
Introduction

The present handbook focuses on recent developments in pseudo-Riemannian geom-
etry and supersymmetry. In this introduction we give a short overview of the material
contained in the various parts of the volume.

Part A. Special geometry and supersymmetry

A classical field theory is usually specified by a Lagrangian L. The scalar fields
of the theory are functions �1; : : : ; �n on space-time M. They can be interpreted
as the components of a map � W M ! M from space-time into a target manifold
M with respect to some system of local coordinates x1; : : : ; xn on M . The kinetic
term �1
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symmetric matrix .gij / of the scalar couplings is nondegenerate or even positive def-
inite. Since the discovery of the first supersymmetric field theories, physicists have
found that supersymmetry is often reflected in geometric properties of the target met-
ric g. The specific restrictions imposed by supersymmetry depend on the dimension
and signature of space-time, as well as on the field content of the theory. When the
number of supercharges increases, the allowed target geometry is more and more re-
stricted and becomes finally locally symmetric. The most interesting case is that of
eight (real) supercharges. The corresponding geometry is called special geometry. In
four-dimensional supergravity theories the matter fields are assembled in vector and
hyper multiplets, which are coupled to the supergravity multiplet. The special geome-
try of supergravity coupled to vector mutiplets is (projective) special Kähler geometry.
That of supergravity coupled to hyper mutiplets is quaternionic Kähler geometry. Both
geometries are related by the so-called c-map, which associates a quaternionic Kähler
manifold N of real dimension 4nC 4 (and negative scalar curvature) to any special
Kähler manifold M of real dimension 2n. Any quaternionic Kähler manifold N (of
non-zero scalar curvature) is the base of an H�=f˙1g-bundle U.N/ ! N called
the Swann bundle of N . The Swann bundle is a hyper-Kähler cone. In particular, it
carries a hyper-Kähler metric, the signature of which depends on the sign of the scalar
curvature of the quaternionic Kähler base N . The hyper-Kähler metric can be locally
derived from a (real valued) hyper-Kähler potential f , which effectively encodes also
the geometry of N . Similarly, the geometry of the special Kähler manifold M is
locally encoded in a holomorphic function F (called the holomorphic prepotential).

In Chapter 1 by Martin Roček, Cumrum Vafa and Stefan Vandoren, the hyper-
Kähler potential f is determined in terms of the holomorphic prepotential F . The
c-map is thus reduced to the correspondence F 7! f .

In Gregor Weingart’s contribution, the bundle of differential forms on a quater-
nionic Kähler (or hyper-Kähler) manifold is decomposed into parallel subbundles. In
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particular, the multiplicities of the corresponding irreducible Sp.n/Sp.1/-representa-
tions (or Sp.n/-representations in the hyper-Kähler case) are explicitly calculated.

Charles Boyer and Kris Galicki discuss Sasakian manifolds and their relation to
special holonomy groups and supersymmetry in Chapter 3. Sasakian manifolds are
intimately related to Kähler manifolds, which are fundamental objects in mathematics
and theoretical physics. In fact, the metric cone over a Sasakian manifold is Kähler
and the geometry transversal to the Sasakian vector field is also Kähler. Similarly,
3-Sasakian manifolds are intimately related to hyper-Kähler and quaternionic Kähler
manifolds.

In the chapter by MaríaA. Lledó, Oscar Maciá, AntoineVan Proeyen andVeeravalli
S. Varadarajan the space-time signature remains Lorentzian but the signature of the
special (pseudo-)Kähler target metric is arbitrary.

In Chapter 5, Thomas Mohaupt explains the role of special geometry in the theory
of supersymmetric black holes. In particular, he shows how Euclidian supersymme-
try in three dimensions can be used to study stationary black hole solutions in four
dimensions. As one can see already from this example, the geometric structure of
the target manifold of a supersymmetric theory can change significantly when the
space-time signature changes from Lorentzian to Euclidian. Here not only the target
metric changes from Riemannian to neutral, but from quaternionic Kähler to para-
quaternionic Kähler. Such para-geometries are further discussed below.

Part B. Generalized geometry

Mirror symmetry relates deformations of complex structures to deformations of sym-
plectic structures (on the mirror manifold). Nigel Hitchin’s notion of a generalized
complex structure provides a superordinate conceptual framework in which complex
and symplectic structures can be treated symmetrically.

