
Chapter 5

Miscellaneous results about Carathéodory sets

In this chapter we briefly mention some results, where the concept of a Carathéodory
sets plays a certain role, but which cannot be placed appropriately into any of the
above chapters and sections.

Approximation by polynomials of controlled degree

In this section we present one result which is formally related with Carathéodory sets
(at least the corresponding assumption was made in it formulation), but actually it is
independent on this concept.

Let K be a continuum and let ˚ be the conformal map from �01.K/ onto ¹w 2
C1 W jzj > �º with the normalization ˚.1/ D 1 and ˚ 0.1/ D 1, where � > 0 is
determined uniquely by this normalization of ˚ . Recall that the Taylor series of ˚ at
1 has the form

˚.z/ D z C a0 C
a1

z
C � � � ; jzj > R1

for some R1 > 0. Then, for each n > 1, one has

˚n.z/ D zn C a
.n/
n�1z

n�1
C � � � C a

.n/
0 C

a
.n/
�1

z
C � � � ; jzj > R1:

The polynomial
˚n.z/ D z

n
C a

.n/
n�1z

n�1
C � � � C a

.n/
0

is called the n-Faber polynomial with respect to K. For each r > 1 let

Cr D ˚
�1.¹z W jzj D rº/:

The question on studies of approximation of functions by polynomials of degree
at most n was posed already in the thesis of S. N. Bernstein. Here, we mention two
results.

Theorem 5.1 (Bernstein theorem). Let K be a continuum and let f 2 C.K/. Then,
for every " > 0 and 0 < q < 1 there exists a sequence of polynomials .Pn/ such that
degPn 6 n and

jf .z/ � Pn.z/j 6 C."/.q C "/n; n D 0; 1; 2; : : : ; z 2 K;

if and only if f has an analytic extension Qf to D.C�=q/. In the case that there exists
such extension, the sequence .Pn/ converges to Qf locally uniformly in D.C�=q/.
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Now, we will use the following notation. Let 1 6 p 6 1. If f 2 Ap.G/ then
define

E
p
n;G.f / D inf¹kf � P kp;G W P 2 P; degP 6 nº:

Theorem 5.2 (Bernstéin–Walsh theorem). Let K � C be a compact set such that
C nK is connected. If f 2 H.K/, then

lim sup
n!1

E1n;K.f /
1=n 6 � < 1;

where � D 0 ifK has logarithmic capacity zero, while � is a positive number (related
with the Green function of C nK) if capacity of K is positive.

Note that previous result is a quantitative version of Runge’s theorem. A proof
can found in [107, page 170]. Let us revert to Theorem 5.1. A proof can be seen
in [85]. In the case that f has the continuous extension, the key point is to show that

f .z/ D

1X
nD0

an˚n.z/

uniformly on K and one can take Pm D
Pm
nD0 an˚n. In the proof the following

estimate is obtained

jf .z/ � Pn.z/j 6
3

2
xM.f; r/

.r 0=r/nC1

1 � .r 0=r/
; (5.1)

for each z 2 K, where r > r 0 > � and xM.f; r/ D sup¹jf .z/j W z 2 Crº.
In a sequence of papers, see the references in [70], the following problem was

studied: whether the condition lim.Epn;G.f //
1=n D 0 does imply that f is an entire

function. In [70] two results of such kind were obtained under the assumption that the
domain G under consideration is a Carathéodory domain. However, it seems that this
assumption is not relevant to the problem under consideration and it is not needed in
the first of the aforementioned results. Let us reformulate and proof the corresponding
statement.

Theorem‘ 5.3. Let 1 6 p 61.

(a) Let f 2 H.C/. Then, for each bounded domain G it holds

lim
n!1

E
p
n;G.f /

1=n
D 0:

(b) Let U be an open set in C and let f 2 H.U /. If there exists an open disc D
with xD � U , such that

lim
n!1

E
p
n;D.f /

1=n
D 0;

then there exists F 2 H.C/ such that F jU D f .
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Sketch of the proof. PutK WD yG, take the corresponding˚ for suchK (see the begin-
ning of this subsection), and put r 0 D 2�. If Pn is a polynomial which satisfies (5.1),
then

E
p
n;G.f / 6 kf � Pn�1kp;K 6

p
p

Area.K/ kf � PnkK :

Using now the estimate (5.1) we obtain

E
p
n;G.f / 6 Const xM.f; r/

.�=r/nC1

1 � .�=r/

whenever r > r 0 D 2�. Then, lim supn!1 E
p
n;G.f /

1=n 6 �=r and letting r !1,
the conclusion follows.

