
Chapter 1

Introduction

The dynamical behavior of physical processes is usually modeled via differential
equations. But if the states of the physical system are in some ways constrained,
like for example by conservation laws such as Kirchhoff’s laws in electrical net-
works, or by position constraints such as the movement of mass points on a surface,
then the mathematical model also contains algebraic equations to describe these con-
straints. Such systems, consisting of both differential and algebraic equations, are
called differential-algebraic systems, algebro-differential systems, implicit differen-
tial equations, or singular systems.

The most general form of a differential-algebraic equation is

F.t; x; Px/ D 0; (1.0.1)

with F W I �Dx �D Px ! Cm, where I � R is a (compact) interval and Dx;D Px � Cn

are open, m; n 2 N. The meaning of the quantity Px is ambiguous as in the case of
ordinary differential equations. On one hand, it denotes the derivative of a differen-
tiable function xW I ! Cn with respect to its argument t 2 I. On the other hand,
in the context of (1.0.1), it is used as an independent variable of F . The reason for
this ambiguity is that we want F to determine a differentiable function x that solves
(1.0.1) in the sense that F.t; x.t/; Px.t// D 0 for all t 2 I.

In connection with (1.0.1), we will discuss the question of existence of solutions.
Uniqueness of solutions will be considered in the context of initial value problems,
when we additionally require a solution to satisfy the condition

x.t0/ D x0 (1.0.2)

with given t0 2 I and x0 2 Cn, and boundary value problems, where the solution is
supposed to satisfy

b
�
x. t /; x. Nt /

�
D 0 (1.0.3)

with bWDx � Dx ! Cd , I D Œ t ; Nt � and some problem dependent integer d . It will
turn out that the properties of differential-algebraic equations reflect the properties
of differential equations as well as the properties of algebraic equations, but also
that other phenomena occur which result from the mixture of these different types of
equations.

Although the basic theory for linear differential-algebraic equations with constant
coefficients

E Px D Ax C f .t/; (1.0.4)
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where E;A 2 Cm;n and f W I ! Cm, has already been established in the nineteenth
century by the fundamental work of Weierstraß [330, 331] and Kronecker [170] on
matrix pencils, it took until the pioneering work of Gear [129] for the scientific
communities in mathematics, computer science, and engineering to realize the large
potential of differential-algebraic equations in modeling dynamical systems. By this
work and the subsequent developments in numerical methods for the solution of
differential-algebraic equations, it became possible to use differential-algebraic equa-
tions in direct numerical simulation. Since then an explosion of the research in this
area has taken place and has led to a wide acceptance of differential-algebraic equati-
ons in the modeling and simulation of dynamical systems. Only very few monographs
and textbooks are so far devoted to this subject; see the first edition [185] and [49,
145, 151, 203, 266, 281]. Partially, differential-algebraic equations are also discussed
in [19, 69, 70, 106, 116, 154, 265].

Until the work of Gear, implicit systems of the form (1.0.1) were usually trans-
formed into ordinary differential equations

Py D g.t; y/ (1.0.5)

via analytical transformations. One way to achieve this is to explicitly solve the
constraint equations analytically in order to reduce the given differential-algebraic
equation to an ordinary differential equation in fewer variables. But this approach
heavily relies on either transformations by hand or symbolic computation software
which are both not feasible for medium or large scale systems.

Another possibility is to differentiate the algebraic constraints in order to get an
ordinary differential equation in the same number of variables. Due to the neces-
sary use of the implicit function theorem, this approach is often difficult to perform.
Moreover, due to possible changes of bases, the resulting variables may have no phys-
ical meaning. In the context of numerical solution methods, it was observed in this
approach that the numerical solution may drift off from the constraint manifold after
a few integration steps. For this reason, in particular in the simulation of mechanical
multibody systems, stabilization techniques were developed to address this difficulty.
But it is in general preferable to develop methods that operate directly on the given
differential-algebraic equation.

