
Prologue

An excerpt from
“Sur les hypothèses fondamentales de la géométrie” �

Henri Poincaré

We already know three two-dimensional geometries:

1. Euclidean geometry, where the angle sum in a triangle is equal to two right
angles;

2. Riemann’s geometry, where this sum is greater than two right angles;

3. Lobachevsky’s geometry, where it is smaller than two right angles.

These three geometries rely on the same fundamental hypotheses, if we except
Euclid’s postulatumwhich the first one admits and the two others reject. Furthermore,
the principle according to which two points completely determine a line entails an
exception in Riemann’s geometry and entails no exception in the other two cases.

When we restrict ourselves to two dimensions, Riemann’s geometry allows a very
simple interpretation; it does not differ, as is well known, from spherical geometry,
provided we decide to give the name lines to the great circles of the sphere.

I shall start by generalizing this interpretation in such a way that it can be extended
to Lobachevsky’s geometry.

Consider an arbitrary order-two surface.1 We agree to call lines the diametral
plane2 sections of this surface, and circles the non-diametral plane sections.

� H. Poincaré “Sur les hypothèses fondamentales de la géométrie,” Bull. Soc. Math. France 15 (1887)
203–216. Translation by A. Papadopoulos.

1 [Translator’s note] A degree-two algebraic surface, also called a quadric.
2 [Translator’s note] For a given quadric, the locus of midpoints of the system of chords that have

a fixed direction is a plane, called a diametral plane of the quadric. In the case where the quadric has
a center of symmetry, a diametral plane is a plane passing through this center of symmetry. There are
more general points of symmetry for a quadric. In analogy with the case of the great circles and the small
circles of a sphere, Poincaré calls a line the intersection of a quadric surface with a diametral plane, and
a circle the intersection of a quadric with an arbitrary plane.
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It remains to define what we mean by the angle made by two lines which intersect
and by the length of a line segment.

Through a point on the surface, let two diametral plane sections pass (which we
decided to call lines). Let us then consider the tangents to these two plane sections
and the two rectilinear generatrices of the surface which pass through the given point.
These four lines (in the usual sense of the word) have a certain anharmonic ratio.3
The angle that we want to define will then be the logarithm of the anharmonic ratio
if the two generatrices are real, that is, if the surface is a one-sheeted hyperboloid. In
the other case, our angle will be the same logarithm divided by

p
�1.

Let us consider an arc of conic which is part of a diametral plane section (this
is what we agreed to call a line segment). The two endpoints of the arc and the two
points at infinity of the conic have, as any system of four points situated on a conic,
a certain anharmonic ratio. Then we agree to call length of the given segment the
logarithm of this ratio if the conic is a hyperbola and this same logarithm divided byp
�1 if the conic is an ellipse.
There will be, between the angles and the lengths thus defined, a certain number

of relations, and these will constitute a collection of theorems which are analogous
to those of plane geometry.

This collection of theorems can then take the name quadratic geometry, since
our starting point was the consideration of a quadric or a second order fundamental
surface.

There are several quadratic geometries, because there are several kinds of second
order surfaces.

If the fundamental surface is an ellipsoid, then the quadratic geometry does not
differ from Riemann’s geometry.4

If the fundamental surface is a two-sheeted hyperboloid, then the quadratic ge-
ometry does not differ from that of Lobachevsky.

If this surface is an elliptic paraboloid, then the quadratic geometry is reduced to
that of Euclid; this is a limiting case of the preceding two.

It is clear that we have not exhausted the list of quadratic geometries; because we
have not considered neither the one-sheeted hyperboloid nor its numerous degenera-
cies.

Thus, we can say that there are three main quadratic geometries, which correspond
to the three types of second-order surfaces with center.

On the other hand, we have to add to them the geometries that correspond to the
limiting cases and Euclidean geometry will be part of them.

3 [Translator’s note] The term anharmonic ratio means the cross ratio.
4 [Translator’s note] In the 19th century, the term Riemann’s geometry was commonly used for the

geometry of the sphere.
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Why did the geometry of the one-sheeted hyperboloid, up to now, escape the
theorists? This is because it implies the following propositions.

1. The distance between two points situated on the same rectilinear generator of
the fundamental surface is zero.

2. There are two kinds of lines, the first one corresponding to the elliptic diametral
sections and the other one to the hyperbolic diametral sections. It is impossible,
using any real motion, to make a line of the first kind coincide with a line of
the second.

3. It is impossible to make a line coincide with itself by a real rotation around one
of its points, as it happens in Euclidean geometry when we rotate a line by 180o

around one of its points.

All the geometers have implicitly assumed that these three propositions are false, and
indeed these three propositions are so much contrary to the habits of our spirit that
its was not possible to the founders of our geometries to make such a hypothesis and
think of stating it.