Let us prove the statement (b). LetDDD.z0;R/. We know f .z/D
P1
nD0an.z�

z0/
n uniformly on xD. Assume that Pn�1 is a polynomial of degree at most n� 1, then

�R2nC2

nC 1
an D

Z
D

f .z/ .Nz � z0/
n dA.z/ D

Z
D

.f .z/ � Pn�1.z// .Nz � z0/
n dA.z/;

which in ones turn gives that

�R2nC2

nC 1
janj 6 Rnkf � pn�1k1;D 6 .�R2/

1
qRnkf � Pn�1kp;D;

where q is the conjugate exponent for p if p > 1. Then,

janj
1=n 6 C.nC 1/1=nEpD;n�1.f /

1=n
! 0

by the initial assumptions. So, f 2 H.C/.
In the case of p D1 the theorem is essentially due to Winiarski, [137].

Dualities between A�1.G/ and A1.C1 nG/

The problem of characterization of the dual of the Fréchet space H.G/ for an open
set G is a classical problem studied in several papers in the 1950s. It comes that there
is an isomorphism from H.G/� onto H0.C1 n G/. This is called the Main duality
theorem. We recommend to the interested reader to look at the proof of this result and
some related topics in [81, Chapter 8]. With this background he will understand per-
fectly the germinal ideas on this short section on dualities between spaces of analytic
functions.

Let B be a bounded domain in C. Consider the space A�1.B/ consisting of all
holomorphic functions in B with polynomial growth near @B , so that

A�1.B/ D

1[
kD0

¹f 2 H.B/ W kf k.k/ D sup
z2B

jf .z/j dist.z; @B/k <1º;
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and the space A1.C1 n B/ consisting of all C1-functions defined on C1 n B van-
ishing at 1 and holomorphic in the interior of C1 n B . We are going to mention
the recent result of the paper [2], where it was show that the Cauchy transformation
of functionals establish a mutual duality between these introduced spaces in the case
when B is a Carathéodory domain. Let us recall, that the Cauchy transformation of
functionals is the mapping

L 7! L

�
1

a � j

�
;

where a 2 B is some point and j stands for the identity function j.z/ D z.
Let us denote by S� the dual space of a locally convex topological space S

endowed with the strong topology. The aforementioned result of [2] is as follows
(see Theorems 4.3 and 4.5 in this paper).

Theorem 5.4. The following statements hold.

(1) Let G be a Carathéodory domain. Then, the Cauchy transformation of func-
tionals is an isomorphism from A�1.G/� onto A1.C1 nG/.

(2) Let B be a bounded domain in C with rectifiable boundary possessing the
property B D Int. xB/, then the Cauchy transformation of measures is an iso-
morphism from A1.C1 n B/� onto A�1.B/.

Let us give an outline of the proof of Theorem 5.4, part .1/. In order to prove the the-
orem it is enough (in view of [2, Proposition 4.1]) to verify that the system of Cauchy
kernels ¹ 1

z�a
W a 2C1 nGº is complete in A�1.G/. In order to prove this complete-

ness property we need to prove first that the set of all polynomials is dense in A�1.
This fact is the consequence of Hedberg’s theorem (see Theorem 4.34 above) applied
for the weights wD dist.�; @�/k , k 2 N0. The final step is to approximate each poly-
nomial by respective Cauchy kernels in the topology of the space A�1.G/.

As it was mentioned above (see Propositions 1.5 and 1.6) any Carathéodory
domain G is simply connected and possesses the property G D Int. xG/. Moreover,
the latter condition is equivalent to the Carathéodory one whenever G is a bounded
simply connected domain whose closure does not separate the plane.

