Introduction

The project of editing this Handbook arose from the observation that Hilbert geometry
is today a very active field of research, and that no comprehensive reference exists for
it, except for results which are spread in various papers and a few classical (and very
inspiring) pages in books of Busemann. We hope that this Handbook will serve as an
introduction and a reference for both beginners and experts in the field.

Hilbert geometry is a natural geometry defined in an arbitrary convex subset of
real affine space. The notion of convex set is certainly one of the most basic notions in
mathematics, and convexity is a rich theory, offering a large supply of refined concepts
and deep results. Besides being interesting in themselves, convex sets are ubiquitous;
they are used in a number of areas of pure and applied mathematics, such as number
theory, mathematical analysis, geometry, dynamical systems and optimization.

In 1894 Hilbert discovered how to associate a length to each segment in a convex
set by way of an elementary geometric construction and using the cross ratio. In
fact, Hilbert defined a canonical metric in the relative interior of an arbitrary convex
set. Hilbert geometry is the geometric study of this canonical metric. The special case
where the convex set is a ball, or more generally an ellipsoid, gives the Beltrami—Klein
model of hyperbolic geometry. In this sense, Hilbert geometry is a generalization of
hyperbolic geometry. Hilbert geometry gives new insights into classical questions
from convexity theory, and it also provides a rich class of examples of geometries that
can be studied from the point of view of metric geometry or differential geometry (in
particular Finsler geometry).

Let us recall Hilbert’s construction. The line joining two distinct points x and y in
a bounded convex domain intersects the boundary of that domain in two other points
p and g. Assuming that y lies between x and p, the Hilbert distance from x to y is
the logarithm of the cross ratio of these four points:
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This distance was defined in a letter to Klein written by Hilbert in 1894. It is a
distance in the usual sense, and the relative interior of the convex set is a complete
metric space for this distance. The Hilbert metric is invariant under projective trans-
formations and depends in a monotonic way on the domain: a larger domain induces a
smaller Hilbert distance. The Hilbert metric is projective in the sense that the straight



2 Introduction

lines are geodesics. In other words,
d(x,y) =d(x,z) +d(z.y)

whenever z € [x, y]. Furthermore, if the convex domain is strictly convex, then the
affine segment is the unique geodesic joining two points.

The fourth Hilbert problem asks for a description of all projective metrics in a
convex region, that is, metrics for which the straight lines are geodesics. At the
beginning of the twentieth century, Hamel, who was a student of Hilbert, worked on
this problem; he discovered new examples of projective metrics and found some deep
results using differential calculus and the calculus of variations. The subject of Finsler
geometry gradually emerged as an independent topic, and at the end of the 1920s, Funk
and Berwald gave a differential geometric characterization of Hilbert metrics among
all Finsler metrics on a domain with a smooth and strongly convex boundary. All these
facts and several others which we describe below are reported on in this Handbook.

The deepest and most thorough studies in Hilbert geometry during the twentieth
century are due to Busemann and his students and collaborators. During the pe-
riod from the 1940s to the 1990s this school investigated Hilbert geometry from the
viewpoint of metric geometry. A variety of questions regarding these metrics were
studied, concerning their geodesics, their convexity theory (convexity of the distance
function, of the spheres, etc.), their curvature, area, asymptotic geometry, limit cycles
(horocycles) and limit spheres (horospheres), and several other features. For instance,
these authors gave several characterizations of the ellipsoid in terms of its Hilbert
geometry. They noticed (like Hilbert did before them) that the special case of the
simplex is particularly interesting and they studied it in detail. They worked on the
metrical properties of the Hilbert metric as well as on the axiomatic theory, making
relations with the axioms and the basic notions of Euclidean and of non-Euclidean
geometries, in particular the theory of parallels. They established relations between
Hilbert geometry and other fields, including the foundations of mathematics, the cal-
culus of variations, convex geometry, Minkowski geometry, geometric group theory
and projective geometry. They also developed the basics of the closely related Funk
metric.

Busemann formulated and initiated the study of several problems of which he (and
his collaborators) gave only partial solutions, and a large amount of the research on
Hilbert geometry that was done after him is directly or indirectly inspired by his work.

