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Several projects were devoted to the numerical resolution of theVlasov equation which
is very important for the simulation of charged particle beams as well as globally neu-
tral plasmas. The major difficulty involved is that theVlasov equation is posed in phase
space and thus the dimension is twice as high as for usual physical space simulations.
For this reason Monte Carlo particle methods have had great success in this area. The
coupling with the self-consistent electromagnetic field is done using the Particle-In-
Cell (PIC) method. This technique is based on a Monte Carlo particle approximation
of the Vlasov equation coupled with a grid based field solver in configuration space.
Most simulation papers, in the last twenty years, involving charged particles have been
performed using variants of this technique. Still, there are many problems, for which
the method needs to be better understood and improved such as the coupling of the
particle solution with a Maxwell solver, or the limitation of numerical noise in the
simulations. The COCPIC project addresses the first of these issues and the PICONU
project the second.

Other techniques for the numerical resolution of the Vlasov equation have been
introduced for 1D problems in the seventies and have regained a new interest for multi-
dimensional simulations recently with the increase of computer power. However, when
going to 4D, 5D or 6D, phase space methods based on a uniform phase-space grid
cannot compete with PIC methods except in some cases where very high precision is
needed because of their computational complexity. In order to overcome this problem,
adaptive phase-space grid methods have been introduced in the last years. Two such
techniques were studied at CEMRACS 2003, one based on hierarchical finite elements
and one based on interpolating wavelets. The first one is introduced in this book.

The work by Régine Barthelmé and Céline Parzani deals with the coupling of a
Particle-In-CellVlasov solver with an FDTD Maxwell solver based on theYee method.
The underlying problem comes from the fact that the approximate charge and current
densities calculated from the particles normally do not satisfy a discrete version of
the continuity equation ∂tρ + ∇ · J = 0. Because of this the computed electric
field does not satisfy Gauss’ law well enough on long time scales, which leads to
very unphysical solutions. Several remedies have been proposed. They fall into two
categories. The first consists in correcting the electric field from time to time in order
that the error in Gauss’ law does not become too large, and the second consists in
computing the current density J from the particles such that the continuity equation
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remains satisfied on the discrete level. This of course depends fundamentally on the
field solver. Up to now two such methods had been introduced. The first one consists
in computing the current using the actual fluxes of the numerical particles through the
grid faces. This was introduced for the first order by Morse and Nielson and for the
second order by Villasenor and Buneman. The other technique consists in computing
J directly form the continuity equation by splitting between the different directions.
This was introduced by Ezyrkepov at any order. The main contribution of the work in
this book is first to give a better and clearer understanding of the Morse–Nielson and
Villasenor–Buneman method and then to generalize the method to any order.

The paper by Chehab, Cohen, Jennequin, Nieto, Roland and Roche deals with the
very important issue of noise reduction in Particle-In-Cell simulations. Many efforts
have been made in this direction since this is the major problem of the method. These
efforts include statistical techniques like variance reduction methods as in the variant
which is called the δf method and which consists in applying the Particle-In-Cell
method only to a perturbation of an equilibrium. This technique is very efficient but
is only applicable in a limited set of problems where a known equilibrium, to which
the solution stays close, exists. Apart from that, many filtering techniques applied
generally in Fourier space have been introduced and are now available in most of
the codes. In this work an original approach which consists in computing the charge
density ρ in a well chosen wavelet basis and applying a thresholding procedure is
introduced. This method is based on ideas introduced by Donoho in non parametric
statistics and looks very promising for PIC simulations.

The work of Campos Pinto and Mehrenberger introduces adaptive grid based
Vlasov solvers. The underlying numerical method is the semi-Lagrangian method
which is based on the fact that the distribution function is conserved along character-
istics. The method then consists in updating the grid values of the distribution function
in two steps: 1) Find the origin of the characteristic curve ending at the different grid
points. 2) Interpolate the distribution function at the origin of the characteristic curve
from the known grid values. The adaptivity is introduced using non linear approxi-
mation. Indeed, using a hierarchical decomposition of the distribution function, it is
possible to obtain an approximation, depending on the function being approximated,
based on considerably fewer points. This technique allows to reduce the number of
needed interpolation points compared to a uniform fine grid while increasing the error
only slightly and in a controlled manner.