The chapter by Hitchin is an introduction to the rapidly developing subject of
generalized geometry, which incorporates central concepts of supergravity and string
theory. In particular, the B-field and the 3-form gauge field H occur naturally in the
twisting of the generalized tangent bundle by a gerbe. Moreover, the three-form H

plays also the role of the torsion of a metric connection on the base manifold.
Alexei Kotov and Thomas Strobl focus on the role of such ’generalized’geometries

encoded in some algebroid structure as targets of supersymmetric sigma models. In
particular, generalized Kähler manifolds occur as such targets.

Ulf Lindström, Martin Roček, Rikard von Unge and Maxim Zabzine show in
Chapter 8 that generalized Kähler structures can be derived from a generalized Kähler
potential.
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Part C. Geometries with torsion

Let G � O.n/ be a closed subgroup. A G-structure on an n-dimensional manifold
admits a torsion-free connection only if the holonomy group of the Levi-Civita con-
nection is a subgroup of G. Therefore, for a given G-structure, there may be no
torsion-free connection at all. One is led to allow connections with non-zero torsion
and to look for conditions on the torsion which ensure the uniqueness of the connec-
tion. It turns out that complete skew-symmetry of the torsion provides such a condition
for certain G-structures. Moreover, connections with totally skew-symmetric torsion
occur naturally in string theory and supergravity, as explained in the broad survey
about geometries with torsion by Ilka Agricola.

A beautiful example of a G-structure admitting a unique connection with totally
skew-symmetric torsion is provided by the class of nearly Kähler manifolds, which
are almost Hermitian manifolds such that the Levi-Civita covariant derivative of the
almost complex structure is completely skew-symmetric. General almost Hermitian
structures admitting a unique connection with totally skew-symmetric torsion are dis-
cussed by Paul-Andi Nagy, whereas Jean-Baptiste Butruille explains the classification
of homogeneous nearly Kähler manifolds.

Nearly Kähler structures with indefinite metric are considered by Lars Schäfer and
Fabian Schulte-Hengesbach in Chapter 12. In particular, they prove that SL.2;R/ �
SL.2;R/ admits a unique left-invariant nearly pseudo-Kähler structure.

As mentioned in Part A of the introduction, the Swann bundle provides a funda-
mental correspondence M 7! U.M/, which associates a hyper-Kähler cone U.M/

with any quaternionic Kähler manifoldM . The inverse construction, which associates
(at least locally) a quaternionic Kähler manifold M.U / with any hyper-Kähler cone
U , is known as the superconformal quotient in the physics literature. It relates a su-
perconformal field theory with scalar manifold U to a Poincaré supergravity theory
with target M.U /. It turns out that geometric and field theoretic constructions are
often much simpler when described in terms of hyper-Kähler geometry. In Chapter 13
Andrew Swann explains how these results extend to the framework of geometries
with torsion. The underlying superconformal algebra is now the one-parameter fam-
ily of simple Lie superalgebras D.2; 1I˛/, which occurs, for instance, in the work of
Michelson and Strominger on superconformal quantum mechanics.

Part D. Para-geometries

A complex structure on a (smooth) manifold M can be defined as an endomorphism
field J 2 �.End.TM// such that J 2 D �Id and such that the eigendistributions
T 1;0M;T 0;1M � TM ˝ C are involutive. Similarly, a para-complex structure on a
manifold is an endomorphism field J such that J 2 D Id with involutive eigendistribu-
tions TCM;T �M � TM of the same dimension. In virtue of the Frobenius theorem,
a para-complex structure is simply a local product structure with factors of equal di-
mension. Nevertheless, it is helpful to make use of the analogy between complex
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and para-complex manifolds. There is a useful para-holomorphic calculus in which
the role of the field of complex numbers C D RŒi �, i2 D �1, is played by the ring
of para-complex numbers RŒe�, e2 D 1. Many interesting structures in Riemannian
geometry have natural “para-analogues”. In particular, there is a notion of para-Kähler
(or bi-Lagrangian), special para-Kähler, para-hyper-Kähler (or hypersymplectic) and
para-quaternionic Kähler manifold. These manifolds carry pseudo-Riemannian met-
rics of split signature. Remarkably, these structures occur as special geometries of
supersymmetric field theories, when the Lorentzian space-time metric is replaced by
a positive definite metric, see the chapter by Thomas Mohaupt.

In Chapter 14, Stefan Ivanov, Ivan Minchev and Simeon Zamkovoy discuss twistor
spaces of general almost para-quaternionic manifolds.

Matthias Krahe establishes a Darboux theorem for para-holomorphic symplectic
and contact structures. This fundamental result can be applied, for instance, in the
twistor theory of para-quaternionic Kähler manifolds. His contribution develops the
twistor theory of para-pluriharmonic maps into symmetric spaces.