Let us briefly mention two further important directions in which the subject de-
veloped in the last century. In the late 1950s, Birkhoff found a new proof of the
classical Perron—Frobenius theorem on eigenvectors of non-negative matrices based
on the Hilbert metric in the positive cone. This new proof brought a new point of view
on the subject and initiated a rich generalization of Perron—Frobenius theory. During
the same period, Benzécri initiated the theory of divisible convex domains, that is,
convex domains admitting a discrete cocompact group of projective transformations.
The quotient manifold or orbifold naturally carries a Finsler structure whose univer-
sal cover is a Hilbert geometry. The reader will find more information on twentieth
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century developments in Chapters 3, 10 and 15 of this Handbook. During the last
fifteen years, the subject grew rapidly and a number of these recent developments are
discussed in the other chapters.

We now describe the content of the book. The various chapters are written by
different authors and are meant to be read independently from each other. Each
chapter has its own flavor, due to the variety of tastes and viewpoints of the authors.
Although we tried to merge the chapters into a coherent whole, we did not unify the
different notation systems, nor did we try to avoid repetitions, hopefully to the benefit
of the reader.

The book is divided into four parts.

Part I contains surveys on Minkowski, Funk and Hilbert geometries and on the
relations between them.

In Chapter 1, A. Papadopoulos and M. Troyanov treat weak Minkowski spaces. A
weak metric on a set is a non-negative distance function § that satisfies the triangle
inequality, but is allowed to be non-symmetric (we may have d(x, y) # d(y, x)) or
degenerate (we may have d(x, y) = 0 for some x # y). A weak Minkowski metric
on a real vector space is a weak metric that is translation-invariant and projective.
The authors define the fundamental concept of weak Minkowski space and they give
several examples and counterexamples. The basic results of the theory are stated
and proved. Minkowski geometry shares several properties with Hilbert geometry,
one of them being that the Euclidean geodesics are geodesics for that geometry. An
important observation is that the infinitesimal — or tangential — geometry of a Hilbert
or a Funk geometry is of Minkowski type. One of the main results of this chapter
is the following: A continuous weak metric § on R" is a weak Minkowski metric if
and only if it satisfies the midpoint property, that is, §(p,q) = 28(p,m) = 28(m, q)
for any points p, g where m is the affine midpoint. Other characterizations of weak
Minkowski distances are given, providing various important aspects of this geometry.
The relations with Busemann’s G-spaces and Desarguesian spaces and comparisons
with the Funk and the Hilbert metrics are also highlighted.

Chapter 2, From Funk to Hilbert geometry, by the same authors, is devoted to the
study of the distance in a convex domain introduced by P. Funk in 1929. Using the
notation of the figure on page 1, the Funk distance is defined by
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Observe that this distance is a non-symmetric version of the Hilbert distance. Many
properties of the Hilbert distance can be obtained as consequences of similar proper-
ties of the Funk distance. In this chapter, metric balls, the topology, convexity and
orthogonality properties in Funk geometry are studied. A full description of Funk
geodesics is also given. In the case of smooth curves, the property can be described as
follows: A smooth curve y(t) in a convex domain 2 is geodesic for the Funk metric

if and only if there is a face D in 02 such that the velocity vector p(t) points toward
D forallt.
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Chapter 3, by M. Troyanov, concerns the Funk and the Hilbert metrics from the
point of view of Finsler geometry. This approach dates back to works done at the end of
the 1920s, by Funk and by Berwald, who gave a characterization of Hilbert geometry
from the Finslerian viewpoint. Funk and Berwald proved the following theorem: A
smooth Finsler metric defined on a convex bounded domain 2 of R" is the Hilbert
metric of that domain if and only if this geometry is complete (in an appropriate sense),
if its geodesics are straight lines and if its flag curvature is equal to —1. The author
explains these notions in detail and he gives a complete proof of this result. At the
same time, the chapter constitutes an introduction to the Finsler nature of the Funk and
Hilbert metrics, where the Funk and the Hilbert Finsler structures appear respectively
as the tautological and the symmetric tautological Finsler structures on £2.

Chapter 4, On the Hilbert geometry of convex polytopes, by C. Vernicos, concerns
the Hilbert geometry of an open set 2 C R” which is a polytope. A bounded convex
domain is a polytope if and only if its Hilbert metric is bi-Lipschitz equivalent to a Eu-
clidean space. An equivalent condition is that the domain is isometrically embeddable
in a finite-dimensional normed vector space. Another characterization states that the
volume growth is polynomial of order equal to the dimension of the convex domain.
The author discusses several other aspects of the Hilbert geometry of polytopes.

