis 2 M with eit ¤ eis and '.eit / D '.eis/ we arrive to a
contradiction with (4.29). So, the second property also holds.

If ' a weak-star generator of H1, then G D '.D/ is a simply connected domain
and @G cannot have a lot of cut points. For example, the set of all cut points of
@G should have harmonic measure zero with respect to '.0/. It implies that each
conformal map from D onto D n Œ0; 1/ is not a weak-star generator. The statement of
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the part (ii) of Proposition 4.47 was improved in [108] in the way shown in the next
theorem.

Theorem 4.48. The following statements hold.

(a) If ' is a weak star generator of H1 then the boundary function defined on
F.'/ is one to one.

(b) There exists a bounded univalent function ' in D such that F.'/D T and '
is injective on xD, but it is not a weak-star generator of H1.

The proof of the part (a) is a bit technically involved since it uses classical results
about conformal maps together with certain tools from ordinal number theory. To
verify the statement (b) it is enough to take the conformal map from D onto the
domain G2 in Figure 1, but some work is needed in order to show that it is not a
weak-star generator.

Following Sarason let us pay attention to the sequential generators ofH1 because
it admits certain characterizations in topological terms.

Proposition 4.49. Let ' be a conformal map from D onto a simply connected domain
G � C. Then, ' is a sequential generator of H1 if and only if G has the following
property: for every h 2 H1.G/, there is a sequence of polynomials which is uni-
formly bounded on G and converges to f at every point of G.

Proof. Assume that ' is a sequential generator and let h 2 H1.G/. Then, h ı ' 2
H1 and let .Pn/ be such sequence of polynomials that Pn.'.z// ! h.'.z// for
every z 2 D, and pn ı ' is uniformly bounded on D. Then, Pn.w/! h.w/ for every
w 2 G and Pn is uniformly bounded in G. For the converse it enough to consider
g ı '�1 for g 2 H1.

Corollary 4.50. A conformal map onto a Jordan domain is always a weak-star gen-
erator. A conformal map onto a moon-shaped domain is never a weak-star generator.

Now, combining Proposition 4.49 with Theorem 3.31 we arrive at the following
result (see [120, Proposition 2]).

Proposition 4.51. Let G be a bounded simply connected domain and let ' a con-
formal map from D onto G. Then, ' is a sequential generator of H1 if and only
if G is a component of the set G� (the latter property exactly means that G is a
Carathéodory domain).

We will denote by zG the component of G� that contains G. With the same nota-
tions as in Proposition 4.49 the following result holds.

Proposition 4.52. Let h2H1. Then, h is the weak star limit of a sequence of polyno-
mials on ' if and only if h ı '�1 is the restriction of a function belonging toH1. zG/.
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Sarason in [120] has obtained a characterization of weak generators, adapting the
statement of Farrell’s theorem to a certain more general setting. This is a reason to
give here a simple overview of his results. Also we believe that the notion of order
of a simply connected domain introduced by Sarason may be regarded as a further
generalization of the concept of a Carathéodory domain.

Take ' 2H1. Denote byM 0 the set of polynomials in ', that isM 0 D ¹P ı ' W

' 2 Pº. Furthermore, let M 1 denote the set of all weak-star limits of sequences of
functions inM 0. If ˛ is a countable ordinal we defineM ˛ inductively to be the linear
manifold of H1 consisting of all functions which are weak-star limits of sequences
of functions on

S
ˇ<˛M

ˇ . By a property of weak topologies, see [7, pages 124, 213],
there exists a least countable ordinal ˛0 such that M ˛0 D M ˇ if ˇ > ˛0. Moreover,
M ˛0 is the weak closure of M 0. We say that ' is a generator of H1 of order ˛0 if
M ˛0 D H1.

In order to understand the definition of the order of a simply connected domain
we need the following definition.

Definition 4.53. Let G be a bounded domain in C, and let � be a simply connected
domain such that G � �. The relative hull of G in � (or, for brevity, �-hull) is the
set

Int
°
w 2 � W jf .w/j 6 sup

z2G

jf .z/j for every f 2 H1.�/
±
:

One crucial step in Sarason’s papers is to show that if G � D, then the D-hull of
G is G�. Also a geometric description of the �-hull of G is given by the next result.

Proposition 4.54. Let � and G be as before and let Y be the closure in � of the
�-hull of G. Then, � n Y consists of those points of � that can be separated from G

by a cross cut of �. Moreover, the �-hull of G is the interior of Y .

With these tools the following generalization of Farrell’s result is readily fol-
lowed.