Dmitri V. Alekseevsky, Constantino Medori and Adriano Tomassini classify max-
imally homogeneous para-CR manifolds of semisimple type.

Part E. Holonomy theory

The holonomygroup of a pseudo-Riemannian manifoldM of signature .p; q/ at a point
x 2M is the subgroup Holx � O.TxM/ Š O.p; q/ generated by parallel transports
along loops based at x. For connected manifolds this yields a subgroup Hol � O.p; q/
well defined up to conjugation in the pseudo-orthogonal group O.p; q/. Holonomy
groups were introduced by Élie Cartan in the twenties for the study of Riemannian
symmetric spaces and became a powerful tool in Riemannian geometry with Berger’s
classification of holonomy groups of complete simply connected Riemannian mani-
folds in the fifties.

Anton Galaev and Thomas Leistner review recent developments in the holonomy
theory of pseudo-Riemannian manifolds. These include their classification of Lorentz-
ian holonomy groups and Anton Galaev’s classification of holonomy groups which
are subgroups of U.1; n/. The general classification problem for holonomy groups of
pseudo-Riemannian manifolds of arbitrary signature remains unsolved. It includes the
classification of pseudo-Riemannian symmetric spaces of arbitrary signature, which
is already too complicated a problem to expect a simple solution.

Chapter 18 by Antonio J. Di Scala, Thomas Leistner and Thomas Neukirchner
contains proofs of some facts about irreducible representations of Lie groups and
applications of these results in holonomy theory.

In the chapter by KonradWaldorf, the notion of holonomy of a line bundle (endowed
with a connection) around a loop is extended to the holonomy of a gerbe along a closed
oriented surface, which corresponds to the interaction of a string with a three-form
gauge field.
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Part F. Symmetric spaces and spaces of constant curvature

A pseudo-Riemannian manifold M is called a symmetric space if every point x 2M
is an isolated fixed point of an involutive isometry. This includes the complete simply
connected pseudo-Riemannian manifolds of constant curvature.

Ines Kath reviews the state of the art in the classification of pseudo-Riemannian
symmetric spaces. Like for the classification of pseudo-Riemannian holonomy groups,
little is known beyond metrics of index 2. She explains various approaches and partial
results, for instance under the assumption of additional geometric structures.

Dmitry Alekseevsky discusses in Chapter 21 the classification problem for pseudo-
Kähler and para-Kähler symmetric spaces. In particular, he describes some classes of
Ricci-flat examples.

Oliver Baues develops the theory of flat pseudo-Riemannian manifolds in the gen-
eral context of flat affine structures and prehomogeneous affine representations. Flat
Riemannian manifolds are well understood by Bieberbach’s theorems, but there are
still many long standing open problems concerning flat pseudo-Riemannian mani-
folds of arbitrary signature. For instance, it is not known whether every compact flat
pseudo-Riemannian manifold of signature .p; q/ (with p � q � 2) is a quotient of
the pseudo-Euclidian space Rp;q and also cocompact properly discontinuous groups
of pseudo-Euclidian motions are scarcely understood.

Part G. Conformal geometry

A conformal structure of signature .p; q/ on a smooth manifoldM is a ray subbundle
L � S2T �M such that any local section of L defines a pseudo-Riemannian metric
of signature .p; q/. In particular, any pseudo-Riemannian metric g on M defines a
conformal structure L D RCg. Conformal geometry is concerned with properties
which do not depend on the choice of a section g 2 �.L/. The holonomy group of a
pseudo-Riemannian manifold .M; g/, for instance, is not a conformal invariant.

Helga Baum’s contribution is a survey on the holonomy theory of Cartan con-
nections. This theory applies, in particular, to conformal geometry. As explained in
her exposition, the conformal holonomy group contains important information about
a pseudo-Riemannian manifold. The knowledge of the holonomy group allows one
to decide, for example, whether the pseudo-Riemannian manifold admits conformal
Killing spinors or an Einstein metric in the conformal class. She describes Lorentzian
manifolds with conformal holonomy in SU.1; n/.

Chapter 24 byYoshinubo Kamishima is also concerned with conformal and related
geometric structures. It provides a unified treatment of conformal, CR and quater-
nionic CR-structures. In the positive definite case, the corresponding model spaces
are the boundaries at infinity of the hyperbolic spaces over the real, complex and
quaternionic numbers, respectively.
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Part H. Other topics of recent interest

The chapter by Christian Bär summarises the analytic theory of linear wave equations
on globally hyperbolic Lorentzian manifolds, as developed in his book with Nicolas
Ginoux and Frank Pfäffle. In the final chapter, Dan Freed explains the relation between
D-branes in string theory and K-theory.