As a corollary of Theorem 5.4 in [2] (see Corollary 4.6 of the paper cited) it was
stated the following result: If G is a Carathéodory domain with rectifiable boundary,
then the Cauchy transformation of measures establishes a mutual duality between the
spaces A�1.G/ and A1.C1 nG/.

In this connection it is worth to recall Corollary 2.13 which says that any Carathé-
odory domain with rectifiable boundary is a Jordan domain. Thus, the mutual duality
between the spaces A�1.G/ and A1.C1 n G/ is actually established only for the
class of Jordan domains.

The same remark holds for the result of [2, Theorem 5.7] which we do not state
explicitly because it goes too far from our main line of considerations.
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Analytic balayage of measures supported in Carathéodory domains

Let us briefly discuss one topic concerning the structure of measures that are ortho-
gonal to rational functions, in which the concept of a Carathéodory domain plays a
certain role.

Let G be a Jordan domain with rectifiable boundary, and let � be a measure with
Supp.�/ � G. Then, by [28, Lemma 4.1], the measure �C y�d�j@G is orthogonal to
P (as before, the symbol y� denotes the Cauchy transform of �). In view of the term
y� d�j@G it is not clear how to extend this observation to a wider class of domains.
The following result was proved in [26, Proposition 3].

Proposition‘ 5.5. Let G be a Carathéodory domain in C, let f be a conformal map
from D onto G, and ! be the corresponding complex harmonic measure on @G.

(1) Let � be a measure with Supp.�/ � G. Then, the measure

�� D �C .y� ı f �1/ !; where � D f �1.�/;

is orthogonal to A. xG/.

(2) LetK �G be a compact set, and � be a measure onK [ @G with � ?R. xG/.
Then, there exists a function h 2 H 1 such that � D .� jK/� C .h ı f �1/ !.

Proof. We start with the proof of the first assertion. Put E WD Supp.�/. Since y� is
holomorphic outside E, then y� d� is a well-defined measure on T and � D f .y� d�/
is a measure on @G. Take a function g 2 A. xG/, so that g ı f 2 H1. Using Fubini
and Cauchy theorems and the definition of y� we haveZ

g d�� D

Z
g d�C

Z
g d�D

Z
g d�C

Z
T
g.f .�// y�.�/ d�

D

Z
gd�C

Z
E

�
1

2�i

Z
T

g.f .�//d�

w � �

�
d�.w/D

Z
gd� �

Z
E

g.f .w//d�.w/D0:

In order to prove the second assertion we need to observe that � � .� jK/� is a
measure on @G orthogonal to R. xG/. It remains to apply (3.21).

The representation of orthogonal measures obtained in this proposition has an
interesting connection with the notion of an analytic balayage of measures, which
was introduced by D. Khavinson [74], and which turned out to be a useful tool in
approximations by analytic functions.

Definition 5.6. Let X be a compact set in C, and let � be a measure such that
Supp.�/ � Xı. The measure � on @X is called an analytic balayage of � if � �
� ? R.X/, and for any measure z� on @X such that � � z� ? R.X/, the inequality
kz�k > k�k holds.
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In all cases considered below, the analytic balayage of a given measure is uniquely
determined. Having this remark in mind, we will denote the analytic balayage of �
by ˛.�/ D ˛.�; @X/.

The presented definition of an analytic balayage of measures was given in [74,
Definition 2] for finitely connected compact sets with piecewise analytic boundaries,
but it also makes sense for general compact sets. For measures � supported on X
(but not only on Xı), the analytic balayage was defined in another way by means
of a special implicit construction, namely, a weak-star limit of analytic balayages of
the initial measure to (piecewise analytic) boundaries of certain finitely connected
compact sets approaching X (see [74, Definition 3]).

Let us see what an analytic balayage looks like in a simple case. Let G be a
Jordan domain with piecewise analytic boundary � , and let � be a measure such that
Supp.�/ � G. As was shown in [74, Proposition 2]

˛.�/ D g� dzj� � y�dzj� ; (5.2)

where g� 2 R. xG/ is such that

ky� � g�kL1.� / D inf ky� � gkL1.� /;

the infimum being taken over all functions g 2 R. xG/, and the Lebesgue space L1.� /
is considered with respect to the measure jdzj on � . The fact that the analytic balay-
age of � is uniquely determined in this case is the consequence of [74, Proposition 3].
The formula (5.2) highlights the role of the term y�dzj� which have appeared also in
the part (1) of Proposition 5.5.

