
Introduction

Classically, the expression “non-Euclidean geometry” refers to the two geometries
of non-zero constant curvature, namely, the spherical and the hyperbolic.1 Spheri-
cal geometry was developed in Greek antiquity and it attained there a high degree
of matureness, especially in the work of Menelaus of Alexandria (1st–2nd centuries
A.D.).2 Hyperbolic geometry is a nineteenth century achievement. It was discov-
ered by Lobachevsky, Bolyai and Gauss, with a few anticipated results obtained in
the eighteenth century, especially in the work of J. H. Lambert who developed a ge-
ometry (which, from his point of view, was hypothetical), in which all the Euclidean
axioms hold except the parallel postulate and where the latter is replaced by its nega-
tion. Although Lambert’s goal was to find a contradiction in the consequences of this
system of axioms (like many other prominent geometers, he thought that such a ge-
ometry cannot exist), the net result of his investigations is a collection of interesting
theorems in hyperbolic geometry.3

In the present volume, the term “non-Euclidean geometry” is used in a broader
sense, including geometries such as de Sitter, anti-de Sitter and others which can be
developed, in analogy with the three classical geometries, in the framework of projec-
tive geometry, using the language of conics, quadrics and quadratic forms. Studying
the three classical geometries in the setting of projective geometry is also a nineteenth
century achievement; it is due to the visions of Cayley, Klein, Beltrami, Poincaré, and
a few others.

Today, non-Euclidean geometry in this generalized sense is a very active research
field and it seemed to us that editing a book containing self-contained surveys touch-
ing several aspects of this domain was desirable for researchers and those who want
to learn this subject. This is the reason for which this book is published.

1 The expression “non-Euclidean geometry,” to denote spherical and hyperbolic geometry, was
coined by Gauss.

2 The first English edition of Menelaus’ work just appeared in press: R. Rashed and A. Papadopou-
los,Menelaus’ Spherics: early translation and al-Māhānı̄/al-Harawı̄’s version, Scientia Graeco-Arabica 21,
Walter de Gruyter, Berlin, 2017.

3 J. H. Lambert, “Theorie der Parallellinien,” in Die Theorie der Parallellinien von Euklid bis auf
Gauss, eine Urkundensammlung zurVorgeschichte der nichteuklidischen Geometrie (P. Stäckel andF. En-
gel, eds.), B. G. Teubner, Leipzig 1895. French translation by A. Papadopoulos and G. Théret, La théorie
des lignes parallèles de Johann Heinrich Lambert, Sciences dans l’Histoire, Blanchard, Paris, 2014. There
is no English translation available of this work.
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Geometry is one of these mathematical fields (probably the unique one to such
a great extent) where the texts of the ancient great authors keep their full value, and
going through them is not a matter of vain curiosity nor a matter of being interested
in history, but it is the best way to understand present day mathematics. In this sense,
the rapid growth of non-Euclidean geometry in the last few decades, after its revival
by Thurston in the 1970s, is also a return to the sources of geometry. This is why
the names of Menelaus, Pappus, Euler, Lambert, Lagrange, Lexell, Fuss, Schubert,
Chasles, Study, Story, and several others are mentioned at several occasions in the
various essays that constitute this volume. Going throughout these works also shows
how slow is the process of development of geometry, despite the rapid (quantitative)
growth of the literature in this field. The slow evolution process of mathematics is
marked out by abrupt changes attached to names such as those we just mentioned.

Before describing in some detail the content of this volume, wewould like tomake
a few remarks on two topics that are at the heart of the various surveys that constitute
it, namely, the notion of area in non-Euclidean geometry, and the geometry of conics.

In spherical geometry, the area of a triangle is (up to a constant multiplicative
factor) the excess of its angle sum with respect to two right angles. In other words,
the area of a triangle with angles A;B; C is equal toACBCC �� , up to a constant
factor that does not depend on the choice of the triangle. In hyperbolic geometry,
the area of a triangle is (again up to a constant factor) the deficiency of the angle
sum with respect to two right angles, that is, � � .A C B C C/. The fact that in
spherical (respectively hyperbolic) geometry the angle excess (respectively the angle
deficiency) of an arbitrary triangle is positive, is probably the most important feature
in that geometry. As a matter of fact, there exist classical proofs of the trigonometric
formulae in spherical and hyperbolic geometries that are exclusively based on these
properties. The oldest such proofs that we are aware of are due to L. Gérard,4 a
student of Poincaré. Since the trigonometric formulae contain in essence all the geo-
metric information on a space, spherical and hyperbolic geometry are essentially the
geometries where angle excess or, respectively, angle deficiency of all triangles are
positive. Thus, it is not surprising that several chapters in the present volume concern
the notion of area and its use in non-Euclidean geometry.

