
Introduction

In 1959, Ferdinand Veldkamp’s dissertation was published, entitled “Polar geometry.”
In this work he unifies the substructures of projective spaces determined by the abso-
lute points of orthogonal, Hermitian and symplectic polarities. Although these struc-
tures are quite different within projective space, he observes that they are intrinsically
the same. More precisely, if you consider only the system of all subspaces formed by
the absolute points under such a polarity, you get geometries with the same properties.
He then puts these properties into an axiomatic system. Simultaneously, Jacques Tits
investigated geometries of exceptional type, looking for a unified axiomatic approach
to the geometries of all groups of Lie type. This would eventually lead to the notion
of a building. However, in the 1950s, Jacques Tits was still thinking of point-line
geometries, and he concentrated on the exceptional types because the classical ones
– the projective spaces and the polar spaces – were already completely known to
him. In particular, he had four axioms to describe all polar spaces and these we will
use in Chapter 1. They actually yield more types of polar spaces than in Veldkamp’s
approach. However, these axioms presuppose that we start with a family of project-
ive spaces. An alternative and more elementary axiom system, using only points
and lines, is given later by Francis Buekenhout and Ernie Shult. We will prove in
Chapter 2 that it is equivalent to the system of Jacques Tits.

Just as projective spaces have a dimension, polar spaces have a rank. This is one
more than the maximum dimension that occurs in its projective subspaces. The polar
spaces of rank 2 are also known as generalised quadrangles, and they are to polar
spaces what axiomatic projective planes are to projective spaces. Indeed, if a pro-
jective space has dimension at least 3, then we know that it comes from a vector
space over a skew field, while there is no classification for the projective planes. Polar
spaces of rank at least 3 can also be classified (although the situation here is slightly
more complicated), but the generalised quadrangles cannot be classified and form a
rich theory in itself, which we will only consider occasionally.

The above already indicates that there are more polar spaces than the classes of
examples that gave them their names. Thus we will see that not for every polar space
there exists a projective space whose point set naturally contains that of the polar
space. In Chapter 5 we discuss two classes of such non-embeddable polar spaces of
rank 3, because it will turn out that all polar spaces of rank at least 4 are embeddable.
A polar space that is embeddable in projective space can always be described by a
reflexive form on a vector space over a skew field, except when the characteristic of
the underlying skew field is 2; in the latter case we need the more general concept of
a pseudo-quadratic form. We discuss this in detail in Chapter 4. This generalises the
concept of polarity in projective geometry, and forms the basis of the classification



Introduction x

of polar spaces of rank at least 3, as obtained by Jacques Tits. The connection with
polarities and reflexive forms is explained in Chapter 3.

The driving force behind the study of polar spaces is the fact that these structures
are closely related to some classical simple groups. By this we mean the special linear
groups SL.n/, the orthogonal groups O.n/, the symplectic groups Sp.2n/ and the
unitary groups U.n/. The ones of the first type are related to projective spaces of
dimension n � 1; the three other ones to polar spaces. They fall into the broader
class of groups of Lie type, and they are classical in the sense that they exist for any
rank n. The other Lie-type groups exist only for specific (low) ranks and are called
exceptional; the prominent examples of these are those of type G2, F4, E6, E7 and E8.

In the 1950s and 1960s, Tits introduced his famous theory of buildings. His goal
was to attach a geometry (called a spherical building) to each of the above groups
(particularly the exceptional ones), on which that group would then act as an auto-
morphism group. This idea works spectacularly well. Tits obtained a particularly
general axiomatic definition of these combinatorial objects, of which the projective
geometries and the polar spaces form important classes. In fact, it allows us to study
these geometries without any knowledge of the corresponding group of Lie type. We
discuss some important automorphisms of polar spaces in Chapter 7.

Moreover, if you consider the buildings attached to the exceptional groups of
type F4, E6, E7 and E8 as a certain point-line geometry, then these appear to be full
of polar spaces. In the 1980s, the foundational work of Bruce Cooperstein gave rise
to an axiomatic system for point-line geometries equipped with polar spaces, which
precisely aimed to capture the behaviour of these exceptional geometries. This gave
rise to parapolar spaces, which we will meet in Chapter 9, at the end of the course.