Since the explicit expression for analytic balayage is known only for finitely con-
nected compact sets with piecewise analytic boundaries, it would be interesting to find
such formulae for a wider class of compact sets. The class of Carathéodory compact
sets fits this problem most naturally. This is mainly due to the structural properties of
orthogonal measures stated in Proposition 5.5 which hold for the class of Carathéo-
dory domains but not for any other known wider class of domains in C.

The next result which was obtained in [52], see also [1], gives the desired expres-
sion for analytic balayage in the case of Carathéodory domains. We recall, thatH 1 D

H 1.D/ and the space L1 D L1.T / is considered with respect to the measure mT .

Theorem‘ 5.7. LetG be a Carathéodory domain and� be a measure with Supp.�/�
G. Then, ˛.�; @G/ is concentrated on @aG and has the form

˛.�; @G/ D .h� ı f �1/ ! � .y� ı f �1/ !;

where f is a conformal map from D ontoG, the measure � is defined as �D f �1.�/,
and the function h� 2 H 1 is the solution of the extremal problem

ky� � h�kL1 D inf
h2H1

ky� � hkL1 : (5.3)
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It follows from this theorem that the analytic balayage of � in the case under
consideration is uniquely determined (notice that the extremal problem (5.3) has a
unique solution, see [58, Chapter iv, Section 1.2]).

Sketch of the proof of Theorem 5.7. By part (1) of Proposition 5.5 one has

�� D �C .y� ı f �1/ ! ? R. xG/:

Let now z� be an arbitrary measure on @G such that � � z� ? R. xG/. Then,

z� C .y� ı f �1/ ! D z� C .�� � �/ D �� � .� � z�/ ? R. xG/:

Since z� C .y� ı f �1/ ! is a measure on @G, there exists some function h 2 H 1 such
that

z� C .y� ı f �1/ ! D .h ı f �1/ !;

and hence
z� D .h ı f �1/ ! � .y� ı f �1/ !:

It remains to observe that the measure � D ˛.�; @G/ is the measure among z� that has
the minimum norm.

The formula for analytic balayage given in Theorem 5.7, has a simpler form in
the case when the solution h� of the extremal problem (5.3) is zero. Let us describe
the measures for which it is the case. The following result was proved in [1].

Proposition 5.8. Let G be a Carathéodory domain in C, and let f , � and � be as
in Theorem 5.7. Then, ˛.�; @G/ D �.y� ı f �1/ ! if and only if � is a finite sum of
point-mass measures, one of which is supported at the point f .0/.

In order to verify this result we need to use the concept of badly approximable
functions in L1. The function ' 2 L1 is called badly approximable, if only the func-
tion g� � 0 solves the extremal problem

k' � g�kL1 D inf
g2H1

k' � gkL1 :

It follows from [58, Theorem 1.2, Chapter iv] that the solution of this extremal
problem is unique. The class of badly approximable functions admits the following
description.

Proposition 5.9. A function ' 2 L1 is badly approximable if and only if it has the
form ' D x�˚ , where � is an inner function (i.e., � 2 H1 and j�.�/j D 1 for a.a.
� 2 T ), �.0/ D 0, and ˚ 2 L1 is such that ˚ > 0.

This result may be found in [75, Theorem 1], where it was obtained in a slightly
different terms, and the proof provided was lengthly and technically involved. A new
readable proof of this fact was given in [1].
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Outline of the proof of Proposition 5.8. Let K be a compact subset of D, and let ' 2
H.C1 nK/. It follows from Proposition 5.9 that ' is badly approximable if and only
if ' D c xB on T , where c is a positive constant, and B is a finite Blaschke product
with B.0/ D 0.

This fact yields that the solution h� of the extremal problem (5.3) is zero if and
only if the function y� coincides on T with the conjugation of some finite Blaschke
product vanishing at 0. It means that � (and hence �) is a finite sum of point-mass
measures, one of which is supported at the origin (at the point f .0/, respectively).