The main goal of Chapter 5, by C. Walsh, is to give an explicit description of the
horofunction boundary of a Hilbert geometry. This notion is based on ideas that go
back to Busemann but which were formally introduced by Gromov. The results in
this chapter are mainly due to Walsh. Walsh gives a sketch of how this boundary
may be used to study the isometry group of these geometries. The main result in the
chapter is that the group of isometries of a bounded convex polyhedron which is not
a simplex coincides with the group of projective transformations leaving the given
domain invariant.

Let us note that the horofunction boundaries of several other spaces have been
described during the last few years (mostly by Walsh), in particular, Minkowski spaces
and Teichmiiller spaces equipped with the Thurston and with the Teichmdiller metrics.
These descriptions have also been applied to the characterization of the isometry
groups of the corresponding metrics spaces.

Chapter 6, by R. Guo, gives a number of characterizations of hyperbolic geometry
(or, equivalently, the Hilbert geometry of an ellipsoid) among Hilbert geometries. All
these geometric characterizations are formulated in simple geometric terms.

Part I concerns the dynamical aspects of Hilbert geometry. It consists of four
chapters: Chapters 7 to 10.

Chapter 7, by M. Crampon, concerns the geodesic flow of a Hilbert geometry. The
study is based on a comparison of this flow with the geodesic flow of a negatively
curved Finsler or Riemannian manifold. The main interest is in Hilbert geometries
that have some hyperbolicity properties. Such geometries correspond to convex sets
with C1 boundary. In this case, stable and unstable manifolds exist, and there is a
relation between the asymptotic behaviour of these manifolds along an orbit of the
flow and the shape of the boundary at the endpoint of that orbit. The author then
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studies the particular case of the geodesic flow associated to a compact quotient of a
strictly convex Hilbert geometry, and he shows that such a flow satisfies an Anosov
property. This property implies some regularity properties at the boundary of the
convex set. The author then describes the ergodic properties of the geodesic flow, and
he also surveys several notions of entropy that are associated to Hilbert geometry.

In Chapter 8, L. Marquis studies Hilbert geometry in the general setting of pro-
jective geometry. More precisely, the author surveys the various groups of projective
transformations that appear in Hilbert geometry. In the first part of the chapter, he
describes the projective automorphism group of a convex set in terms of matrices and
then from a dynamical point of view. He shows the existence of convex sets with
large groups of symmetries. He exhibits relations with several areas in mathematics,
in particular with the theory of spherical representations of semi-simple Lie groups
and with Schottky groups. He then explains how Hilbert geometry involves geometric
group theory in various contexts. For instance, the Gromov hyperbolicity of a so-
called divisible Hilbert metric (that is, one that admits a compact quotient action by a
discrete group of isometries) is equivalent to a smoothness property of the boundary
of the convex set. Note that the fact that the convex set is divisible means in some
sense that it has a large group of symmetries. The other aspects of Hilbert geometry in
which group theory is involved include differential geometry, convex affine geometry,
real algebraic group theory, hyperbolic geometry, the theories of moduli spaces, of
symmetric spaces, of Hadamard manifolds, and the theory of geometric structures on
manifolds.

In Chapter 9, A. Karlsson considers the dynamical aspect of the theory of non-
expansive (or Lipschitz) maps in Hilbert geometry. He makes relations with works
of Birkhoff and Samelson done in the 1950s on Perron—Frobenius theory, and with a
more recent work by Nussbaum and Karlsson—Noskov. He explains in particular how
the theory of Busemann functions, horofunctions and horospheres in Hilbert geome-
tries appear in the study of nonexpansive maps of these spaces and in their asymptotic
theory. This is another example of the fact that a theory which is quite developed in
the setting of spaces of negative curvature can be generalized and used in an efficient
way in Hilbert geometry, which is not negatively curved (except in the case where the
convex set is an ellipsoid).

In Chapter 10, B. Lemmens and R. Nussbaum give a thorough survey of the devel-
opment of the ideas of Birkhoff and Samelson on the applications of Hilbert geometry
to the contraction mapping principle and to the analysis of non-linear mappings on
cones and in particular to the so-called non-linear Perron—Frobenius theory. The set-
ting is infinite-dimensional. The authors also show how this theory leads to the result
that the Hilbert metric of an n-simplex is isometric to a Minkowski space whose unit
ball is a polytope having n(n + 1) facets.

Part III contains extensions and generalizations of Hilbert and Funk geometries to
various contexts. It consists of three chapters: Chapters 11 to 13.

