
Introduction

The Erlangen program is a perspective on geometry through invariants of the auto-
morphism group of a space. The original reference to this program is a paper by Felix
Klein which is usually presented as the exclusive historical document in this matter.
Even though Klein’s viewpoint was generally accepted by the mathematical commu-
nity, its re-interpretation in the light of modern geometries, and especially of modern
theories of physics, is central today. There are no books on the modern developments
of this program. Our book is one modest step towards this goal.

The history of the Erlangen program is intricate. Klein wrote this program, but
Sophus Lie made a very substantial contribution, in promoting and popularizing the
ideas it contains. The work of Lie on group actions and his emphasis on their impor-
tance were certainly more decisive than Klein’s contribution. This is why Lie’s name
comes first in the title of the present volume. Another major figure in this story is
Poincaré, and his role in highlighting the importance of group actions is also critical.

Thus, groups and group actions are at the center of our discussion. But their
importance in mathematics had already been crucial before the Erlangen program
was formulated.

From its early beginning in questions related to solutions of algebraic equations,
group theory is merged with geometry and topology. In fact, group actions existed
and were important before mathematicians gave them a name, even though the for-
malization of the notion of a group and its systematic use in the language of geometry
took place in the 19th century. If we consider group theory and transformation groups
as an abstraction of the notion of symmetry, then we can say that the presence and
importance of this notion in the sciences and in the arts was realized in ancient times.

Today, the notion of group is omnipresent in mathematics and, in fact, if we want
to name one single concept which runs through the broad field of mathematics, it
is the notion of group. Among groups, Lie groups play a central role. Besides
their mathematical beauty, Lie groups have many applications both inside and out-
side mathematics. They are a combination of algebra, geometry and topology.

Besides groups, our subject includes geometry.
Unlike the word “group” which, in mathematics has a definite significance, the

word “geometry” is not frozen. It has several meanings, and all of them (even the
most recent ones) can be encompassed by the modern interpretation of Klein’s idea.
In the first version of Klein’s Erlangen program, the main geometries that are em-
phasized are projective geometry and the three constant curvature geometries (Eu-
clidean, hyperbolic and spherical), which are considered there, like affine geometry,
as part of projective geometry. This is due to the fact that the transformation groups
of all these geometries can be viewed as restrictions to subgroups of the transfor-
mation group of projective geometry. After these first examples of group actions in
geometry, the stress shifted to Lie transformation groups, and it gradually included
many new notions, like Riemannian manifolds, and more generally spaces equipped
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with affine connections. There is a wealth of geometries which can be described by
transformation groups in the spirit of the Erlangen program. Several of these ge-
ometries were studied by Klein and Lie; among them we can mention Minkowski
geometry, complex geometry, contact geometry and symplectic geometry. In modern
geometry, besides the transformations of classical geometry which take the form of
motions, isometries, etc., new notions of transformations and maps between spaces
arose. Today, there is a wealth of new geometries that can be described by trans-
formation groups in the spirit of the Erlangen program, including modern algebraic
geometry where, according to Grothendieck’s approach, the notion of morphism is
more important than the notion of space.1 As a concrete example of this fact, one can
compare the Grothendieck–Riemann–Roch theorem with the Hirzebruch–Riemann–
Roch. The former, which concerns morphisms, is much stronger than the latter, which
concerns spaces.

Besides Lie and Klein, several other mathematicians must be mentioned in this
venture. Lie created Lie theory, but others’ contributions are also immense. About
two decades before Klein wrote his Erlangen program, Riemann had introduced new
geometries, namely, in his inaugural lecture, Über die Hypothesen, welche der Geo-
metrie zu Grunde liegen (On the hypotheses which lie at the bases of geometry)
(1854). These geometries, in which groups intervene at the level of infinitesimal
transformations, are encompassed by the program. Poincaré, all across his work,
highlighted the importance of groups. In his article on the Future of mathematics2, he
wrote: “Among the words that exerted the most beneficial influence, I will point out
the words group and invariant. They made us foresee the very essence of mathemat-
ical reasoning. They showed us that in numerous cases the ancient mathematicians
considered groups without knowing it, and how, after thinking that they were far away
from each other, they suddenly ended up close together without understanding why.”
Poincaré stressed several times the importance of the ideas of Lie in the theory of
group transformations. In his analysis of his own works,3 Poincaré declares: “Like
Lie, I believe that the notion, more or less unconscious, of a continuous group is the
unique logical basis of our geometry.” Killing, É. Cartan, Weyl, Chevalley and many
others refined the structures of Lie theory and they developed its global aspects and
applications to homogeneous spaces. The generalization of the Erlangen program
to these new spaces uses the notions of connections and gauge groups, which were