Harmonic reflection over boundaries of Carathéodory domains

Recently, interest has intensified in the problems on reflection of harmonic functions
over boundaries of domains in the plane and in space and in the problems on preser-
vation of the smoothness properties of functions under such reflection. It is known
several different approaches to define the harmonic reflection. Many of them are
based on constructions of point-to-point reflection related with different variations
of the symmetry principle for harmonic functions. At the same time in [53, 100–102]
the construction was studied that was based on usage of the Dirichlet problems for
harmonic functions in a given domain and in its complement. This construction is
closely connected with the notion of a Carathéodory domain. In the rest of this sec-
tion let k 2 N and k > 1.

Definition 5.10. A nonempty bounded domain G � Rk is called a simple Carathéo-
dory domain if it possesses the following properties:

(1) the set � D Rk n xG is a domain;

(2) @G D @�;

(3) if k > 3 then both domains G and � are regular with respect to the classical
Dirichlet problem for harmonic functions.

In fact, a simple Carathéodory domain in R2 is a Carathéodory domain, whose
closure does not separate the plane. Notice that the third property in Definition 5.10 is
assumed only for N > 3, since any Carathéodory domain in R2 is simply connected
(see Proposition 1.5), and hence it is regular with respect to the Dirichlet problem for
harmonic functions (see, e.g., Section 3.2).

Recall that for m 2 .0; 1� and for a closed set X � Rk (containing at least two
points) the Lipschitz–Hölder space of order m is defined as follows:

Lipm.X/ D
²
h 2 C.X/ W khk0X;m WD sup

jh.x/ � h.y/j

jx � yjm
< C1

³
;

where sup is taken over all couples of points x; y 2 X with x ¤ y . The norm of a
function h 2 Lipm.X/ is defined as follows: khkX;m WD max¹khk0X;m; khkXº.
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Furthermore, for m 2 .0; 1/ we put

Cm.X/ D

²
h 2 Lipm.X/ W lim

ı!0
sup

0<jx�yj<ı

jh.x/ � h.y/j

jx � yjm
D 0

³
:

Notice that using the Whitney extension theorem and a regularization operator, it can
be readily verified that for compact sets X � Rk the space Cm.X/ for m 2 .0; 1/
coincides with the closure in Lipm.X/ of the subspace C1.Rk/jX .

Denote by CR.X/ the space of all real-valued continuous functions on a given
closed set X � Rk . Put

CH .X/ WD CR.X/ \ Har.Int.X//

if X contains no punctured neighborhood of1, or, otherwise,

CH .X/ WD ¹h 2 CR.X/ \ Har.Int.X// W h.x/ D Ojxj!1.jxj2�k/º:

Take a simple Carathéodory domain G � Rk , and let � D Rk n xG, so that � is
a domain and @� D @G.

Let us define two operators, related with the Dirichlet problem for harmonic func-
tions in G and in �. The first one is the Poisson operator PG which maps a given
function ' 2 CR.@G/ to the function f 2 CH . xG/ such that f j@G D '. The Poission
operator P� is defined by the same way. The second one is the harmonic reflection
operator RG that acting from the space CH . xG/ to the space CH .x�/ and that maps a
given function f 2 CH . xG/ to the function g 2 CH .x�/ such that gj@� D f j@G .

Let us consider the question what conditions on G are necessary and sufficient in
order that the operatorsPG orRG preserve smoothness properties of functions, when
smoothness is understood in the sense of Lipm-spaces for 0 < m 6 1 and Cm-spaces
for 0 < m < 1. This question is interesting both in its own, and in connection with
problems on Cm-extension and Cm-approximation for harmonic and subharmonic
functions.