In view of the described difficulties, the development of numerical methods that
can be directly applied to the differential-algebraic equation has been the subject of a
large number of research projects in the last fifty years and many different directions
have been taken. In particular, in combination with modern network-based modeling
tools (that automatically generate models for substructures and link them together via
constraints), it is important to have generally applicable numerical methods as well
as methods that are tailored to a specific physical situation. Ideally such an automat-
ically generated model is directly transferred to a numerical simulation package via
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an appropriate interface so that in practical design problems the engineer can opti-
mize the design via a sequence of modeling and simulation steps. The development
of such general solution packages for differential-algebraic equations is an active
area of research for many years, which requires strong interdisciplinary cooperation
between researchers working in modeling, the development of numerical methods,
and the design of software. A major difficulty in this context is that still not all of the
analytical and numerical properties of differential-algebraic systems are completely
understood. In particular, the treatment of bifurcations or switches in non-linear sys-
tems and the analysis and numerical solution of heterogeneous (coupled) systems
combined of differential-algebraic equations and partial differential equations (some-
times called partial differential-algebraic equations) represent major research tasks.

It is the purpose of this textbook to give a coherent introduction to the theoretical
analysis of differential-algebraic equations and to present some appropriate numerical
methods for initial and boundary value problems. For the analysis of differential-
algebraic equations, there are several paths that can be followed. A very general
approach is given by the geometrical analysis initiated by Rheinboldt [276], see
also [266], to study differential-algebraic equations as differential equations on man-
ifolds. We will discuss this topic in Section 4.4. Our main approach, however, will
be the algebraic path that leads from the theory of matrix pencils by Weierstraß and
Kronecker via the fundamental work of Campbell on derivative arrays [71] to canon-
ical forms for linear variable coefficient systems [175, 176] and their extensions to
non-linear systems, hybrid systems, and optimal control in the work of the authors
[84, 181, 182, 184, 187, 190, 193, 195].

This algebraic approach not only gives a systematic approach to the classical
analysis of regular differential-algebraic equations but also allows the study of gen-
eralized solutions and the treatment of over- and underdetermined systems as well as
control problems. At the same time, it leads to new discretization methods and new
numerical software.

Unfortunately, the simultaneous development of the theory in many different
research groups has led to a large number of slightly different existence and unique-
ness results, particularly based on different concepts of the so-called index. The
general idea of all these index concepts, see [229] for a comparison, is to measure the
degree of smoothness of the problem that is needed to obtain existence and unique-
ness results. To set our presentation in perspective, we now briefly discuss the most
common approaches.

1.1 Solvability concepts

In order to develop a theoretical analysis for system (1.0.1), one has to specify the
kind of solution that one is interested in, i.e., the function space in which the solution
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should lie. In this textbook, we will mainly discuss two concepts, namely, classical
(continuously differentiable) solutions and weak (distributional) solutions, although
other concepts have been studied in the literature; see, e.g., [218, 219].

For the classical case, we use the following solvability definition; the distribu-
tional case will be discussed in detail in Sections 2.4 and 3.5.

Definition 1.1.1. Let C k.I;Cn/ denote the vector space of all k-times continuously
differentiable functions from the real interval I into the complex vector space Cn.

(1) A function x 2 C 1.I;Cn/ is called a solution of (1.0.1) if it satisfies (1.0.1)
pointwise.

(2) The function x 2 C 1.I;Cn/ is called a solution of the initial value problem
(1.0.1) with initial condition (1.0.2) if it furthermore satisfies (1.0.2).

(3) An initial condition (1.0.2) is called consistent with F if the associated initial
value problem has at least one solution.

In the following, a problem is called solvable if it has at least one solution. This
definition seems natural but it should be noted that in most of the previous literature,
the term solvability is used only for systems which have a unique solution when con-
sistent initial conditions are provided. For comparison with Definition 1.1.1, consider
the solvability condition given in [49, Definition 2.2.1].

