
Introduction

By its simplicity, the number of its far-reaching applications, and its connections
to many areas of mathematics, Paul Lévy’s stochastic area formula is undoubtedly
among the most important and beautiful formulas in stochastic calculus.

Let Z.t/ D B1.t/C iB2.t/, t � 0, be a Brownian motion in the complex plane
such that Z.0/ D 0. The algebraic area swept out by the path of Z up to time t is
given by half of the value
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where the stochastic integral is an Itô integral, or equivalently a Stratonovich integral,
since the quadratic covariation between B1 and B2 is 0. Lévy’s area formula
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was originally proved in [136] by using a series expansion of Z. The formula nowa-
days admits many different proofs. A particularly elegant probabilistic approach is
due to Yor [190] (see also [186]). The first observation is that, due to the invariance
by rotations of Z, one has for every � 2 R,
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One considers then the new probability measure
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under which, thanks to Girsanov’s theorem, .Z.t//t�0 is a Gaussian process (an
Ornstein–Uhlenbeck process). The stochastic area formula then easily follows from
standard computations on Gaussian measures.

Somewhat surprisingly, Lévy’s stochastic area formula and the stochastic area
process .S.t//t�0 appear in many different contexts, for instance the following:

• Watanabe [184] points out the connection between the stochastic area formula
and the differential of the exponential map in Lie groups.

• The stochastic area formula also appears in works by Bismut [54, 55], where
probability methods are used to prove index theorems. Variations of these meth-
ods allow one to construct explicit parametrics for the heat equation on vector
bundles; see [22].
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• The Mellin transform of S.t/ is closely related to analytic number theory and
in particular to the Riemann zeta function; see the survey paper [52] by Biane,
Pitman, and Yor. We also point out some connections with algebraic geometry as
explained by Hara and Ikeda [118].

• The stochastic area process is a central character in the construction of Terry
Lyons’ rough paths theory; see the monograph by Friz and Victoir [102].

• The stochastic area formula also appears as an important tool in Malliavin calcu-
lus; see in particular Watanabe [183].

• The stochastic area process is also intimately connected to sub-Riemannian
geometry. More precisely, Gaveau [106] actually observed that the 3-dimensional
process .B1.t/; B2.t/; S.t//t�0 is a horizontal Brownian motion on the Heisen-
berg group. As a consequence, the stochastic area formula yields an expression
for the heat kernel of the sub-Laplacian on the Heisenberg group; see also Hulan-
icki [126].

• The stochastic area formula is also relevant in mathematical physics as pointed
out in Duplantier [84] and Yor [191] (see also the references therein).

The stochastic area process or the Lévy area formula can be generalized in many
different directions. For instance, there exist analogues for Gaussian processes as in
Ikeda, Kusuoka, and Manabe [128] (see also Coutin and Victoir [75]) or, for free
Brownian motion, as in Capitaine and Donati-Martin [66] or Victoir [176].

In the present monograph we present generalizations of both the area process and
the Lévy area formula for Brownian motions on manifolds. As we will show, natural
generalizations of the stochastic area for a Brownian motion .X.t//t�0 on a manifold
M are functionals defined as
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where ˛ is a 1-form with some geometric significance taking values in a Lie algebra
(or one of its quotients). To ensure the existence of an explicit expression for the
stochastic area formula, we will need that M is a Riemannian homogeneous space
and that ˛ is a form on M coming from the connection form of a homogeneous
bundle over M; for a somewhat general setting see Example 3.1.16 and Section 3.5.
For instance, in the simplest case where ˛ is R-valued, the area 1-form will arise
from a Kähler structure on M. By definition, a Kähler form on a complex manifold
M is a closed 2-form ! that induces the metric on M in the sense that !.X; J Y /
is the Riemannian metric on M, where J is the almost complex structure. It is a
classical result in complex analysis that such a 2-form can (at least locally) be written
as ! D i@N@ˆ, where @ and N@ are the Dolbeault operators and ˆ is a smooth function.
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The (at least locally defined) real 1-form
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1

2i
.@ � N@/ˆ

is then a natural area 1-form on M which satisfies d˛ D .@C N@/˛ D !. When M
is compact, the homogeneous bundle over M we mentioned before is an S1-bundle
referred to as the Boothby–Wang fibration (see the discussion in Section 3.5.2). It is
worth noting that the pull-back to that bundle of the form ˛ then yields a winding
1-form: integrating this form against a path describes the S1 fiber component of that
path. This interplay between stochastic areas and windings is at the heart of a lot of
our analysis.

We will also consider more general 1-forms ˛ like su.2/-valued 1-forms and
associated bundles; however, we stress that our goal in the monograph is not to
develop a general and abstract theory of stochastic-area-type functionals associated
with homogeneous bundles. We will rather focus on specific relevant examples for
which very concrete calculations can be done. Covering specific examples in great
detail will give us the opportunity to explore several topics of independent interest
related to the study of stochastic area functionals. We will in particular focus our
attention on connections with the theory of Riemannian submersions and associated
horizontal Brownian motions, the theory of complex and quaternionic projective and
hyperbolic spaces, the theory of hypoelliptic heat kernels, and the theory of random
matrices.

Organization of the monograph

In Chapter 1 we introduce the stochastic area functionals for Euclidean Brownian
motions and the associated Lévy area formulas. We show how the geometry of such
functionals is intimately related to the theory of nilpotent Lie groups. We also study
some Brownian functionals which belong to the same family as the stochastic areas:
the Brownian winding functionals.

Chapter 2 is an introduction to the theory of Brownian motions on Lie groups and
Riemannian manifolds as is needed in the monograph.

Chapter 3 presents the general theory of Riemannian submersions and associ-
ated horizontal Brownian motions. A special emphasis is put on examples and on
the situation where the submersion is the projection map of a principal bundle; it is
then shown in that case that stochastic area functionals appear as the fiber motion of
horizontal Brownian motion of that bundle.

Chapters 4 through 7 are devoted to the study of stochastic areas and of their
distributions on complex projective spaces and complex hyperbolic spaces, on the
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quaternionic projective spaces, on the quaternionic hyperbolic spaces, and on the
octonionic projective and hyperbolic spaces, respectively.

In Chapter 8, using the techniques of random matrix theory, we study Brownian
motions and associated eigenvalue processes on complex Grassmannian spaces. We
then define stochastic area functionals in that setting by means of the Stiefel fibration.
The distribution of these area functionals is computed and limit theorems are proved.
Finally, in Chapter 9 we study Brownian motions and associated eigenvalue processes
on the complex hyperbolic Grassmannian spaces. Stochastic area functionals in that
setting can be defined by means of the hyperbolic Stiefel fibration. The distribution
of these area functionals is computed and limit theorems are proved.

Each chapter ends with a short “Notes and references” section which suggests
references for further reading on some of the materials.

At the end of the monograph, we included three appendices. The first one is
a short summary of stochastic calculus results used throughout the monograph. In
particular, in Theorem A.9.1 we present Yor’s transform method, which is the pow-
erful method due to Yor that is used throughout the monograph to compute con-
ditional Laplace transforms of additive functionals of diffusion processes. The sec-
ond appendix gives some useful formulas concerning the special diffusion operators
appearing in the monograph. Finally, the last appendix lists the formulas for the radial
parts of the Laplace–Beltrami operator on some rank-one symmetric spaces.