1See A. Grothendieck, Proceedings of the International Congress of Mathematicians, 14–21 August 1958,
Edinburgh, ed. J.A. Todd, Cambridge University Press, p. 103–118. In that talk, Grothendieck sketched his
theory of cohomology of schemes.

2H. Poincaré, L’Avenir des mathématiques, Revue générale des sciences pures et appliquées 19 (1908)
p. 930–939. [Parmi les mots qui ont exercé la plus heureuse influence, je signalerai ceux de groupe et d’invariant.
Ils nous ont fait apercevoir l’essence de bien des raisonnements mathématiques ; ils nous ont montré dans com-
bien de cas les anciens mathématiciens considéraient des groupes sans le savoir, et comment, se croyant bien
éloignés les uns des autres, ils se trouvaient tout à coup rapprochés sans comprendre pourquoi.]

3Analyse de ses travaux scientifiques, par Henri Poincaré. Acta Mathematica, 38 (1921), p. 3–135. [Comme
Lie, je crois que la notion plus ou moins inconsciente de groupe continu est la seule base logique de notre
géométrie]; p. 127. There are many similar quotes in Poincaré’s works.
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closely linked to new developments in physics, in particular, in electromagnetism,
phenomena related to light, and Einstein’s theory of general relativity.

Today, instead of the word “geometry” we often use the expression “geometric
structure”, and there is a wealth of geometric structures which can be described by
transformation groups in the spirit of the Erlangen program. We mention in particular
the notion of .G;X/ structure introduced by Charles Ehresmann in the 1930s, which
is of paramount importance. Here X is a homogeneous space and G a Lie group
acting transitively on G. A .G;X/ structure on a manifold M is then an atlas whose
charts are inX and whose coordinate changes are restrictions of elements ofG acting
on X . Ehresmann formulated the notions of developing map and of holonomy trans-
formations, which are basic objects in the study of these structures and their moduli
spaces. .G;X/ structures have several variants and they have been developed and
adapted to various settings by Haefliger, Kuiper, Benzécri, Thurston, Goldman and
others to cover new structures, including foliations and singular spaces. The most
spectacular advancement in this domain is certainly Thurston’s vision of the eight ge-
ometries in dimension three, his formulation of the geometrization conjecture and the
work around it, which culminated in the proof of the Poincaré conjecture by Perel-
man.

We talked about mathematics, but the Erlangen program also encompasses physics.
In fact, geometry is closely related to physics, and symmetry is essential in modern
physics. Klein himself investigated the role of groups in physics, when he stressed
the concept of geometric invariants in his description of Einstein’s theories of special
and general relativity, in particular by showing the importance of the Lorentz group,
and also in his work on the conservation laws of energy and momentum in general
relativity. Another milestone that led to conceptual clarifications and made it possible
to systematically exploit the notion of symmetry in physics was E. Noether’s work
that related symmetries of physical systems to conserved quantities.

In conclusion, the central questions that are behind the present volume are:

� What is geometry?

� What is the relation between geometry and physics?

� How are groups used in physics, especially in contemporary physics?