We do not have the ambition here to study polar spaces as buildings theoretically.
Nevertheless, we will make use of some typical concepts from this theory. They allow
certain theorems to be proved more elegantly, but above all they also increase insight
and immediately open the door to generalisations to other buildings.

Finally, we note that generalised quadrangles can also be seen as special cases
of generalised polygons [9], which are essentially the atoms of the buildings. The
generalised triangles correspond exactly to the axiomatic projective planes. The gen-
eralised hexagons are closely related to the exceptional groups of type G2 and are
constructed using polar spaces of “type D4” (which are actually hyperbolic quadrics
of rank 4) and the triality principle. In Chapter 6 we will study this type of polar
spaces, which we will call top-thin polar spaces, and classify them for general rank
n. We focus on the special case n D 4 in Chapter 8, where our interest is mainly in
the associated trialities (a generalisation of polarities in projective spaces).

Throughout these notes, especially in Chapters 3, 4, 5 and 8, certain algebras will
play a special role, such as the (whether or not split) octave or octonion algebras.
These algebras are 8-dimensional over a field and the special thing about them is that
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they are no longer associative (but still alternative). Appendix A is devoted to a study
of these algebras and their relatives.

� � �

We now comment in somewhat more detail on each chapter.
Chapter 1 contains all basic material that is needed to understand the theory of

polar spaces, and to provide the proofs in the rest of these notes. Some proofs might
not be the shortest possible ones, but I have also tried to take didactics into account.
This chapter is not copied from anywhere, but similar results might be found in the
literature, in particular in [1] and [3]. The proof that planes in polar spaces have the
Moufang property is original in that I use a characterisation of Moufang planes that I
proved myself (see [10]). The proofs in [1] and [8] are more involved (because they
do not use [10]).

Chapter 2 is a chapter that cannot be skipped in any modern treatise on polar
spaces. I based the proof on [1, Section 7.4]. I explicitly prove that the Buekenhout–
Shult axioms imply the Tits axioms, including the finite rank. In most modern liter-
ature one includes the infinite rank polar spaces when stating the Buekenhout–Shult
axioms, but usually only deals with the finite rank anyway. Here, my aim is to stick
as closely as possible with the original set-up. It is already general enough.

Chapter 3 connects polar spaces with polarities of projective spaces (and that is
where the name comes from), taking Tits’ viewpoint [8] of generalised polarities.
The algebraic counterpart is a reflexive form on a vector space. That is either a sym-
metric bilinear form or a sesquilinear form proportional to a Hermitian form (which
follows from standard algebra and is not proved in the current notes). We derive a
standard equation of polar spaces obtained from a polarity and discuss this in the case
of some particular fields. All results of this chapter are quite standard. The properties
of generalised polarities that we prove are the basic ones that we need further on. In
particular, we prepare to prove that polar spaces of any rank exist that are embedded
in projective space, but do not arise from a reflexive or quadratic form.

Chapter 4 introduces pseudo-quadratic forms. These are algebraic structures gen-
eralising reflexive forms. In characteristic 2 they can describe polar spaces that are
not related to hermitian forms as in the previous chapter, and we explicitly prove this
(being not aware of a similar proof in the literature). Chapters 3 and 4 used to be
one chapter, and then we only treated pseudo-quadratic forms. This, however, was
less transparant and more technical. The current approach only considers the most
technical case of a pseudo-quadratic form where it is really needed. Note also that
our exposition is based on lectures of Jacques Tits at the Collége de France and as
such differs slightly from any literature. In particular, we do not need to worry about
traced-valued forms, although we comment on it to connect with the existing literat-
ure. The rank 2 case can be found in [9, Chapter 2].
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Chapter 5 defines the non-embeddable polar spaces of rank 3. The top-thin case
is well known and standard. We do not go into too much detail here. You will not
find an elementary description of the thick case in the existing literature; the latter
usually provides references to Tits [8] using algebraic groups, or a paper by Bernhard
Mühlherr [5] proving that such a space arises as fixed point structure of a building of
type E7. I worked out an elementary description on the occasion of the first year of
teaching the course on polar spaces in 2011 and later published it together with Bart
De Bruyn [4]. The proof in the current notes is still the original one before publication
of the paper.