The paper by Campos Pinto and Mehrenberger investigates non linear approx-
imation based on hierarchical bi-quadratic finite elements. This approach has the
advantage of being cell based and completely local, which makes it far easier to par-
allelize.

The contribution of Crouseilles and Filbet is devoted to the derivation of a high
order scheme for the simulation of a collisional plasma. The model they consider
is the Vlasov equation with an additional Fokker–Planck–Landau collision operator.
The numerical scheme decouples the transport part from the collision part. A new
second order method for the Vlasov equation is derived which conserves mass and
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energy. Slope limiters are introduced to ensure positivity of the distribution function.
However, when those are needed, energy conservation is no more exactly verified.
On the other hand the collision operator is discretized using a spectral method. The
numerical scheme is validated in particular on the Landau damping problem which is
thoroughly discussed and which should be of great importance to people interested in
code validation examples.

The project by C. Besse, N. Mauser and H. P. Stimming is concerned with numer-
ical experiments of a time splitting strategy to solve two non linear models arising
in different physical situations. The first is the so-called Schrödinger–Poisson-Xα
(SPXα) model. This model arises in the modeling of quantum particle dynamics and
is intended to be an approximation of the time dependent Hartree–Fock equation. The
second is the Davey–Stewardson (DS) model, which is motivated by the description of
water waves. On the one hand, SPXα involves two nonlinearities: one is purely local
and is nothing but the usual focusing cubic nonlinearity in the Schrödinger equation,
while the other is non local, since it is related to self-consistent interactions. The
behavior of the solutions, in the semi classical limit ε→ 0, ε being defined from the
Planck constant, highly depends on the relative strength of both nonlinearities, scaled
in an ε-dependent way. Addressing the problem from a numerical viewpoint is a really
challenging issue: using a classical finite difference approach would require unrealis-
tic restrictions on the mesh size. On the other hand, DS involves a set of parameters,
and depending on the range of the values of these parameters, the equation changes
type. In turn, the solutions of DS can exhibit a very rich behavior, like formation of
soliton structures, or blowup phenomena. Therefore, the numerical challenge is the
precise evaluation of time and space localization of the blowup and the description
of the profiles with sharp accuracy. Here the authors adapt a time splitting spectral
method introduced by Bao, Jin and Markowich. As usual, the idea is to separate the
problem by first solving a linear PDE, and then dealing with a nonlinear ODE, pos-
sibly stiff, which can be solved exactly. A proof of convergence of the semi-discrete
scheme is proposed, and simulations illustrate the behavior of the solutions and the
accuracy of the method by various multidimensional examples.

The contribution by C. Besse, P. Degond, F. Deluzet, J. Claudel, G. Gallice, and
T. Tessieras is devoted to modeling issues for ionospheric plasmas, a subject of cru-
cial importance for communication satellites. The models in this field can exhibit
instability phenomena and strong heterogeneities can occur, a situation comparable
to Rayleigh–Taylor instabilities in fluid mechanics. The basic model which describes
ionospheric plasmas couples Euler equations for ions and electrons, and Maxwell
equations for the evolution of electric and magnetic fields. The computational cost to
solve numerically such a complicated system is prohibitive when dealing with physical
values of the parameters, which motivates that one seeks for simplified models. Hence,
having identified a set of dimensionless relevant parameters, a hierarchy of models
is presented, which ends with the so-called striation model. This model involves a
3D convection diffusion equation coupled with a 2D elliptic equation. However, the
stability analysis reveals that the striation does not reproduce the main features of the
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physics: dissipation phenomena have been destroyed in the asymptotics. Then, the
idea consists in taking into account turbulence effects in the fluid evolution, which in-
troduces an additional eddy viscosity and restores nice dissipation properties. In turn,
the new “turbulent striation model” presents better stability properties. Numerical
experiments validate the modeling discussion.

The paper by L. Gosse is a review of different numerical and asymptotic methods
for high frequency asymptotics of the 1D Schrödinger equation.

Four techniques for dealing with such asymptotics are briefly presented: stationary
phase, Wigner measure, WKB, ray tracing. Two numerical methods based on moment
closure are described (the classical moment system and the K branch entropy solution)
and are illustrated by a classical example.