Let us now describe briefly the content of this volume.
Chapters 1 and 2, written by Lizhen Ji, are introductions to the lives and works on

Lie and Klein. Even though Klein was a major mathematician, surprisingly enough,
there is no systematic English biography of him. The author’s aim is to fill this gap to
a certain extent. Besides providing convenient short biographies of Lie and Klein, the
author wishes to convince the reader of the importance of their works, especially those
which are in close relation with the Erlangen program, and also to show how close
the two men were in their ideas and characters. They both learned from each other
and they had a profound influence on each other. This closeness, their ambitiousness,
the competition among them and their disputes for priority of some discoveries were
altogether the reasons that made them split after years of collaboration and friend-
ship. The conflict between them is interesting and not so well known. The author
describes this conflict, also mentions the difficulties that these two men encountered
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in their professional lives and in their relations with other mathematicians. Both of
them experienced nervous breakdowns.4 The chapter on Lie also contains an out-
line of his important theories as well as statements of some of his most significant
theorems. In particular, the author puts forward in modern language and comments
on three fundamental theorems of Lie. Concerning Klein, it is more difficult to pick
out individual theorems, because Klein is known for having transmitted ideas rather
than specific results. The author explains how Klein greatly influenced people and
the world around him through his lectures and conversations, his books, the journals
he edited, and he also recalls his crucial influence in shaping up the university of
Göttingen to be the world’s most important mathematics center. In these surveys, the
author also mentions several mathematicians who were closely related in some way
or another to Lie and Klein, among them Hilbert, Hausdorff, Engel, Plücker, Sylow,
Schwarz and Poincaré. The chapter on Lie also reviews other aspects of Lie’s work
besides Lie groups.

Chapter 3, by Jeremy Gray, is a historical commentary on the Erlangen program.
The author starts by a short summary of the program manifesto and on the circum-
stances of its writing, mentioning the influence of several mathematicians, and the
importance of the ideas that originate from projective geometry (specially those of
von Staudt). He then brings up the question of the impact of this program on the
views of several mathematicians, comparing the opinions of Birkhoff and Bennet and
of Hawkins.

In Chapter 4, Hubert Goenner presents a critical discussion of the general impact
and of the limitations of the Erlangen program in physics. He starts by recalling
that the influence of the Erlangen program in physics was greatly motivated by the
geometrization of special relativity by H. Minkowski, in which the Lorentz group
appears as one of the main objects of interest, but he stresses the fact that the no-
tion of field defined on a geometry – and not the notion of geometry itself – is then
the central element. He comments on the relation of Lie transformations with theo-
ries of conservation laws and the relations of the Erlangen program with symplectic
geometry, analytical mechanics, statistical physics, quantum field theories, general
relativity, Yang–Mills theory and supergravity. The paper has a special section where
the author discusses supersymmetry. In a final section, the author mentions several
generalizations of the notion of Lie algebra.

In Chapter 5, Norbert A’Campo and Athanase Papadopoulos comment on the two
famous papers of Klein, Über die sogenannte Nicht-Euklidische Geometrie (On the
so-called non-Euclidean geometries), I and II. The two papers were written respec-
tively one year and a few months before the Erlangen program, and they contain in
essence the main ideas of this program. We recall that the 19th century saw the birth
of non-Euclidean geometry by Lobachevsky, Bolyai and Gauss, and at the same time,
the development of projective geometry by Poncelet, Plücker, von Staudt and others,
and also of conformal geometry by Liouville and others. Groups made the first link
between all these geometries, and also between geometry and algebra. Klein, in the

4Klein’s nervous breakdown was probably due to overwork and exhaustion, caused in part by his rude compe-
tition with Poincaré on Fuchsian functions, whereas Lie’s nervous breakdown was the consequence of a chronic
illness, pernicious anemia, related to a lack in vitamin B12, which at that time was incurable.



Introduction xv

papers cited above, gives models of the three constant-curvature geometries (hyper-
bolic, Euclidean and spherical) in the setting of projective geometry. He defines the
distance functions in each of these geometries by fixing a conic (the “conic at infin-
ity”) and taking a constant multiple of the logarithm of the cross ratio of four points:
the given two points and the two intersection points of the line joining them with the
conic at infinity. The hyperbolic and spherical geometries are obtained by using real
and complex conics respectively, and Euclidean geometry by using a degenerate one.
The authors in Chapter 5 comment on these two important papers of Klein and they
display relations with works of other mathematicians, including Cayley, Beltrami,
Poincaré and the founders of projective geometry.