Roughly speaking, Chapters 1 and 2 approach polar spaces in a synthetic way,
whereas Chapters 3, 4 and 5 approach them in an analytic way. This situation can be
best compared with the classical distinction between synthetic affine and Euclidean
geometry and the analytic approach using coordinates. General properties are best
handled in a synthetic way using the axioms, whereas properties of specific polar
spaces are better proved using the associated algebraic structures.

Chapter 6 classifies top-thin polar spaces. These polar spaces admit a description
as so-called oriflamme geometry. This is best explained and put in a broader picture
by introducing diagrams and geometries of type M. The classification itself is based
on the fact that singular subspaces are Pappian (defined over a field) as soon as the
rank is at least 4 (and this is proved using geometry: we construct a generalised quad-
rangle inside a projective space which can only exist in the commutative case) and
that a cone over a hyperbolic quadric supports a unique hyperbolic quadric of one
rank larger. The main result of this chapter proves the equivalence of the synthetic
and the analytic approach for top-thin polar spaces.

Chapter 7 studies certain collineations of polar spaces. There is so much to say
about the automorphism groups of polar spaces, because they are classical groups,
and have a long history. However, since the emphasis in the current notes is on the
geometry of the polar spaces, we limit ourselves to studying the long root elations,
here under the more specific names of central and axial collineations. They have a
close connection to geometry via the theory of long root subgroup geometries. We
have no intention to touch that theory, but these kind of collineations have nice geo-
metric properties, and this chapter should show this.

Chapter 8 is devoted to a very beautiful and rare phenomenon called triality. It is
an exceptional symmetry of the oriflamme geometry corresponding to a top-thin polar
space of rank 4. As usual in these lecture notes, we do not study the algebraic side of
triality, but instead prove in detail what is called in the literature “geometric triality.”
We explain both the synthetic and analytic approach. For the latter, we use the algeb-
raic tool of split Cayley algebra. This approach is inspired by work of Springer and
Veldkamp [7]. However, we avoid the use of results of “algebraic triality” (as happens
in [7]) and provide a complete elementary treatise (which we did not read elsewhere).
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The proof that trialities of order 3 provide examples of generalised hexagons is taken
from [9], with a simplification in one of the arguments.

Chapter 9 provides an introduction to Cooperstein’s theory. This theory is respon-
sible for the creation of geometries called parapolar spaces. The building blocks of
such geometries are polar spaces. Polar spaces themselves yield parapolar spaces
by considering their Grassmannians. The true motivation for introducing parapolar
spaces are the exceptional groups and geometries, and we give a taste of that by
mentioning an axiom system for parapolar spaces related to the exceptional groups of
type E6. This chapter opens the door to the point-line approach of spherical buildings,
which is the main theme of Shult’s book [6], where further reading can be found. This
chapter is entirely synthetic.

Appendix A provides some more background on one of the most prominent
algebraic structures related to polar spaces, namely the alternative quadratic algeb-
ras. Properties used throughout these lecture notes are proved in this appendix, but
we provide much more background. The bulk of this appendix is inspired by online
notes of McCrimmon. It permits to define the class of Moufang projective planes that
are not Desarguesian.

� � �

We have included a few exercises in these lecture notes. They all concern exer-
cises that were given during the course at Ghent University. Some of them served
as exam problems. In general, the students worked in small groups of two or three
persons and had to report in writing on the solutions individually.

It is perhaps worthwhile to note that the exercises differ from exercises in other
books (like [1] and [6]) in that they do not explore deeper theory and further develop-
ments, but instead have the purpose to really train the students in finding arguments
and reasonings using the given properties and theory. We seldom define new notions
in the theory and certainly do not use properties mentioned in the exercises in further
theory.

The level of the exercises can differ; it varies from very easy to quite difficult.

� � �

Leitfaden. We recommend to start with Chapter 1. From there, all following chapters
can be read quite independently, if one accepts the equivalent Buekenhout–Shult
axiom system without proof (although it is best to read that chapter before embarking
on Chapter 9). Also, Chapter 4 is best read after Chapter 3 and Chapter 8 uses some
results of Chapter 6. Chapter 7, finally, uses terminology and results from Chapter 3;
it also refers to Chapter 5, but only in an non-essential way.
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