After area, one naturally considers volume in higher-dimensional spherical and
Euclidean geometries, and here we enter into the realm of difficult problems. One
might recall in this respect that Gauss, in a letter to Wolfgang Bolyai (the father of
János Bolyai, the co-discoverer of hyperbolic geometry), dated March 6, 1832,5 after
he gave an outline of a proof of the area formula for a hyperbolic triangle as angle defi-
ciency, asked his friend to suggest to his son to work on the determination of volumes

4 L. Gérard, Sur la géométrie non euclidienne, Thèse № 768, Faculté des Sciences de l’Université de
Paris, Gauthier-Villars, Paris, 1892.

5 See Gauss’s Collected works, Vol. 6, p. 221, and the article by P. Stäckel and F. Engel “Gauss, Die
beiden Bolyai und die nichteuklidische Geometrie,”Math. Annalen 2 (1897), 149–167.
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of tetrahedra in three-dimensional hyperbolic space. It is conceivable that Gauss was
unaware of the fact that this subject was extensively studied by Lobachevsky dur-
ing the same period, but he probably knew from his own experience that obtaining
formulae for volumes of tetrahedra in hyperbolic and spherical spaces is a difficult
problem. It turns out indeed that there is no simple formula for the volume of a
hyperbolic (or spherical) tetrahedron in terms of the dihedral angles that is compa-
rable to the formula for the area of a triangle. The existing formulae (first obtained
by Lobachevsky) give expressions of volume in terms of an integral function which
bears the name Lobachevsky function and which is closely connected to the Euler
dilogarithm function. These formulae involve the value of the Lobachevsky function
at the dihedral angles of the tetrahedron.

Several computations of volumes of tetrahedra were conducted after Lobache-
vsky’s work but the progress was slow. Some of the most important conjectures that
are open in three-dimensional geometry of hyperbolic (or spherical) space concern
volume. We mention incidentally that the computation of volumes of hyperbolic
tetrahedra is the subject of Chapter 8 of Thurston’s notes on three-dimensional ge-
ometry.6

Talking about volume, let us also mention that there are interesting formulae for
volumes of Euclidean tetrahedra that are due to Euler. The latter, in a letter to his
friend Christian Goldbach, dated November 14, 1750,7 announced a formula for the
volume of a simplex in terms of its side lengths, a three-dimensional analogue of
Heron’s formula for the area of a triangle.8 Later on, he gave the proof of that formula,
in a paper published in 1758.9 In the same paper, he provided several other formulae
for volumes of Euclidean simplices, including a formula in terms of side lengths, and
another one in terms of lengths of the three edges abutting on a solid angle along with
the three plane angles that these sides form.

Finally, let us note that computing area and volume, beyond those of polygons
and polyhedra, is another subject that has a long history whose origin can be traced
back to the work of Hippocrates of Chios (5th century B.C.) who studied areas of
lunes (intersections of two discs) and other figures, and which was brought to a high
degree of sophistication in the work of Archimedes (3rd century B.C.). The reader
can imagine that computing areas and volumes without the use of the mechanical
methods of modern calculus is always a challenging problem.

6 W. P. Thurston, Geometry and topology of three-manifolds, Princeton Lectures Notes, Princeton,
N.J., 1979.

7 Letter№ 149 in Euler’s volume of hisOpera omnia containing his correspondence with Goldbach,
Series quarta A, Vol. IV, Birkhäuser, Basel, 2014.

8 Heron’s formula is contained in the Codex costantinopolitanus Palatii Veteris, ed. and transl. by
E. M. Bruin, Leiden, 1964.

9 L. Euler, Demonstratio nonnullarum insignium proprietatum, quibus solida hedris planis inclusa
sunt praedita, Novi Commentarii academiae scientiarum petropolitanae 4 (1752), 140–160, in Opera om-
nia, Series 1, Vol. XXVI, 94–108.
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Let us pass to our second topic, projective geometry and conics. We note right
away that the study of conics dates back to Greek antiquity, where the most important
treatise on the subject is the multi-volume work of Apollonius of Perga (3rd–2nd c.
B.C.),10 which remained until the seventeenth century one of the most fundamental
and most read mathematical texts among mathematicians. A conic is the intersection
of a plane with a right cone whose basis is circular. If we think of projective geometry
as the study of properties of figures that are invariant by projections, it is in the study
of conics that we find the root of this field: the cone vertex is the center of projection.
The notion of cross-ratio as a projective invariant also dates back to Greek antiquity,
it is used in Menelaus’ Spherics.2

In his 1859 paper “A sixth memoir upon quantics,”11 Cayley included the study
of Euclidean and spherical geometries in the setting of projective geometry, where
the ground space for each of these geometries is the interior of an appropriate conic
in projective space, the conic itself becoming the “absolute” of the space. He noted
that the distance function in such a geometry may be defined in terms of the log-
arithm of the cross-ratio. In the same paper, Cayley made his famous statement
that “descriptive geometry is all geometry,”12 an idea which was taken up by Klein
later on, who, in his 1871 paper “Über die sogenannte Nicht-Euklidische Geometrie”
(On the so-called non-Euclidean geometry),13 included hyperbolic geometry as well
in the picture, using different kinds of conics and quadrics in dimensions 2 and 3
respectively. In this work, Klein also gave formulae for the distance functions using
the cross-ratio in the Euclidean and the two classical non-Euclidean geometries.

