
Preface

In this book, we explain how to count graph configurations to obtain invariants for
3-manifolds and knots in these 3-manifolds, and we investigate the properties of the
obtained invariants.

The simplest of these invariants is the linking number of two disjoint knots in the
ambient space R3. Gauss defined it in 1833 [33]. As we review in Section 1.2, this
linking number counts configurations
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as the degree of an associated Gauss map.
Many mysterious knot invariants called “quantum invariants” were introduced in

the mid-80s, starting with the Jones polynomial. Witten explained how to obtain many
of them from the perturbative expansion of the Chern–Simons theory in a seminal
article [121]. This physicist viewpoint led Guadagnini, Martellini, Mintchev [37] and
Bar-Natan [8] to show in what sense a coefficient w2 of the Jones polynomial counts
configurations of the graphs
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The theory of Vassiliev invariants reviewed in Chapter 6 associates a degree in
.N [ ¹1º/ to a numerical knot invariant. The only knot invariants of degree 0 are the
constant functions. The knot invariants of degree 2 are linear combinations of w2 and
the constant function that maps every knot to 1. The Jones polynomial can be renor-
malized into a series whose coefficients are finite-degree knot invariants. Altschüler
and Freidel showed that every degree n real-valued knot invariant may be obtained
by “counting” configurations of graphs with at most 2n vertices as explained in this
book [3]. The knot invariants counting graph configurations mentioned above are
assembled in a universal Vassiliev invariant Z.S3; �/ valued in a product of vector
spaces generated by some unitrivalent graphs called Jacobi diagrams. Kontsevich



viii Preface

had constructed another universal Vassiliev invariant with similar properties called
the Kontsevich integral [7,48]. The Kontsevich integralZK may be defined combina-
torially from planar knot diagrams. It has been extensively studied. To my knowledge,
the coincidence of the spatial invariant Z.S3; �/ with ZK is an open problem.

Developing the Witten approach further, Kontsevich outlined a way to count triva-
lent graphs in more general 3-manifolds and define a topological graded invariant Z

for them [49]. These more general manifolds are the 3-dimensional Q-spheres, sim-
ply called Q-spheres in this book. They are the closed 3-manifolds with the same
rational homology as the standard 3-dimensional sphere S3. They include the 3-
manifolds with the same Z-homology as S3 called Z-spheres. A Z-sphere is a closed
orientable three-manifold in which knots bound orientable compact surfaces. The
degree one part Z1 of the Kontsevich invariant Z of Q-spheres is determined by a
real-valued invariant ‚ of Q-spheres, which counts configurations of the graph
in the manifold.

Ohtsuki, Habiro, Goussarov, and others developed theories of finite type invari-
ants of Z-spheres analogous to the Vassiliev theory for knots in R3 [31, 87]. Kuper-
berg and Thurston showed why the Kontsevich invariant Z of Z-spheres obtained by
counting graphs in these manifolds is also universal with respect to the above theo-
ries [54]. This universality result implies that any real-valued invariant of Z-spheres
of degree 2n (with respect to one of the equivalent developed theories) is a combina-
tion of invariants counting configurations of graphs with at most 2n vertices.

In 1985, Casson had defined an invariant of Z-spheres. The Casson invariant
“counts” conjugacy classes of irreducible SU.2/-representations of the Z-spheres
fundamental groups. Their universality result allowed Kuperberg and Thurston to
show that ‚ and the Casson invariant are proportional. In particular, the Casson
invariant also “counts” configurations of the graph . For a Z-sphere R equipped
with a basepoint 1, the configurations are counted in a suitable compactification
C2.R/ of the space of ordered pairs of distinct points in the punctured manifold
. {R D R n ¹1º/. The set of counted configurations is the intersection in C2.R/ of
three transverse codimension-2 submanifolds called propagating chains, and ‚.R/
is their algebraic intersection number. Dually, the invariant ‚.R/ is the integral over
C2.R/ of the cube of a propagating closed 2-form. Propagating chains and propa-
gating forms both represent the linking form on R. We call them propagators. They
are the main ingredient used to count graph configurations in this book. They are
associated with the graph edges. They are precisely defined in Chapter 3. When R is
Z-sphere, results of Pontrjagin and Rohlin in the 1950s [94] imply that the punctured
{R can be equipped with a preferred homotopy class of parallelizations. For a general
Q-sphere, the invariant ‚ is first introduced as an invariant of a pair .R; �/, where �
is a parallelization of {R. It is next corrected with the help of a relative first Pontrjagin
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class to become an invariant of R. Chapter 4 contains the complete construction of
‚, and Chapter 5 establishes the needed properties of Pontrjagin classes.

Kuperberg and I associated explicit propagating chains to Morse functions and
associated Morse flows. These propagators reviewed in Section 1.2.8 allowed me to
express the Theta invariant in terms of Heegaard diagrams [69]. With this type of
propagator, the “counted” graph configurations either map an edge of the graph into
a flow line, or map the edge ends into descending manifolds or ascending manifolds
of critical points of the Morse function. Fukaya proposed such a way of counting
graphs [29]. Many authors, including Watanabe and Shimizu, further studied it.

In the book’s second part, we define and study an invariant Z.R; L/ for a link L
in a Q-sphereR. This invariant generalizes both Z.S3;L/ and Z.R/DZ.R;;/. Our
definitions are more flexible than the original ones. We prove generalizations of the
mentioned universality results in the book’s fourth part.

To get more properties of Z, we cut our pairs .R; L/ of links L in Q-spheres R
into pieces called tangles in Q-cylinders. These pieces can be composed in various
ways. In the book’s third part, we generalize Z to a functorial invariant of framed
tangles in Q-cylinders, and we prove that it behaves well under the various allowed
compositions.

Our first chapter is a more complete and much longer preface to this book. It
contains several introductions. Section 1.1 is a short summary for experts. Other read-
ers can start with Section 1.2, a slow informal introduction based on examples from
which a broad audience can get the flavor of the studied topics and hopefully become
interested. Section 1.3 is an independent, more formal, mathematical overview of the
contents. It is accessible to beginners in topology after the warm-up of Section 1.2.
Section 1.4 describes the book organization. Section 1.5 outlines why I wrote this
book and what I consider original and new.

Apart from this preface and the first chapter, which has some parts written for
experts and is sometimes imprecise, the rest of the book is precise, detailed, and
mostly self-contained. The only prerequisites are basic notions of algebraic topology
and de Rham cohomology, surveyed in the appendices.

In 2018, Watanabe disproved a long-standing conjecture called the 4-dimensional
Smale conjecture by constructing a topologically trivial S4-bundle over S2, which is
not smoothly equivalent to the trivial bundle S4 � S2 [117]. He distinguished his
exotic S4 � S2 from the standard S4 � S2 using characteristic classes introduced by
Kontsevich [49]. The involved Kontsevich–Watanabe characteristic class of a smooth
topologically trivial S4-bundle over S2 counts configurations of the complete graph

with four vertices in the total space of the bundle. The ideas and techniques used
by Watanabe are similar to those presented in this book. Even though we only count
graph configurations in dimension 3, this book can also serve as an introduction to the
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work of Watanabe and other articles about invariants counting graph configurations
in higher dimensions.
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