Theorem 4.55. Let� be a domain and letG be a bounded simply connected domain
such that G � �. Denote by G� the component of the �-hull of G that contains G.
Let f 2 H1.G/. Then, a sequence of bounded holomorphic functions in � which is
uniformly bounded in G and converges to f at the every point of G exists if and only
if f is the restriction of some function f1 2 H1.G�/.

Let G be a simply connected domain. For every countable ordinal ˛ let us define
inductively a domain G˛ containing G as follows. For ˛ D 1 we put G1 as the com-
ponent ofG� that containsG. If ˛ has an immediate predecessor we defineG˛ as the
component of theG˛�1-hull ofG that containsG. If ˛ has no immediate predecessor
we defineG˛ to be the component of the interior of

T
ˇ<˛G

ˇ that containsG. Then,
G˛ is simply connected and, moreover, there exists a least countable ordinal 
 such
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that G
 D G
C1. So, G
 D G! for ! > 
 . This 
 is called the order of G. For better
understanding this notion the reader can see that both domains in Figure 3 have order
1. Next result generalizes Proposition 4.52.

Proposition 4.56. M ˛ D ¹h 2 H1 W h ı '�1 D F jG for some F 2 H1.G˛/º.

Corollary 4.57. Now, the characterization of generators ofH1 obtained by Sarason
can be stated in the following form.

(1) If ' is a generator ofH1 of order 
 then the domain G D '.D/ has order 

andG
 DG. Conversely, if a given domainG has order 
 andG
 DG, then
every conformal mapping ' from D onto G is a generator ofH1 of order 
 .

(2) The function ' 2H1 fails to be a generator ofH1 if and only if there exists
a domain � which properly contains G and is such that kf k� D kf kG for
every f 2 H1.�/.

(3) If ' is a generator of H1, then G D Int. xG/.

We refer to [120, Figures 1 and 2] to see domains which are the images of D under
mapping by weak-star generators of order 2 and 3, respectively. The orders of these
domains can be computed by using Proposition 4.54. In [121] the author was able to
construct domains of arbitrary order using the fact that every countable well-ordered
set can be realized as a subset of R. We do not know whether it is possible to obtain
some other type of characterization of weak-star generators avoiding, in particular,
the usage of ordinals.

Finally, let us notice that the concept of domains of order 2 is underlying the result
of [112, Theorem 4.1], so this theorem was the precursor of Sarason’s studies.

Density of polynomials inH p.G/

Let 'WD ! D be a non-constant holomorphic function. The composition operator
C' WH.D/! H.D/ is defined by the setting C'.f / D f ı '. If '.0/ D 0 then the
Littlewood subordination theorem (see, for example, [42, Theorem 1.7]) implies

kf ı 'kHp 6 kf kHp

for each p 2 .0;1/. If '.0/ ¤ 0 then kf ı 'kHp 6 Mkf kHp , where M is some
constant depending only on j'.0/j. Thus, C' WHp ! Hp is a bounded operator for
each p, 1 6 p 61. A lot of efforts were applied for studying of such operators. In
particular, in [31] the problem when C'.Hp/ is dense in Hp were considered.

We have the following clear facts.

Lemma 4.58. If C'.Hp/ is dense in Hp for some 0 < p <1, then ' is univalent
in D.
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Proof. Indeed, if '.z/ D '.w/ for some z ¤ w in D, then f .'.z// D f .'.w// for
each f 2Hp . So, the function j does not belong to the closure of C'.Hp/ inHp .

Lemma 4.59. Let ' maps conformally D onto some domain G � D, while 0 < p <
1. Then, C'.Hp/ is dense in Hp if and only if the set of polynomials is dense in
Hp.G/.

Proof. If f 2 Hp.G/, then f ı ' 2 Hp . Therefore, if C'.Hp/ is dense in Hp ,
then Lemma 4.40 yields that there exists a sequence .Pn/ of polynomials such that
Pn ı ' ! f ı ' in Hp , which imply that Pn ! f in Hp . The converse is clear.

The following theorem was proved in [31].

Theorem 4.60 (Caughran). Let p be such that 1 6 p 61. If G is a Carathéodory
domain, then the set of polynomials is dense in Hp.G/. Conversely, if polynomials
are dense inHp.G/ and ' 2 C.xD/, where ' is some conformal map from D onto G,
then G is a Jordan domain.

The Caughran’s original proof, was made for p D 2 and it used the ideas of
proving the sufficiency in Theorem 3.25. J. Caughran has mentioned that the given
proof is valid, if interpreted properly, for Hp with 1 6 p <1. The following result
is an immediate corollary of Caughran’s theorem.