Among the various attempts to generalize hyperbolic geometry using the geom-
etry of quadrics, we may mention a section in a paper of Poincaré which he wrote
in 1887, called “Sur les hypothèses fondamentales de la géométrie” (On the funda-
mental hypotheses of geometry).14 This paper is poorly known to mathematicians.
The section which interests us here is concise, it contains ideas with no attempts for
precise statements and proofs. We provide an English translation of it in the prologue
of this volume, after the present introduction.

10 The authoritative version is the one by R. Rashed, in 4 volumes: Les Coniques, Tome 1, Livre I,
de Gruyter, Berlid 2008; Tome 2, Livre IV, ibid., 2009; Tome 3, Livre V, ibid., 2008; Tome 4, Livres VI
et VII, ibid, 2009.

11A.Cayley, “A sixth memoir upon quantics,” Phil. Trans. R. Soc. Lond. 149 (1859), 61–90. Reprinted
in Vol. II of Cayley’s Collected mathematical papers.

12 “Descriptive geometry” is the name Cayley used for projective geometry.
13 F. Klein, “Über die sogenannte Nicht-Euklidische Geometrie,” Vorgelegt von A. Clebsch, Nachri-

cheten von der Kgl. Gesellschaft derWissenschaften zuGöttingen,№ 17 (30August 1871). French version,
“Sur la géométrie dite non euclidienne,” translated by J. Hoüel, Bull. sci. math. et astr. 2 (1871), 341–351.
See also the commentary in N. A’Campo and A. Papadopoulos, “On Klein’s So-called non-Euclidean
geometry,” in Sophus Lie and Felix Klein: the Erlangen program and its impact in mathematics and in
physics (L. Ji and A. Papadopoulos, eds.), EMS Publishing House, Zürich, 2015, 91–136.

14 H. Poincaré, “Sur les hypothèses fondamentales de la géométrie.” Bull. Soc. Math. France 15
(1887), 203–216.
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Eduard Study, in a paper published in 190715 whose translation is contained in
the present volume, included in the projective setting other geometries than the three
classical geometries.

In the rest of this introduction, we will give a quick survey of the various essays
that constitute the present volume. We have divided this collection of essays into three
parts. The first part (Chapters 1–12) is the longest, and it is concerned with spherical
and hyperbolic geometries. The second part (Chapters 13–16) deals with geometries
defined in the setting of projective geometry. The third part (Chapters 17 and 18)
concern two other geometries, namely, Hermitian geometry, that is, the geometry of
complex projective spaces, and an axiomatic plane geometry which is termed “non-
elliptic metric plane in which every segment has a midpoint.”

The content of each chapter of this volume is now described in detail.

Part I. Spherical and hyperbolic geometries

Chapter 1, written by Norbert A’Campo and Athanase Papadopoulos, is a survey of
classical material about area in spherical and hyperbolic geometry. A theorem of
Albert Girard stating that the area of a spherical triangle is equal (up to a constant
multiple) to its angle sum, as well as its analogue in hyperbolic geometry, are re-
viewed. A formula due to Euler for the area of a spherical triangle in terms of its side
lengths, again with its analogue in hyperbolic geometry, are used in order to give an
equality for the distance between the midpoints of two sides of a spherical (respec-
tively hyperbolic) triangle in terms of the third side. These equalities are quantitative
versions of the formula expressing the fact that the sphere (respectively hyperbolic
plane) is positively (respectively negatively) curved in the sense of Busemann. The
essay contains further results related to area in non-Euclidean geometry together with
some historical comments.

Chapter 2, by Elena Frenkel and Weixu Su, is based on variational methods intro-
duced by Euler in non-Euclidean geometry. The authors provide detailed proofs of
hyperbolic analogues of spherical results obtained by Euler using thesemethods. This
includes a derivation of the trigonometric formulae and an area formula for hyper-
bolic triangles in terms of their side lengths. Euler considered the use of variational
methods in spherical geometry as an application of the techniques of the calculus of
variations, a field of which he had laid the foundations.16

15 E. Study, “Beiträge zur nichteuklidische Geometrie,” I.–III.,Amer. J. Math. 29 (1907), 101–167.
16 Cf. L. Euler, “Principes de la trigonométrie sphérique tirés de la méthode des plus grands et des

plus petits,”Mémoires de l’Académie royale des sciences et belles-lettres 9 (1755), 223–257, inOpera omnia,
Series 1, Vol. XXVI, 277–308.
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In Chapter 3, Elena Frenkel and Vincent Alberge study the hyperbolic analogue
of a problem in spherical geometry solved by Friedrich Theodor von Schubert, a
young geometer who became a successor of Euler at the Saint Petersburg Academy
of Sciences and who worked on spherical geometry. Schubert’s results include the
determination of the loci of the vertices of triangles satisfying some given conditions,
in the spirit of problems solved by Euler and his other young collaborators Anders
Johan Lexell and Paul Heinrich Fuss. In this chapter, the authors give a solution in the
hyperbolic setting of a problem solved by Schubert on the sphere, namely, to find,
for a triangle with prescribed base and whose vertex varies on a given hypercycle
consisting of points equidistant to the line containing the base, the point(s) for which
the area of this triangle is maximal or minimal. They provide two different solutions
of this problem.