Let nowm andm0 be such that 0 < m0 6m 6 1. One says that the operatorPG is
.m;m0/-continuous, if it is continuous as an operator from the space Lipm.@G/ to the
space Lipm

0

. xG/ \ Har.G/. Respectively, one says that the operator RG is .m; m0/-
continuous, if it is continuous as an operator from Lipm. xG/\Har.G/ to Lipm

0

.x�/\

CH .x�/.
Similarly, for m and m0 such that 0 < m0 6 m < 1, the operator PG is called

C.m;m0/-continuous, if it is continuous operator fromCm.@G/ toCm
0

. xG/\Har.G/,
while the operatorRG is called C.m;m0/-continuous if it is continuous operator from
Cm. xG/ \ Har.G/ to Cm

0

.x�/ \ CH .x�/.
Finally, one says that P� is .m;m0/-continuous, if it is continuous operator from

Lipm.@�/ to Lipm
0

.x�/ \ CH .x�/. Respectively, P� is C.m;m0/-continuous, if it is
continuous from Cm.@�/ to Cm

0

.x�/ \ CH .x�/.
The next proposition combines the results obtained in [100] and [53].
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Theorem 5.11. The following holds.

(1) For any Jordan Lyapunov–Dini domain G in Rk the operator RD is .1; 1/-
continuous; but there exist Jordan domains G with C 1-smooth boundaries
for which it is not the case.

(2) For every simple Carathéodory domain D � Rk both operators PD and P�
are not .1; 1/-continuous.

We are not going here to give a precise definitions of a Jordan Lyapunov–Dini
domain, but we mention that it is a Jordan domain with C 1-smooth boundary, whose
boundary satisfies additional Dini-type continuity condition on inner normal vector.

Theorem 5.11 shows that the problem on .m; m0/-continuity for operators PG
and RG are independent in the general case. At the same time, in many instances the
problems on .m; m0/- and C.m; m0/-continuity of the operator RG can be reduced
to the corresponding problems for the operator P�. Notice that the domain � is
unbounded, and assume, without loss of generality, that the initial domainG contains
the origin. Using the classical Kelvin transform we can further reduce the problems on
.m;m0/- and C.m;m0/-continuity of the operator P� to the corresponding problems
for the operator PB.�/, where B.�/ D ¹x 2 Rk W x=jxj2 2 �º. Let us recall that the
Kelvin transform maps a given function h.x/ to the function jxj2�kh.x=jxj2/; this
mapping is an isomorphism of the spaces Qm.B.�// \ Har.B.�// and Qm.x�/ \

CH .x�/, where Qm.�/ stands for both Lipm.�/ and Cm.�/.
Theorem 2 in [53] gives the following criterion for Lipm-continuity of the Poisson

operator.

Theorem 5.12. Let G, with diam.G/ 6 1, be a simple Carathéodory domain in Rk ,
and let 0 < m0 6 m 6 1. The following conditions are equivalent:

(a) the operator PG is .m;m0/-continuous;
(b) there exists A > 0 such that for each point b 2 @D and for '.x/ D jx � bjm

one has
PG.'/ 2 Lipm

0

. xG/ and kPG.'/k xD;m0 6 AI

(c) there exists A > 0 such that for every point a 2 G and for each point a0 2
@G with the condition ı D ja � a0j D dist.a; @G/ the following estimate is
satisfied:

NX
nD1

.nı/m!.a; En; G/ 6 Aım
0

;

where we set

E0 D ¹x 2 @G W jx � a
0
j 6 ıº;

En D ¹x 2 @G W nı < jx � a
0
j 6 .nC 1/ıº; n > 1;

and, where N is the maximal integer such that EN ¤ ;.
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Using this theorem one can show that for every simple Carathéodory domain
G in Rk there exists a number mG 2 Œ0; 1� possessing the following properties: the
operator PG is .m; m/-continuous for all m 2 .0; mG/, but it is not the case for all
m 2 .mG ; 1�. Moreover, the operator PG is .m;m0/-continuous for all .m;m0/ such
that 0 < m0 < mG and m0 6 m 6 1.

Theorem 1 in [102] says that a similar picture holds in the case of Cm-continuity
of the operator PG .

Theorem 5.13. Let G be a simple Carathéodory domain in Rk , and let mG be the
number defined in the previous statement. The operator PG is C.m;m/-continuous
for allm 2 .0;mG/, but it is not the case for allm 2 .mG ; 1/. Moreover, the operator
PG is C.m;m0/-continuous for all .m;m0/ such that 0 < m0 < mG andm0 6 m < 1.