Chapter 11, written by I. Kim and A. Papadopoulos, concerns the projective ge-
ometry setting of Hilbert geometry. A Hilbert metric is defined on any convex subset
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of projective space and descends to a metric on convex projective manifolds, which
are quotients of convex sets by discrete groups of projective transformations. Thus, it
is natural in this Handbook to have a chapter on convex projective manifolds and to
study the relations between the Hilbert metric and the other properties of such mani-
folds. There are several parametrizations of the space of convex projective structures
on surfaces; a classical one is due to Goldman and is an analogue of the Fenchel-
Nielsen parametrization of hyperbolic structures. A more recent parametrization was
developed by Labourie and Loftin in terms of hyperbolic structures on a Riemann
surface together with cubic differentials, making use of the Cheng—Yau classification
of complete hyperbolic affine spheres. Chapter 11 contains an introduction to these
parametrizations and to some related matters. Teichmiiller spaces appear naturally in
this setting as they are important subspaces of the deformation spaces of convex pro-
jective structures of surfaces. The authors also discuss higher-dimensional analogues,
covering in particular the work of Johnson—Millson and of Benoist and Kapovich on
deformations of convex projective structures on higher-dimensional manifolds. Re-
lations with geodesic currents and topological entropy are also treated. The Hilbert
metrics which appear via their length spectra in the parametrization of the deformation
spaces of convex projective structures also show up in the compactifications of these
spaces. Some of the subjects mentioned are only touched on; this chapter is intended
to open up new perspectives.

In Chapter 12, S. Yamada, K. Ohshika and H. Miyachi report on a new weak
metric which Yamada defined recently on Teichmiiller space and which he calls the
Weil—Petersson Funk metric. This metric shares several properties of the classical
Funk metric. It is defined using a similar variational formula, involving projections
on hyperplanes in an ambient space that play the role of support hyperplanes, namely,
they are the codimension-one strata of the Weil-Petersson completion of the space.
The ambient Euclidean space of the Funk metric is replaced here by a complex which
Yamada introduced in a previous work, and which he calls the Teichmiiller—Coxeter
complex. It is interesting that the Euclidean setting of the classical Funk metric can
be adapted to a much more complex situation.

In Chapter 13, A. Papadopoulos and S. Yamada survey analogues of the Funk and
Hilbert geometries on convex sets in hyperbolic and in spherical geometries. These
theories are developed in a way parallel with the classical Funk theory. The exis-
tence of a Funk geometry in these non-linear spaces is based on some non-Euclidean
trigonometric formulae, and the fact that the analogies can be carried over is some-
how surprising because the study of the classical Funk metric on convex subsets of
Euclidean space involves a lot of similarity properties and the use of parallels, which
do not exist in the non-Euclidean settings. The geodesics of the non-Euclidean Funk
and Hilbert metrics are studied, and variational definitions are given of these metrics.
These metrics are shown to be Finsler. The Hilbert metric in each of the constant
curvature convex sets is also a symmetrization of the Funk metric. The Hilbert metric
of a convex subset in a space of constant curvature can also be defined using a notion
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of a cross ratio which is adapted to that space. A relation is made with a generalized
form of Hilbert’s Problem IV.

Part IV consists of a two chapters which have a historical character. Chapter 14,
written by M. Troyanov, contains a brief description of the historical origin of Hilbert
geometry. The author presents a summary with comments of a letter of Hilbert to
Klein in which Hilbert announces the discovery of that metric. Chapter 15, written by
A. Papadopoulos, is a report on Hilbert’s Fourth Problem, one of the famous twenty-
three problems that Hilbert presented at the second ICM held in Paris in 1900. The
problem asks for a characterization and a study of metrics on subsets of projective
space for which the projective lines are geodesics. The Hilbert metric is one of the
finest examples of metrics that satisfy the requirements of this problem. The author
also reports on the relations between this problem and works done before Hilbert on
metrics satisfying this requirements, in particular, by Darboux in the setting of the
calculus of variations and by Beltrami in the setting of differential geometry.

Making historical comments and giving information on the origin of a problem
bring into perspective the motivations behind the ideas. The comments that we include
also make relations between the theory that is surveyed here and other mathematical
subjects. We tried to pay tribute to the founders of the theory as we feel that historical
comments usually make a theory more attractive.

Several chapters contain questions, conjectures and open problems, and the book
also contains a special section on open problems proposed by various authors.