The reader may note that in the Euclidean case, if we fix two vertices of a triangle
and if we look for a family of triangles having the same area, the locus of the third
vertex is a straight line parallel to the base of the triangle (in fact, in the Euclidean
plane, hypercycles are straight lines). The situations in the hyperbolic and spherical
cases are different from the Euclidean case since in these cases, the area of a triangle
is not determined by a side and the corresponding altitude. The desired locus in these
cases is not a curve equidistant to the basis of the triangle. It is interesting to note
in this respect that Herbert Busemann solved in 1947 the following related problem:
“To characterize the geometries in which the following property, which is satisfied in
Euclidean geometry, holds: The area of a triangle ABC depends only on the length
of BC and the distance from A to the segment BC .” Busemann found that the only
geometries that satisfy this property are what he called the Minkowski planes (that
is, the metric spaces underlying the 2-dimensional normed vector spaces) in which
the perpendicularity relation is symmetric (for an appropriate notion of perpendicu-
larity).17

Chapter 4, by Himalaya Senapati, concerns medians in non-Euclidean geometry.
A result due to J. H. Lambert, from his Theorie der Parallellinien (Theory of par-
allel lines), written in 1766,3 says that for any equilateral triangle ABC with medi-
ans AA0, BB 0 and CC 0 intersecting at O , we have OA0 D 1

3
AA0, OA0 > 1

3
AA0

and OA0 < 1
3
AA0 in Euclidean, spherical and hyperbolic geometry respectively.

Senapati shows, using non-Euclidean trigonometry, that Lambert’s inequalities hold
for arbitrary triangles. He also presents a collinearity result in spherical geometry, as
an application of Menelaus’ theorem.

17 Cf. Theorem 50.9 in H. Busemann, The geometry of geodesics, Academic Press, New York, 1955,
and H. Busemann, “Two-dimensional geometries with elementary areas,” Bull. Amer. Math. Soc. 53
(1947), 402–407, reprinted in H. Busemann, Selected works (A. Papadopoulos, ed.), Vol. 1, Springer Ver-
lag, Cham, 2018, 379–384.
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Chapter 5 is also due to Himalaya Senapati. It concerns the construction in spher-
ical geometry of a triangle whose three vertices lie on a given circle and whose three
sides produced pass through three given points. Such a construction, in the Euclidean
case, is a theorem in Pappus’ Collection,18 in the special case where the three points
are aligned. Euler generalized the problem to the case where the three points are not
necessarily aligned and he gave a construction in this general case in the Euclidean
as well as in the spherical setting.19 In the same volume in which Euler’s solution ap-
peared, his young collaborator Nicolaus Fuss20 published another proof of the same
construction for the Euclidean case.21 Lagrange found a new short proof for the Eu-
clidean case, reducing the problem to finding roots of quadratic equations that can be
solved using ruler and compass.22 In Senapati’s essay, Lagrange’s solution is adapted
to the non-Euclidean setting.

The notion of constructibility by ruler and compass is at the root of geometry.
It underwent several transformations, from the Greeks to Galois, passing through
Descartes, Gauss, and others. Senapati’s construction on the sphere, in Chapter 5,
based on the Euclidean Lagrange solution of the generalized problem of Pappus, is
in the tradition of Descartes, that is, reducing the construction problem to solutions
of quadratic equations.

We note incidentally that the first time Descartes introduced the xy coordinates
(what we call the “Cartesian coordinates”) is in Book I of his Géométrie, precisely
in the solution of a construction problem of Pappus. We also recall that the title of
this book is “Des problèmes qu’on peut construire sans y employer que des cercles
et des lignes droites” that is, “On problems that can be constructed using only circles
and straight lines.”

Chapter 6 is again due to Himalaya Senapati. It is based on two propositions
of Menelaus’ Spherics that are comparison results for angles in a triangle cut by a
geodesic arc joining the midpoints of two sides. The two propositions, in Menelaus’

18 Pappus d’Alexandrie, La collection mathématique, Œuvre traduite pour la premiere fois du grec
en français par P. Ver Eecke, Desclée de Brouwer, Paris and Bruges, 1933, Propositions 105, 107, 108,
and 117 of Book VII.

19 L. Euler, “Problematis cuiusdam Pappi Alexandrini constructio,” Acta Academiae scientarum im-
perialis petropolitanae, Pars 1 (1780), 91–96. InOpera omnia, Series 1, Vol. XXVI, 237–242.

20 Nicolaus Fuss (1755–1826) was initially Euler’s secretary, and he became later his student, collab-
orator, and colleague at the Russian Academy of Sciences, and eventually the husband of his grand-
daughter Albertine.