Corollary 4.61. If ' maps D conformally onto a Carathéodory domain, k'kH1 6 1,
then C'.Hp/ is dense in Hp for each 1 6 p <1.

Later on in [109] the next generalization of the results under consideration was
obtained.

Theorem 4.62 (Roan). Let ' a weak star generator of H1, then the set of polyno-
mials is dense in Hp.G/, where G D '.D/ and 0 < p <1.

Proof. Assume that ' is a weak-star generator of H1. Denote by M the subspace
¹P ı ' W P 2 Pº, by M 1 the subspace of all functions in H1 which are weak-star
limits of sequences of functions inM . Let h 2M 1, then there exists a sequence .Pn/
of polynomials which are uniformly bounded and Pn.'.z//! h.z/ for each z 2 D.
We need the following lemma which corresponds to Lemma 4.41 for Hp .

Lemma 4.63. Let 0 < p <1, and let .fn/ be a bounded sequence in Hp . Assume
that fn.z/! f .z/ for each z 2 D. Then, fn ! f in the weak topology in Hp .

Notice that for p > 1 the proof of this lemma is essentially the same as it was done
in [120, Lemma 1]. For the case 0 < p < 1, it follows from [40], where it was proved
that the point evaluation belongs to .Hp/� and the principle of uniform boundedness
and the closed graph theorem remain valid for Hp .
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By the lemma just mentioned we know that Pn ı ' ! h weakly in Hp . So,
h 2 CloswIHp .M/, the weak closure of M in Hp . Then, M 1 � CloswIHp .M/. One
has

CloswIHp .M/ D ClosHp .M/; (4.30)

where the right-hand side of (4.30) is the closure ofM in the original topology ofHp .
Equality (4.30) follows from [114, Theorem 3.12] in the case when 1 6 p <1. In
the case p < 1, (4.30) follows from [40, Lemma 8]. Then, M 1 � ClosHp .M/. Now,
inductively M � � ClosHp .M/ for every countable ordinal number � . Since ' is a
weak-star generator of H1 there exists a countable ordinal � such that M � D H1.
Then, H1 D ClosHp .M/, and hence M is dense in Hp . But the density of M in
Hp exactly means the density of polynomials in Hp.G/.

The proof of above theorem is quite simple. The crucial reason why this theorem
implies Theorem 4.60 is the fact, given by Proposition 4.51, that a Carathéodory
domain is the image of some sequential generator of H1.

In view of the Lemma 4.59, Theorem 4.62 can be reformulated as follows.

Theorem 4.64 (Roan). Let 0 < p <1, and let ' be a weak-star generator of H1

such that '.D/ � D. Then, the range of C' is dense in Hp .

We end this section by mentioning some results obtained in [17] and related with
Bergman spaces.

Theorem 4.65 (Bourdon). Let ' be a weak-star generator ofH1 and letG D '.D/.
Then, the polynomials are dense in A2.G/.

Because there are many weak-star generators of H1 which map D onto non-
Carathéodory domains, this result is more general (for p D 2) than Theorem 4.1.

The proof of Theorem 4.65 use a theorem of Hedberg that says that if G is a
simply connected domain of finite area, then H1.G/ is dense in A2.G/ and certain
properties of cyclic vectors of multiplication operators acting in A2.G/ and H 2.G/,
see [17] for the detailed explanation. Then, one has yet another proof of Theorem 4.60
for p D 2.

A key idea of work [17] is to relate the approximation by polynomials in H 2.G/

with the approximation also by polynomials in some weighted Bergman spaces.

Proposition 4.66. Let ' map D conformably onto G. Then, the polynomials are
dense in A2.G; .1 � j'�1.w/j2/ dA/ if and only if the polynomials in ' are dense
in H 2.

Sketched proof. If f 2 H 2 and f .z/ D
P1
nD0

Of .n/zn, then

kf k2
H2
D

1X
nD0

j Of .n/j2:
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But this norm is equivalent to

kf k2 D jf .0/j2 C

Z
D
jf 0.w/j2 .1 � jwj2/ dA.w/;

as it can directly verified by the considering of the corresponding Taylor expansion.
From now on, one can proceed as follows. If the polynomials are dense in A2.G; .1�
'�1.w// dA/, then the set ¹.P ı '/'0 W P 2 Pº is dense in A2.D; .1� jzj2/ dA/, but
this implies (via the integration) that the set ¹P ı ' W P 2 Pº is dense inH 2.D/. The
converse may be verified by differentiation.