If the solution of the initial value problem is not unique, which is, in particular, the
case in the context of control problems, then further conditions have to be specified
to single out specific desired solutions. We will discuss such conditions in Section 3.4
and in the context of (optimal) control problems in Sections 2.5, 3.6, and 4.5, as well
as in Sections 2.6, 3.7, and 4.6.

1.2 Index concepts

In the analysis of linear differential-algebraic equations with constant coefficients
(1.0.4), all properties of the system can be determined by computing the invariants
of the associated matrix pair .E; A/ under equivalence transformations. In particu-
lar, the size of the largest Jordan block to an infinite eigenvalue in the associated
Kronecker canonical form [127], called index, plays a major role in the analysis
and determines (at least in the case of so-called regular pairs) the smoothness that
is needed for the inhomogeneity f in (1.0.4) to guarantee the existence of a classical
solution. Motivated by this case, it was first tried to define an analogous index for lin-
ear time-varying systems and then for general implicit systems; see [134]. However,
it was soon realized that a direct generalization by linearization and consideration of
the local linearized constant coefficient system does not lead to a reasonable concept.
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The reason is that important invariants of constant coefficient systems are not even
locally invariant under non-constant equivalence transformations. This observation
led to a multitude of different index concepts even for linear systems with variable
coefficients; see [80]. Among the different approaches, the differentiation index, the
strangeness index, the perturbation index, and the tractability index are currently the
most widely used concepts in the literature. We will give formal definitions for the
first three indices in Sections 3.3, 3.1, 4.1, and 3.4, respectively. For the tractability
index, see [203].

Loosely speaking, the differentiation index is the minimum number of times that
all or part of (1.0.1) must be differentiated with respect to t in order to determine
Px as a continuous function of t and x. The motivation for this definition is histori-
cally based on the procedure to solve the algebraic equations (using their derivatives
if necessary) by transforming the implicit system to an ordinary differential equa-
tion. Although the concept of the differentiation index is widely used, it has a major
drawback since it is not suited for over- and underdetermined systems. The reason
for this is that it is based on a solvability concept that requires unique solvability.
In our presentation, we will therefore focus on the concept of the strangeness index
[175, 181, 182, 193], which generalizes the differentiation index to over- and under-
determined systems. We will not discuss other index concepts such as the geometric
index [276], the tractability index [145, 203, 218, 219], or the structural index [242].
A different index concept that is of great importance in the numerical treatment of
differential-algebraic equations is the perturbation index that was introduced in [151]
to measure the sensitivity of solutions with respect to perturbations of the problem.
For a detailed analysis and a comparison of various index concepts with the differen-
tiation index, see [80, 131, 216, 220, 229, 231, 275].

At this point, it seems appropriate to introduce some philosophical discussion
concerning the counting in the different index definitions. First of all, the motivation
to introduce an index is to classify different types of differential-algebraic equations
with respect to the difficulty to solve them analytically as well as numerically. In
view of this classification aspect, the differentiation index was introduced to deter-
mine how far the differential-algebraic equation is away from an ordinary differential
equation, for which the analysis and numerical techniques are well established. But
purely algebraic equations, which constitute another important special case of (1.0.1),
are equally well analyzed. Furthermore, it would certainly not make sense to turn a
uniquely solvable classical linear system Ax D b into a differential equation since
then the solution would not be unique anymore without specifying initial conditions.
In view of this discussion, it seems desirable to classify differential-algebraic equa-
tions by their distance to a decoupled system of ordinary differential equations and
purely algebraic equations. Hence, from our point of view, the index of an ordinary
differential equation and that of a system of algebraic equations should be the same.
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This differs from the differentiation index, for which an ordinary differential
equation has index zero, while an algebraic equation has index one. Although the
research community and also people working in applications have widely accepted
this way of counting, in the concept of the strangeness index, ordinary differential
equations and purely algebraic equations both have index zero. We will present fur-
ther arguments for this way of counting on several occasions throughout this textbook.

1.3 Applications

We will now discuss some elementary examples of differential-algebraic equations
arising in applications such as electrical networks, multibody systems, chemical engi-
neering, semidiscretized Stokes equations, and others.