It follows from [53, Corollaries 3, 8, and 9] that for any simple Carathéodory
domain G � R2 we havemD 2 Œ1=2; 1�, while in the case that k > 3 the numbermD
may take any value from the segment Œ0; 1� in the general case. Let us now clarify
what the numbers mG and m� are equal to in the case when G and � satisfy certain
special geometrical conditions.

Given � 2 .0; 1/ and r > 0 let us define (closed spherical) truncated cone (closed
sector in the two-dimensional case) K.�; r/ in Rk as follows:

K.�; r/ D ¹x 2 Rk W 0 < jxj 6 r; �x 6 ��º [ ¹0º;

where
�x D arccos.x1=jxj/

stands for the angle between the vector x D .x1; : : : ; xk/ and the direction of the axes
Ox1.

One says that a simple Carathéodory domain G � Rk satisfies the external trun-
cated cone condition with parameters .˛; r/, where ˛ 2 .0; 1� and r > 0, if for every
point a 2 @G there exists a truncated coneKa congruent toK.˛=2; r/ with the vertex
a, and such thatKa \G D ;. The internal truncated cone condition is defined by the
same way.

For further considerations we need one auxiliary construction, see [82, Section
1] and [92, Section 2]. For every k > 2 and � > 0 there exists a unique function
gk;� 2 C

2.Œ0; �// such that

g00k;�.t/C .k � 2/ cot.t/g0k;�.t/C �.�C k � 2/gk;�.t/ D 0; t 2 .0; �/;

with gk;�.0/ D 1 and g0
k;�
.0/ D 0. Moreover, the function gk;� has its first (with

respect to the increasing order) positive zero �k.�/ in the interval .0; �/; the func-
tion �k.�/W .0;C1/! .0;�/ is continuous and strictly decreasing; the corresponding
inverse function �k.�/W .0; �/! .0;C1/ is also continuous and injective.
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Both functions �k.�/ and �k.�/may be found in an explicit form for kD 2;4. Thus,
in the case k D 2 the corresponding equation for the function gk;� has a very simple
form g00

2;�
C �2g2;� D 0, so that g2;�.t/ D cos.�t/, �2.�/ D �=.2�/ and �2.�/ D

�=.2�/. For k D 4 it can be shown, that �4.�/D �=.�C 1/ and �4.�/D �1C �=� ,
respectively.

For ˛ 2 .0; 1� we can define the numbermk;˛ WD �k.� � ˛�=2/ so that, in partic-
ular, m2;˛ D 1=.2 � ˛/. It was shown in [53] that for a simple Carathéodory domain
G � Rk satisfying the external truncated cone condition with parameters .˛; r/ for
some ˛ 2 .0; 1/ and r > 0, it holds mG > mk;˛ .

In several cases when a given simple Carathéodory domain G satisfies certain
additional conditions stated in terms of external (or internal) truncated cone condi-
tions (with some ˛), we have that mG D mk;˛ (or, respectively, m� D mk;˛). In the
latter case the operatorRG is .m;m0/-continuous for 0 < m0 <m� withm0 6m6 1,
and it is not the case for allm;m0 such thatm� <m0 6m6 1. Moreover, the operator
RG in this case is C.m;m0/-continuous for all m and m0 such that 0 < m0 < m� and
m0 6 m < 1, but it is not the case for all m and m0 with m� < m0 6 m < 1. These
results and related discussions may be found in [53, Section 3] and [102, Section 2].

Carathéodory domains and invariant subspace problem

We end this chapter and the whole survey by stating one result showing the applica-
tion of Carathéodory domains to the invariant subspace problem. The respective result
was recently obtained in [76]. It states as follows.

Theorem 5.14. Let T be a bounded linear operator on a separable infinite-dimen-
sional Hilbert space H with the spectrum �.T /. Assume that

(i) T is such that kP.T /k 6 kP k�.T / for every P 2 P, and

(ii) 1�.T / is the closure of a Carathéodory domain such that for every � 2 @aG
there exists a rectifiable arc � � @G containing �.

Then, T has a nontrivial invariant subspace H0 (so that TH0 � H0).

As the corollary of this theorem, in [76] the existence of nontrivial invariant sub-
space for a certain subclass of hyponormal operators was proved.