Corollary 4.67. Let ' map D conformally onto G.

(1) The density of polynomials inA2.G/ or inA2.D; .1�j'�1.w/j2/dA/ implies
the density of polynomials in H 2.G/.

(2) If polynomials are dense in A2.G/ or in A2.D; .1 � j'�1.w/j2/ dA/, then '
is univalent almost everywhere on T .

Note that the part (1) of Corollary 4.67 says that Theorem 4.1 for p D 2 together
with Proposition 4.66 give a direct proof of Theorem 4.60 in the case p D 2. Note
also that the part (2) of Corollary 4.67 is the analogue for Aa.G/ of Proposition 4.47.
Also it seems that Bourdon’s techniques are only appropriate for H 2.G/ and not for
p ¤ 2.

Let us mention the paper [37], where another proof of Theorem 4.62 was given.
It seems the author was unaware of Roan’s, Caughran’s and Bourdon’s papers.

4.5 Approximation by polynomials on boundaries of domains

Let A be an uniform algebra on some compact Hausdorff space X , let � 2 MA and
assume that there exist a unique representative positive measure � for � (recall that
this assumption is needed here, because, in general, such measure is not unique). Put
M D ker� and denote byMC.X/ the set of finite positive Borel measures on X . Let
us recall the following result.

Theorem 4.68 (Szegö, Kolmogorov, Krein). Let � 2MC.X/, and suppose that �D
w � � C � is the Lebesgue decomposition of � with respect to � , wherew D d�=d� 2
L1.�/ is the Radon–Nikodym derivative of � and � is singular with respect to � . Let
0 < q < C1. Then,

inf
f 2M

Z
j1 � f jq d� D inf

f 2M

Z
j1 � f jqw d� D exp

Z
logw d�:

Szegö has proved this theorem when A D A.xD/, M D ¹P 2 P W P.0/ D 0º,
�� dt , q D 2 and �.f / D f .0/, f 2 A. Later Kolmogorov and Krein showed that
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the infimum depends only on the absolutely continuous part of �. A complete proof
in the caseA.xD/, 16 q <C1 andM D ¹P 2 P W P.0/D 0º is given in [77, Chapter
vii]. The proof of the general version may be found in [56, Chapter v] or in [18, page
236]. Observe that, by Jensen inequality, one has

exp
Z

logw d� 6
Z
w d� < C1:

So, always,

�1 6
Z

logw d� 6 Const :

Now, we will use the notation and result from Sections 3.2 and 3.4. Let G be a
Carathéodory domain with the boundary � , then P.� / is a Dirichlet algebra, and for
each point a 2 G� (the Carathéodory hull of G) the measure !.a; �; G/ is the unique
representative measure on the Shilov boundary � of the element of the spectrum of
P.�/ defined byP 7!P.a/. In this context, given� 2MC.� /, Theorem 4.68 can be
applied, and this is the most general setting (in some sense) that the previous theorem
can be applied. For example, if G D D we have the following.

Corollary 4.69. Let be�2MC.T / and let 0< q <C1. The set ¹P 2P WP.0/D 0º
is dense in Lq.�/ if and only ifZ

T
log.

d�

dt
/ dt D �1:

Proof. First note that

inf
p2P

Z ˇ̌̌̌
1

z
� p

ˇ̌̌̌q
d� D inf

P WP.0/D0

Z
T
j1 � P jq d� D 0;

where the equality to zero is obtained applying Theorem 4.68. Then, z and 1=z are
limits in Lq.�/ of polynomials. But each f 2 C.T / can be uniform approximated
by a sequence of polynomials in z and Nz and C.T / is dense in Lq.�/ for each 0 <
q < C1.

Abdullaev and Dovgoshei in [3] have provided an interesting study of the question
on how to generalize Corollary 4.69 for other domains. It turns out that the notion of
Carathéodory domains plays a central role in this question. Before discussing their
results let us fix yet more notation. Let z0; z1; z2; : : : be a collection of points such
that it contains only one point from each component ofG�. Moreover, we assume that
z0 2 G0 D G and denote by Gj , j > 1, the other bounded components of C n xG (if
they exist). Let !j D !.zj ; �; G/, for each j > 0. We know that each !j is supported
on @Gj . Given � 2 MC.� / let us denote by P q.�/ the closure in Lq.�/ of the set
of polynomials, and by P q.�; z0/ the closure in Lq.�/ of the set of polynomials that
vanishes at z0. With this notation we can state the result.
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Theorem 4.70. Assume that G is a bounded simply connected domain, z0 2 G, and
0 < q < C1. Then, the following assertions hold.