Let us first consider an example arising in electrical circuit simulation. For this
topic, there is an extensive literature that includes the classification of properties of the
arising differential-algebraic equations depending on the components of the network;
see, e.g., [25, 98, 122, 149, 150, 281, 316].

Example 1.3.1. To obtain a mathematical model for the charging of a capacitor via
a resistor, we associate a potential xi , i D 1; 2; 3, with each node of the circuit; see
Figure 1.1. The voltage source increases the potential x3 to x1 by U , i.e., x1 � x3 �
U D 0. By Kirchhoff’s first law, the sum of the currents vanishes in each node. Hence,
assuming ideal electronic units, for the second node we obtain that C. Px3 � Px2/ C
.x1 � x2/=R D 0, where R is the size of the resistance of the resistor and C is the
capacity of the capacitor. By choosing the zero potential as x3 D 0, we obtain as a
mathematical model the differential-algebraic system

x1 � x3 � U D 0;

C. Px3 � Px2/C .x1 � x2/=R D 0;

x3 D 0:

(1.3.1)
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Figure 1.1. A simple electrical network.
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It is clear that this simple system can be solved for x3 and x1 to obtain an ordinary
differential equation for x2 only, combined with algebraic equations for x1, x3. This
system has differentiation index one.

A second major application area is the simulation of the dynamics of multibody
systems; see, e.g., [116, 286, 297, 299, 302].

Example 1.3.2. A physical pendulum is modeled by the movement of a mass point
with mass m in Cartesian coordinates .x; y/ under the influence of gravity in a dis-
tance l around the origin; see Figure 1.2. With the kinetic energy T D 1

2
m. Px2 C Py2/

and the potential energy U D mgy, where g is the gravity constant, using the con-
straint equation x2 C y2 � l2 D 0, we obtain the Lagrange function

L D
1

2
m. Px2 C Py2/ �mgy � �.x2 C y2 � l2/

with Lagrange parameter �. The equations of motion then have the form

d

dt

�
@L

@ Pq

�
�
@L

@q
D 0

for the variables q D x; y; �, i.e.,

m Rx C 2x� D 0;

m Ry C 2y�Cmg D 0;

x2 C y2 � l2 D 0:

(1.3.2)

It is obvious that this system cannot have differentiation index one; it actually has
differentiation index three.

Differential-algebraic equations are also frequently used in the mathematical mo-
deling of chemical reactions; see, e.g., [242].
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Figure 1.2. A mechanical multibody system.
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Example 1.3.3. Consider the model of a chemical reactor in which a first-order iso-
merization reaction takes place and which is externally cooled.

Denoting by c0 the given feed reactant concentration, by T0 the initial temper-
ature, by c.t/ and T .t/ the concentration and temperature at time t , and by R the
reaction rate per unit volume, the model takes the form241 0 0

0 1 0

0 0 0

3524 PcPT
PR

35 D 24 k1.c0 � c/ �R

k1.T0 � T /C k2R � k3.T � TC /

R � k3 exp
�
�
k4
T

�
c

35 ; (1.3.3)

where TC is the cooling temperature (which can be used as control input) and k1, k2,
k3, k4 are constants. If TC is given, this system has differentiation index one. If TC
is treated as a control variable, the system is underdetermined and the differentiation
index is not defined.

Another common source of differential-algebraic equations is the semidiscretiza-
tion of systems of partial differential equations or coupled systems of partial differ-
ential equations and other types of equations; see, e.g., [9, 19, 148, 298].

