Preface

The theory of dynamical systems has its origins in mechanics. A basic motivating
problem, explored by the dynamical pioneers Henri Poincaré and George Birkhoff
around the turn of the 20th century, was to predict the motion of heavenly bodies.
Today, dynamics is one of the most lively areas in mathematics, and the “dynamical
approach” is used to solve problems in a range of mathematical areas, including
number theory, geometry, and analysis. To give one example, dynamical techniques
have led to significant recent progress on the Littlewood conjecture on simultaneous
Diophantine approximations, which dates back to the 1930s. A recent breakthrough
in three-dimensional topology, the proof of the surface subgroup conjecture, relies
in part on dynamical properties of geodesic flows. Some of these techniques are
touched on in these lectures, in particular Bryce Weaver’s exposition of Margulis’s
method. An application of complex dynamics to astrophysics appears in Roland
Roeder’s lectures: a single light source can have at most 5n — 5 images when lensed
by n point masses. And the list goes on.

This monograph is intended to introduce the reader to the field of dynamical sys-
tems by emphasizing elementary examples, exercises, and bare-hands constructions.
These notes were written for the Undergraduate Summer School of the thematic
program “Boundaries and Dynamics” held in 2015 at the University of Notre Dame,
in partnership with the NSF and the French GDR Platon 3341 CNRS.

Roughly speaking, a dynamical system is a space that can be transformed by a
fixed set of rules (classically these rules are deterministic, but in the last chapter,
random dynamics is explored). By applying these rules repeatedly, under a process
called iteration, the space evolves over a discrete set of time intervals. In a slight
variation of this definition, the system evolves over a continuous time interval such
as the real numbers, still subject to the rules given by, for example, an ordinary
differential equation. In both settings, the object of the game is to understand the
future states of the system. Starting at a particular point in the space and following
its future iterations gives an orbit or trajectory of the system. Many questions arise,
depending on the system. Are there bounded trajectories? Periodic orbits, which
return to their starting point after a finite period of time? Orbits that fill the space
densely? When do two systems have the same orbits in some sense, and what are
invariants of a system that can detect this type of equivalence? Can such invariants
be computed using periodic trajectories?

Billiard flows are a basic type of continuous time dynamical system and arise
naturally as models in physics. Here the table itself gives a framework for the space,
and a point in the space, imagined as a ball with a specified velocity, travels in the space
over time by reflecting off the sides of the table. In the first chapter, Diana Davis starts
with a square billiard table and takes us to more exotic tables, the rational polygons
(i.e., tables where all corner angles are equal to a fractional part of 7). Tables give rise
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to surfaces: unfolding the billiard table, the trajectory of the ball can be reimagined
as a “straight line” curve on a translation surface created from a polygon where
parallel edges are identified by translations. For the square, the associated surface
is a flat torus and resembles a donut. This particular surface is rich in symmetries,
like reflections across verticals and horizontals. A class of transformations of this
surface called shear maps can be used to understand the behavior of the straight line
curves on the torus and hence to describe the trajectories on a square billiard table
(Chapter 1, Theorem 5.5). Periodic trajectories are characterized by an initial velocity
with rational slope (Chapter 1, Exercise 2.1). Such trajectories can be grouped into
families of cylinders of parallel periodic trajectories with equal lengths. Analogous
techniques can be used to analyze rational billiards, with highly symmetric tables,
known as Veech tables, admitting a particularly complete understanding.

This deceptively simple-sounding class of dynamics continues to captivate re-
searchers, with many open problems remaining.

For example, let N(r) be the number of cylinders in a rational billiard table
corresponding to periodic trajectories of length at most r. A famous conjecture states
that the limit of N(r)/r? exists and is nonzero. The best result to date was given by
Alex Eskin, Maryam Mirzakhani (Fields Medal 2014!), and Amir Mohammadi. The
beauty of their work comes from the method: they deduce asymptotic properties of
the counting function N(r) from the description of trajectories of a dynamical system
defined on a very big space, the moduli space, in which the initial billiard is just a
point! For billiards on irrational polygons, few tools are available and not much is
known. For example, the existence of periodic trajectories is an open problem even
for triangles.

In the second chapter, Bryce Weaver restricts his attention to a discrete dynamical
system on the flat torus defined by a 2 X 2 matrix A with integer coefficients and
determinant 1. The eigenvalues of such a matrix are multiplicative inverses of each
other; to avoid trivial dynamics, we assume one of these eigenvalues is real and bigger
than 1.

This example, introduced in the 1960s by Vladimir Arnold (and playfully termed
the “cat map”), is the quintessential model for the class of uniformly hyperbolic
dynamical systems that are highly sensitive to initial conditions. Different invariants
express the unpredictable behavior of such systems. One of them, topological entropy,
measures the exponential rate at which points separate. For the process generated by
the matrix A, this invariant equals the logarithm of the biggest eigenvalue 4 > 1 of
the matrix (Chapter 2, Proposition 3.9). The entropy is connected to the asymptotic
behavior of the counting function PO defined by the number of A-periodic points
of period less than n. Roughly speaking, this invariant corresponds to the growth
rate of P,(? . More precisely, the limit of P,? X nfA" exists and equals 1/(1 — 1)
(Chapter 2, Theorem 4.2). The chapter provides two proofs of this fundamental
relationship. The first one relies on the algebraic nature of the transformation A
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and is elementary. The first proof even gives an explicit formula for the number of
A-periodic points of period n (Chapter 2, Theorem 4.5). The second proof uses an
argument based on the presence of expanding and contracting directions attached
to A (Chapter 2, Section 4.2) and on the fact that this transformation “mixes” the
sets (Chapter 2, Proposition 4.15). This approach, which combines geometry and
ergodic theory, was developed by Gregory Margulis. It is longer and less precise
than the first one (Chapter 2, Theorem 4.5 is replaced by a weaker version, Theorem
4.11) but it applies to a vastly more general class of systems: those for which fine
algebraic information (such as the eigenvalues of a matrix) is not available. Indeed,
Margulis’s method can be used to deduce geometrical information about negatively
curved compact manifolds, in particular the growth rate of the number of closed
geodesics as a function of their length.