(1) Let G be a Carathéodory domain. Then,

¹� 2MC.� / W P q.�; z0/ D P
q.�/º

D

²
� 2MC.� / W

Z
�

log
�
d�

d!0

�
d!0 D �1

³
:

(4.31)

(2) Conversely, if the sets defined on (1) are equal, then G is a Carathédodory
domain.

(3) Let G be a Carathéodory domain. Then,

¹� 2MC.� / W Lq.�/ D P q.�/º

D

²
� 2MC.� / W

Z
log
�
d�

d!j

�
d!j D �1 for all j

³
:

(4) In order to have that G is a Carathéodory domain that does not separate the
plane it is necessary and sufficient that

¹� 2MC.� / W Lq.�/ D P q.�/º D ¹� 2MC.� / W Lq.�/ D P q.�; z0/º

D

²
� 2MC.� / W

Z
�

log
�
d�

d!0

�
d!0 D �1

³
:

Sketch of the proof. (1) AlwaysP q.�;z0/�P q.�/. Theorem 4.68 may be applied in
our case to give that

R
log.d�=d!0/ d!0 D�1 if and only if there exists a sequence

of polynomials .Pn/ such that Pn ! 1 in Lq.�/. Then, if h 2 P then hPn ! h in
Lq.�/.

(2) Assume thatG is not a Carathéodory domain. Then, we need to find a measure
that shows that both sets in (4.31) are different. Let � be the component of G� that
contains z0 and let take z! D !.z0; �; �/. Then, � � G and z! is a positive measure
on � but it is supported on @�. Since G is not a Carathéodory domain, we know
that L WD � n @� ¤ ;, and even more, !0.L/ > 0. Since z! vanishes on L, one
has d z!

d!0
.z/ D 0 for almost all points z in L. Then,

R
log.d z!=!0/ d!0 D �1, so

z! belongs to the set in the right-hand side of (4.31). Because � is a Carathéodory
domain, we can apply the result just proved in (1). Since

R
log.d z!=d z!/d z! D 0, we

know that P q.@�; z0/ ¤ P q.@�/. So, P q.�; z0/ ¤ P q.� /.
(3) Let � 2 MC.� /. If Lq.� / D P q.� / then, for each zj , j > 0, one has

Lq.�j@Gj / D P q.�j@Gj /. Since each Gj is a Carathéodory domain, the result of
part (1) may be used to obtain that

R
@Gj

log d�
d!j

d!j D �1 for each j . Assume nowZ
@Gj

log
d�

d!j
d!j D �1 (4.32)
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for all j > 0. The important fact now is the assumptions in (4.32) do not depend on
the point selected in each component. In other words, if !0j D !.bj ; �; G/ for other
points bj 2 Gj , j > 0, then, by (3.4) and (4.32) remains true if we replace !j with
!0j . By Corollary 3.11 one hasR.� /DC.� /. We know that C.� / is dense inLq.� /
for each 0 < q <C1. Then, it is enough to prove that for each fixed b 2 G� nG the
function z ! .z � b/�1 can be approximated in Lq.d�/ by polynomials. Applying
Theorem 4.68 to P.� / and to M D ¹P W P.b/ D 0º we obtain inf¹

R
j1� P jq d� D

0 W P 2 P; P.b/ D 0º D 0. If P.b/ D 0 then P.z/ D .z � b/P1.z/ and hence one
has ˇ̌̌̌

1

z � b
� P1.z/

ˇ̌̌̌
� j1 � .z � b/P1.z/j

for each z 2 � and P1 2 P. Then,

inf
²Z ˇ̌̌̌

1

z � b
� P1

ˇ̌̌̌q
d� D 0 W P1 2 P

³
D 0:

So, 1=.z � b/ 2 P q.�/.

This is a consequence of (1) and (3). In particular, if the set C n xG has some bounded
componentGj , then the assumption that

R
@Gj

log d�
d!j

d!j D�1 cannot be dropped.

The next result gives a sufficient condition for approximation.

Corollary 4.71. Let G be a Carathéodory domain such that xG does not separate the
plane, and let 0 < p < C1. Assume that � 2 MC.@G/ is such that Supp� ¤ @G.
Then, P q.�/ D Lq.�/.

Theorem 2 in [3] gives yet other characterization of Carathéodory domains, how-
ever it is a bit technical in a nature and hence we do not state it here, but only
mentioned for the interested reader.