Klein’s interaction with Lie in their formative years partly motivated Lie to de-
velop Lie’s version of Galois theory of differential equations and hence of Lie trans-
formation theory.5 In fact, a major motivation for Lie for the introduction of Lie
groups was to understand differential equations. This subject is treated in Chapter 6
of this volume. The author, Alexandre Vinogradov, starts by observing that Lie initi-
ated his work by transporting the Galois theory of the solvability of algebraic equa-
tions to the setting of differential equations. He explains that the major contribution
of Lie in this setting is the idea that symmetries of differential equations are the basic
elements in the search for their solutions. One may recall here that Galois approached
the problem of solvability of polynomial equations through a study of the symmetries
of their roots. This is based on the simple observation that the coefficients of a poly-
nomial may be expressed in terms of the symmetric functions of their roots, and that
a permutation of the roots does not change the coefficients of the polynomial. In the
case of differential equations, one can naively define the symmetry group to be the
group of diffeomorphisms which preserve the space of solutions, but it is not clear
how such a notion can be used. There is a differential Galois theory which is parallel
to the Galois theory of polynomial equations. In the differential theory, the question
“what are the symmetries of a (linear or nonlinear, partial or ordinary) differential
equation?” is considered as the central question. Chapter 6 also contains reviews of
the notions of jets and jet spaces and other constructions to explain the right setup for
formulating the question of symmetry, with the goal of providing a uniform frame-
work for the study of nonlinear partial differential equations. The author is critical
of the widely held view that each nonlinear partial differential equation arising from
geometry or physics is special and often requires its own development. He believes
that the general approach based on symmetry is the right one.

The author mentions developments of these ideas that were originally formulated
by Lie and Klein in works of E. Noether, Bäcklund, É. Cartan, Ehresmann and others.
A lot of questions in this domain remain open, and this chapter will certainly give
the reader a new perspective on the geometric theory of nonlinear partial differential
equations.

In Chapter 7, Charles Frances surveys the modern developments of geometric
structures on manifolds in the lineage of Klein and Lie. The guiding idea in this

5Lie has had a course at Oslo by Sylow on Galois and Abel theory before he meets Klein, but it is clear that
Klein also brought some of his knowledge to Lie.
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chapter is the following question: When is the automorphism group of a geometric
structure a Lie group, and what can we say about the structure of such a Lie group?

The author considers the concept of Klein geometry, that is, a homogeneous space
acted upon by a Lie group, and a generalization of this notion, leading to the con-
cept of a Cartan geometry. (Cartan used the expression espace généralisé.) Besides
the classical geometries, like constant curvature spaces (Euclidean, Lobachevsky and
spherical) as well as projective geometry which unifies them, the notion of Cartan ge-
ometry includes several differential-geometric structures. These notions are defined
using fiber bundles and connections. They describe spaces of variable curvature and
they also lead to pseudo-Riemannian manifolds, conformal structures of type .p; q/,
affine connections, CR structures, and the so-called parabolic geometries. The author
presents a series of important results on this subject, starting with the theorem of My-
ers and Steenrod (1939) saying that the isometry group of any Riemannian manifold
is a Lie group, giving a bound on its dimension, and furthermore, it says that this
group is compact if the manifold is compact. This result gave rise to an abundance
of developments and generalizations. The author also explains in what sense pseudo-
Riemannian manifolds, affine connections and conformal structures in dimensions
� 3 are rigid, symplectic manifolds are not rigid, and complex manifolds are of an
intermediate type.

Thus, two general important questions are addressed in this survey:

� What are the possible continuous groups that are the automorphism groups of
a geometry on a compact manifold?

� What is the influence of the automorphism group of a structure on the topology
or the diffeomorphism type of the underlying manifold?

Several examples and recent results are given concerning Cartan geometries and in
particular pseudo-Riemannian conformal structures.

Chapter 8, by Norbert A’Campo and Athanase Papadopoulos, concern transitional
geometry. This is a family of geometries which makes a continuous transition be-
tween hyperbolic and spherical geometry, passing through Euclidean geometry. The
space of transitional geometry is a fiber space over the interval Œ�1; 1�where the fiber
above each point t is a space of constant curvature t2 if t > 0 and of constant curva-
ture �t2 if t > 0. The fibers are examples of Klein geometries in the sense defined
in Chapter 7. The elements of each geometry are defined group-theoretically, in the
spirit of Klein’s Erlangen program. Points, lines, triangles, trigonometric formulae
and other geometric properties transit continuously between the various geometries.