In the third chapter, Roland Roeder considers a dynamical system on the complex
plane C, governed by a quadratic map p.(z) = z> + ¢, where ¢ is a complex number,
a parameter that can be changed to vary the dynamics of the system. The study
of this family of maps {p. : ¢ € C} was initiated by two founders of holomorphic
dynamics, Pierre Fatou and Gaston Julia. This area came to explosive life in the
1980s with the introduction of so-called quasiconformal methods on the theoretical
side and, on the experimental side, with the blossoming of the personal computer as
a mathematical tool.

Despite the simplicity of their defining formula, the maps p. exhibit complicated
dynamics. Points which are far from the origin O in C escape to infinity. Among
the other points, there is at most one periodic orbit around which spiral the orbits
of nearby points. The set of parameters ¢ for which p. has a single attracting fixed
point is contained inside a cardioid (Chapter 3, Lemma 2.9). Increasing the size
(i.e., period) of the periodic orbit attaches open blobs to this cardioid in the complex
parameter plane. Collecting all of these blobs together, the set My of parameters ¢
for which the map p. admits such attracting periodic points has a rich topological
and combinatorial structure. This set M| is contained in the famous Mandelbrot
set M, defined as the set of parameters for which the orbit of O remains bounded.
(This set was named for Benoit Mandelbrot, who brought public attention to this
class of dynamical systems and its vivid computer images in the 1980s). A central
open question in complex dynamics asks when the closure of M, coincides with M.
Although it is unsolved, it was proved in 1997 for a thin slice of the parameter plane:
the restriction of My and M to the real line (i.e., for the parameters ¢ being real
numbers). The set M is still mysterious, but many interesting properties are known.
In particular, it is self-similar: M contains arbitrarily small copies of itself. Adrien
Douady and John Hubbard have proved that M is connected, and it is conjectured that
M is locally connected. There is a deep relationship between M and the dynamics
of an individual map p. through the shape of the filled Julia set K. of points having
a bounded orbit under p.. Namely, K. is connected if and only if ¢ belongs to
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M (Chapter 3, Section 3). This principle is exploited to transfer information from
the dynamics of an individual member of M back to geometric information about M
itself. In particular, itis used to show that the boundary of M has amazing complexity:
unlike the boundary of a disk, which is a smooth one-dimensional curve, the boundary
of M has (Hausdorff) dimension 2. To show the limits of our understanding, it is not
known whether the boundary of M might even have positive area!

The last chapter deals with a type of nondeterministic dynamical system: a
random walk, for which the iteration at each step is governed by a probability law.
In a sense, this is a classical dynamical system in which the transformation rules
are allowed to include a roll of the dice. The theory of random walks, which mixes
geometry and probability, was first developed in the 1920s. It has incredibly broad
applicability and today, less than a century later, it is nearly ubiquitous in science and
engineering. Pablo Lessa concentrates on simple walks on a combinatorial object,
an infinite graph, obtained by starting at a vertex and choosing a random neighbor
at each step. The central question concerns the recurrence property: does the walk
visit “almost surely” every vertex infinitely many times? These walks are one of the
most classical examples of how the geometry of the underlying space influences the
behavior of stochastic processes on that space. The first result in this direction was
obtained by George Poélya for grids: the simple walk on the two-dimensional grid
Z? is recurrent but on the three-dimensional grid Z> the walk is not recurrent—it is
transient (Chapter 4, Section 2.7). The study of simple random walks on Z¢ is a
first step in understanding a more complicated object: a continuous time stochastic
process on R? (or on Riemannian manifolds) called Brownian motion. The “wire
mesh” in R? with vertices in the grid Z¢ is an example of a Cayley graph, which
encodes the structure of a finitely generated group G and its generators (in this case
Z4 with the standard generating set). For this special class of graphs, Nicholas
Varopoulos proved that recurrence of the random walk can be characterized entirely
by certain algebraic/geometric properties of the group G. In particular, if we define
the counting function fi(n) of G to be the number of words of length at most n
(relative to a set of generators), then the random walk on the Cayley graph of G is
recurrent if and only if fz () is bounded above by a polynomial function of degree at
most 2 (Chapter 4, Section 4). The field of geometric group theory grew in the 1980s
to study the relationship between the algebraic properties of groups and the geometric
properties of their Cayley graphs. A theorem proved by Mikhail Gromov illustrates
the deep relationship between these two objects: the counting function fg(n) has
polynomial growth if and only if G admits a finite index nilpotent subgroup.
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