21 N. Fuss, “Solutio problematis geometrici Pappi Alexandrini,” Acta Academiae scientarum imperi-
alis petropolitanae, Pars 1 (1780), 97–104.

22 J.-L. Lagrange, “Solution algébrique d’un problème de géométrie,” in Oeuvres de Lagrange,
Vol. IV, Gauthier-Villars, Paris 1868, 335–339. There is a confusion about the authorship of this work.
It first appeared in a memoir under the name of J. de Castillon (Giovanni Francesco Mauro Melchiorre
Salvemini, also called il Castiglione, after his birthplace, Castiglione delValdarno), in which the latter de-
clares that this proof is due to Lagrange, and after that, he provides his own proof, which is different from
Lagrange’s. The part of Castillon’s memoir that corresponds to Lagrange’s proof appeared eventually in
Lagrange’sŒuvres under his own name.
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treatise, belong to a group of propositions in which the author proves for spherical
triangles the property called today the Busemann property for positively curved met-
ric spaces. Senapati gives an improved version of the angle comparison result in the
case of spherical triangles as well as a version for hyperbolic triangles.

In Chapter 7, Dmitriy Slutskiy gives a proof of the trigonometric formulae of
spherical and hyperbolic geometries using a kinematic method, following the work
of Joseph Marie de Tilly (1837–1906). This approach is explained in a memoir by
the latter, published in 1870 under the title Études de mécanique abstraite (Studies
in abstract mechanics).23 The basic tools used are two functions that de Tilly calls
eq.r/ and circ.r/ respectively, the first one being the length of a curve at distance
r from a geodesic of length one, and the second one being the length of a circle of
radius r . The work is model-free.

Chapter 8, by Son LamHo, is concerned with the classical Gauss–Bonnet formula
for surfaces of variable curvature. This is again a result on area. It says that the
integral of the Gaussian curvature over a closed surface in the Euclidean space R3,
with respect to the area form, is equal to 2� times the Euler characteristic of the
surface. This formula is one of the first formulae that establish a relation between,
on the one hand, topology (the Euler characteristic) and on the other hand, geometry
(curvature and area). The author explains the relation between the Gauss–Bonnet
formula and the formula for the area of a triangle in terms of angle excess.

Chapter 9, by Charalampos Charitos and Ioannis Papadoperakis, is based on a
theorem of Euler on cartography. Euler’s result says that there is no perfect map
from an open subset of the sphere into the Euclidean plane. Here, a perfect map is a
smooth map that preserves distances infinitesimally along the meridians and parallels
as well as angles between these lines. The theorem is generally quoted with a different
(and wrong) statement in the literature by historians of mathematics (and sometimes
mathematicians who followed the historians’ writings) who misunderstood the state-
ment.24 In the present essay, Euler’s precise statement and a detailed proof of it are
provided.

23 J.-M. de Tilly, Études de mécanique abstraite, Mémoires couronnée et autres mémoires publiés par
l’Académie Royale de Belgique, Vol. XXI, 1870.

24 An instance of a wrong quote is contained in R. Ossermann’s “Mathematical mapping fromMerca-
tor to the millenium,” inMathematical adventures for students and amateurs (D. F. Hayes and T. Shubin,
eds.), The Mathematical Society of America, Washington (D.C.), 2004, 237–257, Spectrum. Theorem 1
there, attributed to Euler, states the following: It is impossible to make an exact scale map of any part
of a spherical surface, an exact scale map meaning, in that paper, a map that preserves distances up to
scale. The author refers to Euler’s paper “De repraesentatione superficiei sphaericae super plano pub-
lished” in Acta Academiae scientarum imperialis petropolitanae, Pars 1 (1777), 107–132 (Opera omnia,
Series 1, Vol. XXVIII, 248–275). The theorem stated in Ossermann’s paper is not what Euler proves.
This result was known long before Euler, since Greek antiquity, and Euler’s theorem is much more in-
volved than that. The same error occurs in the paper “Curvature and the notion of space” byA. Knoebel,
J. Lodder, R. Laubenbache, and D. Pengelley, inMathematical masterpieces, Springer Verlag, New York,
2007, 159–227, and in many other papers.
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Chapter 10, by Charalampos Charitos, is based again on certain projection maps
from (subsets of) the sphere to the Euclidean plane that were considered by Euler.
The study concerns more precisely the class of area-preserving projections of class
C 2 that satisfy the further property that they send all meridians and parallels to per-
pendicular curves in the Euclidean plane. This class of maps was highlighted by Euler
in his memoir “De repraesentatione superficiei sphaericae super plano” (On the rep-
resentation of spherical surfaces onto the plane).24 The distortion from conformality
of these projections is compared with that of the so-called “Lambert cylindrical equal
area projection,” a map introduced by Lambert and rediscovered by Euler. The author
shows that the distortion of the Lambert projection has remarkable extremal proper-
ties in the class considered.