Example 1.3.4. The non-stationary Stokes equation is a classical linear model for
the laminar flow of a Newtonian fluid [332]. It is described by the partial differential
equation

ut D �uCrp; r � u D 0; (1.3.4)

together with initial and boundary conditions. Here u describes the velocity and p
the pressure of the fluid. Using the method of lines [306, 308] and discretizing first
the space variables with finite element or finite difference methods typically leads to
a linear differential-algebraic system of the form

Puh D Auh C Bph; BT uh D 0; (1.3.5)

where uh and ph are semi-discrete approximations for u and p. If the non-uniqueness
of a free constant in the pressure is fixed by the discretization method, then the dif-
ferentiation index is well defined for this system. For most discretization methods, it
is two; see, e.g., [329]. See also [117] for a detailed index analysis in the case of the
infinite-dimensional system.

The study of classical control problems in the behavior framework [193, 248]
immediately leads to underdetermined differential-algebraic equations.

Example 1.3.5. The classical linear control problem to find an input function u that
stabilizes the linear control system

Px D Ax C Bu; x.t0/ D x0 (1.3.6)
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can be viewed in the so-called behavior context [165,166,248] as determining a solu-
tion of the underdetermined linear differential-algebraic equation�

I 0
�
Pz D

�
A B

�
z;

�
I 0

�
z.t0/ D x0 (1.3.7)

such that for z D
�
x
u

�
the part ŒI 0�z is asymptotically stable.

Differential-algebraic equations also play an important role in the analysis and
numerical solution of singular perturbation problems, where they represent the limit-
ing case; see, e.g., [154, 240, 328].

Example 1.3.6. The van der Pol equation

Py D z;

" Pz D .1 � y2/z � y;
(1.3.8)

possesses the differential-algebraic equation

Py D z;

0 D .1 � y2/z � y
(1.3.9)

as limiting case for " ! 0. The analysis and understanding of (1.3.9) is essential
in the construction of numerical methods that can solve equation (1.3.8) for small
parameters ".

Many more application areas could be mentioned here, but these few examples
already demonstrate the wide applicability of differential-algebraic equations in the
mathematical modeling and the numerical solution of application problems.

1.4 How to use this book in teaching

This book is laid out to be and has been used in teaching graduate courses in several
different ways.

The first four sections of Chapter 2, the first five sections of Chapter 3, and the
first three sections of Chapter 4 together form a one semester course (approximately
60 teaching hours) on the analysis of differential-algebraic equations, by possibly
including the sections on the stability of differential-algebraic equations, i.e., Sec-
tions 2.7, 3.9, and 4.7. As a prerequisite for such a course, one would need the level
that is reached after a first course on the theory of ordinary differential equations.

This course can be continued by a one semester course (approximately 30 teach-
ing hours) on control problems and optimal control of differential-algebraic equati-
ons, i.e., Sections 2.5, 2.6, 3.6, 3.7, 4.5, and 4.6.
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A course with smaller volume is formed by omitting Sections 2.4 and 3.5 on gen-
eralized solutions which depend on each other but are not needed for other sections.
Section 3.4 on generalized inverses is useful for the sections on control but not needed
for other sections and can therefore also be omitted to shorten the course. Section 4.2
on structured problems and Section 4.4 on differential equations on manifolds again
are not needed for other sections and could be omitted.

A combined one semester course (approximately 60 teaching hours) on the analy-
sis and numerical solution of differential-algebraic equations would need as a prereq-
uisite the level that is reached after a first course on the theory of ordinary differential
equations as well as a first course on numerical analysis including the basics of the
numerical solution of ordinary differential equations. Such a course would consist of
Chapter 2 (Section 2.1), Chapter 3 (Sections 3.1, 3.2, and 3.3), and Chapter 4 (Sec-
tions 4.1, 4.2, and 4.3) concerning the analysis and Chapter 5, Chapter 6 (Sections 6.1
and 6.2), and Chapter 7 (Sections 7.1, 7.2, and 7.3) concerning the numerical solution
of differential-algebraic equations.

The numerical part of the book, which strongly relies on the analysis part, would
represent a separate course (approximately 30 teaching hours) on the numerical solu-
tion of initial and boundary value problems for differential-algebraic equations that
includes Chapter 5, Chapter 6 (Sections 6.1 and 6.2), and Chapter 7 (Sections 7.1,
7.2, and 7.3).