In Chapter 9, by Athanase Papadopoulos and Sumio Yamada, the authors intro-
duce a notion of cross ratio which is proper to each of the three geometries: Euclidean,
spherical and hyperbolic. This highlights the relation between projective geometry
and these geometries. This is in the spirit of Klein’s view of the three constant cur-
vature geometries as part of projective geometry, which is the subject of Chapter 5 of
the present volume.

Chapter 10, by Yuri Suris, concerns the Erlangen program in the setting of dis-
crete differential geometry. This is a subject which recently emerged, whose aim is
to develop a theory which is the discrete analogue of classical differential geometry.
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It includes discrete versions of the differential geometry of curves and surfaces but
also higher-dimensional analogues. There are discrete notions of line, curve, plane,
volume, curvature, contact elements, etc. There is a unifying transformation group
approach in discrete differential geometry, where the discrete analogues of the clas-
sical objects of geometry become invariants of the respective transformation groups.
Several classical geometries survive in the discrete setting, and the author shows that
there is a discrete analogue of the fact shown by Klein that the transformation groups
of several geometries are subgroups of the projective transformation group, namely,
the subgroup preserving a quadric.

Examples of discrete differential geometric geometries reviewed in this chapter
include discrete line geometry and discrete line congruence, quadrics, Plücker line
geometry, Lie sphere geometry, Laguerre geometry and Möbius geometry. Important
notions such as curvature line parametrized surfaces, principal contact element nets,
discrete Ribeaucour transformations, circular nets and conical nets are discussed. The
general underlying idea is that the notion of transformation group survives in the dis-
cretization process. Like in the continuous case, the transformation group approach is
at the same time a unifying approach, and it is also related to the question of “multi-
dimensional consistency” of the geometry, which says roughly that a 4D consistency
implies consistency in all higher dimensions. The two principles – the transforma-
tion group principle and consistency principle – are the two guiding principles in this
chapter.

Chapter 11 by Catherine Meusburger is an illustration of the application of Klein’s
ideas in physics, and the main example studied is that of three-dimensional gravity,
that is, Einstein’s general relativity theory6 with one time and two space variables.
In three-dimensions, Einstein’s general relativity can be described in terms of cer-
tain domains of dependence in thee-dimensional Minkowski, de Sitter and anti de
Sitter space, which are homogeneous spaces. After a summary of the geometry of
spacetimes and a description of the gauge invariant phase spaces of these theories,
the author discusses the question of quantization of gravity and its relation to Klein’s
ideas of characterizing geometry by groups.

Besides presenting the geometrical and group-theoretical aspects of three-dimen-
sional gravity, the author mentions other facets of symmetry in physics, some of them
related to moduli spaces of flat connections and to quantum groups.

Chapter 12, by Jean-Bernard Zuber, is also on groups that appear in physics, as
group invariants associated to a geometry. Several physical fields are mentioned,
including crystallography, piezzoelectricity, general relativity, Yang–Mills theory,
quantum field theories, particle physics, the physics of strong interactions, electro-
magnetism, sigma-models, integrable systems, superalgebras and infinite-dimensional
algebras. We see again the work of Emmy Noether on group invariance principles
in variational problems. Representation theory entered into physics through quan-
tum mechanics, and the modern theory of quantum group is a by-product. The au-
thor comments on Noether’s celebrated paper which she presented at the occasion of
Klein’s academic Jubilee. It contains two of her theorems on conservation laws.

6We recall by the way that Galileo’s relativity theory is at the origin of many of the twentieth century theories.
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Today, groups are omnipresent in physics, and as Zuber puts it: “To look for
a group invariance whenever a new pattern is observed has become a second nature
for particle physicists”.

We hope that the various chapters of this volume will give to the reader a clear
idea of how group theory, geometry and physics are related to each other, the Erlangen
program being a major unifying element in this relation.

Lizhen Ji and Athanase Papadopoulos