Thus, Chapters 9 and 10 concern the search of maps between non-Euclidean and
Euclidean geometries that are best in an appropriate sense. It is also interesting to see
that by their study of such maps, Euler, Lambert and the geographers that preceded
them are in fact predecessors of the modern theory of quasiconformal mappings. The
interested reader may refer to the recent survey entitled “Quasiconformal mappings,
from Ptolemy’s geography to the work of Teichmüller.”25

Chapter 11, byNikolai Abrosimov andAlexanderMednykh, consists of two parts.
The first one concerns area, and the second one volume, in spherical and hyperbolic
geometries.

In the first part, the authors survey various classical formulae by Euler, Cagnoli,
Lhuillier and others on the area of a triangle in spherical geometry and their coun-
terparts in hyperbolic geometry. They also present non-Euclidean analogues of a
Euclidean area formula due to Bretschneider and other recent formulae for the area
of non-Euclidean triangles and quadrilaterals, together with non-Euclidean versions
and generalizations of an identity of Ptolemy concerning cyclic quadrilaterals, and
related identities due to Casey, and others.

In the second part, the authors survey classical formulae for volumes of various
kinds of polyhedra due to Schläfli, Lobachevsky, Bolyai, Coxeter, and Vinberg. They
discuss in particular the case of an orthoscheme, that is, a simplex in which the edges
are mutually orthogonal. A three-dimensional orthoscheme has three right dihedral
angles, the other dihedral angles being termed esesential. Schläfli provided a formula
for the volume of a spherical orthoscheme in terms of its essential dihedral angles,
using a function which is now called the Schläfli function. Lobachevsky and Bolyai
obtained formulae for volumes of hyperbolic orthoschemes. A theory of volume of
ideal hyperbolic tetrahedra originated in the work of Lobachevsky done in the second

25 A. Papadopoulos, “Quasiconformal mappings, from Ptolemy’s geography to the work of Teich-
müller,” inUniformization, Riemann–Hilbert correspondence, Calabi–Yau manifolds, and Picard–Fuchs
equations (L. Ji and S.-T. Yau, eds.), Advanced Lectures in Mathematics 42, Higher Education Press,
Beijing, and International Press, Boston, 2018, pp. 237–315.
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quarter of the nineteenth century. This theory was revived by Thurston and Milnor
in the late 1970s. Vinberg considered in detail the case of tetrahedra having at least
one vertex at infinity.

Together with these developments, the authors in Chapter 11 present several other
relatively recent results on volume, including a result of Abrosimov on a problem of
Seidel asking for the expression of the volume of an ideal hyperbolic tetrahedron in
terms of the determinant and the permanent of its so-called “Gram matrix.” They
also report on a formula, due to Derevin and Mednykh, expressing the volume of a
compact hyperbolic tetrahedron in terms of its dihedral angles, and on a formula due
to Sforza concerning the volume of a compact tetrahedron in hyperbolic or spher-
ical 3-space. They also present formulae for volumes of spherical and hyperbolic
octahedra with various kinds of symmetries.

Chapter 12 by Ivan Izmestiev is concerned with rigidity problems of bar-and-
joint frameworks in Euclidean, spherical and hyperbolic geometries. A bar-and-joint
framework is an object made of rigid bars connected at their ends by universal joints,
that is, joints that allow the incident bars to rotate in any direction. The questions that
are addressed in this chapter generalize rigidity questions for polyhedra. The author
approaches them from two points of view, which he calls the static and the kinematic.
In the scientific jargon, statics is the science of equilibrium of forces, and kinematics
the science of motion. In the present setting, the static rigidity of a framework refers
to the fact that every system of forces with zero sum and zero moment applied on it
can be compensated by stresses in the bars, whereas its kinematic rigidity refers to the
absence of deformations that keep the lengths of bars constant to the first order. The
author shows that these two notions of rigidity of a framework are equivalent. More
generally, he proves that a framework in a Euclidean, spherical, or hyperbolic space
has the same number of static and kinematic degrees of freedom. Here, the number
of static degrees of freedom is the dimension of the vector space of unresolvable
loads, that is, of systems of forces applied to the nodes that cannot be compensated
by stresses in the bars. In particular, a framework is statically rigid if the number of
its static degrees of freedom is zero. The number of kinematic degrees of freedom is
the dimension of the vector space of non-trivial infinitesimal isometric deformations,
that is, deformations that are not induced by an isometry of the ambient space.

The subject of statics, in the sense used in this essay, finds its roots in the 19th

century works of Poinsot, Möbius, Grassmann, and others. Questions of infinites-
imal rigidity of smooth surfaces were addressed in the 20th century by H. Weyl,
A. D. Alexandrov, and A. V. Pogorelov. Izmestiev in Chapter 12 provides a projective
interpretation of statics which allows him to prove a projective invariance property
of infinitesimal rigidity and to establish a correspondence between the infinitesimal
motion of a Euclidean framework and its geodesic realization in the two geometries
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of constant nonzero curvature. He refers to the fact that the number of degrees of free-
dom of a Euclidean framework is a projective invariant as the Darboux–Sauer cor-
respondence. He also reviews the so-called “Maxwell–Cremona” correspondence
for a framework in Euclidean and in the two non-Euclidean geometries. This cor-
respondence establishes an equivalence between the existence of a self-stress of a
framework (a collection of stresses in its bars that resolves a zero load), a reciprocal
diagram (a framework whose combinatorics is dual to the combinatorics of a given
framework), and a so-called “polyhedral lift" (which, in the Euclidean case, is a ver-
tical lift to 3-space which has the property that the images of the vertices of every
face are coplanar).

Part II. Projective geometries

Chapters 13 and 14 inaugurate the second part of the volume. They consist of a
translation (made by Annette A’Campo-Neuen) and a short commentary (by Annette
A’Campo-Neuen andAthanase Papadopoulos) on a paper by Eduard Study, published
in 1907, entitled “Beiträge zur Nicht-Euklidischen Geometrie. I.”15 In this paper,
Study introduces what he calls the exterior plane hyperbolic geometry, which turns
out to be the geometry we call today the de Sitter geometry. This is a geometry of
the complement of hyperbolic space, when this space is realized as the Cayley–Klein
disc model sitting in the projective plane. The exterior space is also the space of lines
in the hyperbolic plane. A distance function (which is not a metric in the sense we
intend it today) is defined on pairs of points in this exterior space, and the way the
distance between two points is defined depends on the position of these points, more
precisely, on whether the line joining them intersects the unit circle, or is tangent to it,
or is disjoint from it. Study gives a characterization of triangles for which the triangle
inequality holds, and of triangles for which the reverse triangle inequality (called the
time inequality) holds. He also discusses the cases where the distance between two
points is equal to the length of the longest curve joining them.

It is interesting to see that the ideas expressed by Study in this paper are explored
in modern research. They appear in the two essays that follow (Chapters 15 and 16).

Chapter 15 is also due to Ivan Izmestiev. It consists of an exposition of the theory
of conics in spherical and hyperbolic spaces. The author presents this theory in full
detail, including classifications of conics from the algebraic and analytic points of
view, the theory of pencils, the characteristic properties of foci, axes, and centers, the
bifocal properties of spherical conics, the various concepts of polarity and duality as
well as the non-Euclidean versions of several results including Poncelet, Brianchon,
Pascal and Chasles’ theorems, and Ivory’s lemma. The latter states that the diagonals
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of a quadrilateral formed by four confocal conics have equal lengths. De Sitter space
is also included in the picture.

The topic of spherical conics is classical. Back in 1788, Nicolaus Fuss wrote a
memoir on spherical conics, entitled “De proprietatibus quibusdam ellipses in super-
ficie sphaerica descriptae” (On some properties of an ellipse traced on a spherical
surface).26 Michel Chasles made a systematic study of spherical conics in his 1860
article “Résumé d’une théorie des coniques sphériques homofocales et des surfaces
du second ordre homofocales” (Summary of a theory of spherical homofocal conics
and second-order homofocal surfaces).27 William Story, in a paper on non-Euclidean
geometry published in 1881,28 computed areas of conics in the hyperbolic plane; his
results are expressed in terms of elliptic integrals. In 1883, he wrote a paper on hy-
perbolic conics entitled “On non-Euclidean properties of conics.”29 Today, the sub-
ject of non-Euclidean conics is almost forgotten, and even, the study of Euclidean
conics is no more part of the curricula. Izmestiev’s essay, based on the articles by
Chasles and Story, revives this subject, showing at the same time that Euclidean and
non-Euclidean geometries (including de Sitter) can be approached via the study of
(Euclidean) conics. From this point of view, a non-Euclidean conic is represented
by a pair of quadratic forms on Euclidean space, the first one (assumed to be non-
degenerate) representing the absolute of a non-Euclidean geometry, and the second
one being the conic in the non-Euclidean space realized by the first conic.

In Chapter 16, François Fillastre and Andrea Seppi start from the fact, which we
mentioned several times, that in dimension two, a model for each of the three clas-
sical geometries can be obtained as the interior of (a connected component of the
complement of) a certain conic, the latter becoming the “absolute” of the space. The
authors survey several two- and three-dimensional geometries that may be obtained,
in the tradition of Klein, in the setting of projective geometry. These geometries in-
clude, besides the classical Euclidean, spherical and hyperbolic geometries, de Sitter
and anti-de Sitter geometries, as well as geometries that the authors call co-Euclidean
and co-Minkowski. The last two are respectively the geometry of the space of hyper-
planes in Euclidean space and that of space-like hyperplanes inMinkowski geometry.
Some of these geometries appear as dual to or as limits of other geometries. The de-
velopments of the theory presented in this essay use duality theory in Euclidean space
associated to convex sets (polar duality). A convex complementary component of a
quadric in R3 appears as a model of hyperbolic space whereas the other component
appears as a model for de Sitter space and is also described as the space of hyper-

26 N. Fuss, “De proprietatibus quibusdam ellipses in superficie sphaerica descriptae,” Nova acta
Academiae scientiarum imperialis petropolitanae 3 (1785), 90–99.

27 M.Chasles, “Résumé d’une théorie des coniques sphériques homofocales et des surfaces du second
ordre homofocales,” J. Math. Pures Appl. (1860), 425–454.

28 W. E. Story, “On the non-Euclidean trigonometry,” Amer. J. Math. 4 (1881), 332–335.
29 W. E. Story, “On non-Euclidean properties of conics,” Amer. J. Math. 5 (1883), 358–382.
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planes in hyperbolic space. The definition of anti-de Sitter space, as a Lorentzian
manifold of curvature �1, uses bilinear forms of signature 2.

Questions regarding transitions between geometries are also addressed in Chap-
ter 16, and in this setting, elliptic and de Sitter geometries limit to co-Euclidean ge-
ometry. Likewise, Minkowski and co-Minkowski geometries appear as limit geome-
tries of classical ones. The authors also discuss connections and volume forms for
their model spaces, leading to connections and volume forms for the degenerate co-
Euclidean and co-Minkowski geometries. A map they call “infinitesimal Pogorelov
map” is introduced, between the hyperbolic and Euclidean spaces, and between anti-
de Sitter and Minkowski spaces. They then study embedded (especially convex) sur-
faces in the 3-dimensional model spaces, as well as geometric transitions of surfaces.
They show that the notion of curvature transits between various geometries, under
rescaling in co-Euclidean and co-Minkowski geometries.

Part III. Other geometries

In Chapter 17, Boumediene Et-Taoui provides a survey of Hermitian trigonometry,
that is, trigonometry in complex projective space. In particular, he presents the two
laws of sines and the law of cosines for a triangle in the complex projective plane.
The subject of Hermitian trigonometry is classical. It was first studied by Blaschke
and Terheggen in their paper “Trigonometria Hermitiana.”30 The exposition in Chap-
ter 17 follows in part that of Ulrich Brehm in his article “The shape invariant of tri-
angles and trigonometry in two point homogeneous spaces.”31 Et-Taoui defines at
the same time the notion of polar triangle associated to a given triangle in complex
projective space and he uses it to derive the second law of sines. He also estab-
lishes relations between invariants introduced by Brehm and others. He notes that
the spherical geometry developed by Eduard Study is a special case of the Hermi-
tian trigonometry developed in this chapter. In particular, the trigonometric formulae
of spherical trigonometry can easily be deduced from the Hermitian trigonometric
formulae. The essay also contains remarks on trigonometry in general symmetric
spaces, a subject where almost all the basic questions are still open.

In Chapter 18, Victor Pambuccian presents a result on triangles of fixed area in a
geometry he describes as the “Bachmann non-elliptic metric plane in which every pair
of points has a midpoint.” This geometry is defined in an axiomatic way in terms of

30 W. Blaschke and H. Terheggen, “Trigonometria Hermitiana,” Rend. Sem. Mat. Univ. Roma Ser. 4
(1939), 153–161.

31 U. Brehm, “The shape invariant of triangles and trigonometry in two point homogeneous spaces,”
Geom. Dedicata 33 (1990), 59–76.
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groups, involutions in these groups and axioms concerning the relations among these
involutions. The expression “elliptic metric plane” refers to a geometry in which there
are three line reflections whose composition is the identity. The result presented says
that for any given pair of points A and C and for any point B varying in the plane in
such a way that the area of the triangle ABC is constant, the locus of the midpoints
of AB and CB consists of two lines symmetric with respect to AC . This result is
in the trend of a theorem attributed to Lexell (with various proofs by Lexell, Euler,
Legendre, Steiner, Lebesgue, and several others)32 concerning the locus of the third
vertex of a spherical triangle with two given vertices and fixed area.

This set of essays should give the reader a taste of the fundamental notions of
non-Euclidean geometry and an idea of a variety of problems that are studied in this
very rich branch of mathematics.

Vincent Alberge (New York),
Athanase Papadopoulos (Strasbourg and Beijing),

December 2018

32 A. J. Lexell, “Solutio problematis geometrici ex doctrina sphaericorum,” Acta Academiae scien-
tarum imperialis petropolitanae, Pars 1 (1781), 112–126; L. Euler, “Variae speculationes super area trian-
gulorum sphaericorum,” Nova acta Academiae scientarum imperialis petropolitanae 10 (1792), 47–62, in
Opera omnia, Series 1, Vol. XXIX, 253–266; A.-M. Legendre, Éléments de géométrie (11th ed.). Firmin
Didot, Paris 1817; J. Steiner, “Sur le maximum et le minimum des figures dans le plan, sur la sphère
et dans l’espace général,” J. Math. Pures Appl. 6 (1841), 105–170; H. Lebesgue, “Démonstration du
théorème de Lexell,” Nouvelles annales de mathématiques 14 (1855), 24–26.


