
Chapter 2

Punctured maps

2.1 Definitions

2.1.1 Puncturing

Definition 2.1. Let Y D .Y ;MY / be a fine and saturated logarithmic scheme with
a decomposition MY D M ˚O� P . A puncturing of Y along P � MY is a fine
sub-sheaf of monoids

MY ı �M ˚O� P gp

containing MY with a structure map ˛Y ı WMY ı ! OY such that

(1) The inclusion p[ WMY !MY ı is a morphism of logarithmic structures on Y .

(2) For any geometric point Nx of Y let s Nx 2MY ı; Nx be such that s Nx 62M Nx ˚O� P Nx .
Representing s Nx D .m Nx;p Nx/2M Nx ˚O� P

gp
Nx , we have ˛Y ı.s Nx/D ˛M.m Nx/D

0 in OY; Nx .

Denote by Y ı D .Y ;MY ı/. We will also call the induced morphism of logarith-
mic schemes p W Y ı ! Y a puncturing of Y along P , or call Y ı a puncturing of Y
along P . We refer to Figure 2.1 for illustration.

We say the puncturing is trivial if p is an isomorphism.

Remark 2.2. In all examples in this paper, P is a DF.1/ log structure, that is, there
is a surjective sheaf homomorphism N ! xP . In this case the condition ˛M.m Nx/D 0

is redundant. Indeed, for s Nx D .m Nx; p Nx/ 62M Nx ˚O� P , suppose ˛Y ı.s Nx/ D 0. Note
that the DF.1/ assumption implies that p�1

Nx 2 P Nx , so that ˛M.m Nx/ D ˛Y .m Nx; 1/ D

˛Y ı.s Nx � p
�1
Nx / D 0. More generally, the same argument works if P is valuative.

For more general puncturings, the second vanishing condition ˛M.m Nx/ D 0 in
Definition 2.1 (2) is not automatic, but is needed to obtain good behavior under base-
change (Proposition 2.8). Our log stacks zM0.X=B; �/ in Section 5.2.2 naturally carry
such a more general puncturing. While these more general log structures have no
further use in this paper, they may be of use elsewhere.

Note also that if P is aDF.1/ log structure and Ny is a geometric point of Y , then

xMY; Ny ˚N � xMY ı; Ny �
xMY; Ny ˚ Z; xMY ı; Ny \ .¹0º � Z<0/ D ;: (2.1)

We will see in Lemma 2.21 how such monoids can easily be encoded in the dual
tropical picture.

Remark 2.3. Puncturings Mı of M ˚O� P are not unique. In a widely distributed
early version of this manuscript as well as in [31], we found it instructive to work with
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P
:::

: : :

MW

: : :

Figure 2.1. A puncturing Y ı of a monoid MDMW . Note that the part with negative projection
in P gp (open circles) is not necessarily saturated.

a uniquely defined object MP we call here the final puncturing. It may be defined as
the direct limit

MP
WD lim
�!

Mı2ƒ

Mı;

over the collection ƒ of all puncturings of M ˚O� P . This exists in the category of
quasi-coherent, not necessarily coherent, logarithmic structures. It has the advantage
of being independent of any choice. Its disadvantage, apart from not being finitely
generated, is in that its behavior under base change is subtle.

We emphasize that

(1) all puncturings used in this paper, with the exception of the remark above, are
fine, and in particular they are finitely generated.

(2) On the other hand, the puncturings we use are rarely saturated, even though
the logarithmic structure they puncture are themselves saturated. The rea-
son is that base change of a saturated puncturing can lead to a non-saturated
puncturing. Imposing a saturation condition would therefore lead to a subtle
fiberwise saturation procedure. Instead, we find that the notion of pre-stability
of Definition 2.6 below suffices to control these logarithmic structures and
their moduli.

Remark 2.4. In the introduction, we motivated punctures as arising from restrictions
of log structures on log smooth curves to irreducible components. Indeed, this is one
way of producing punctures: see Proposition 5.2 for details. However, since we allow
fine rather than fine saturated log structures for the puncturing, it is clear that not all
the punctures we consider are of this form. See also Lemma 2.21 for a description of
the submonoids of xMY; Ny ˚ Z that can arise.
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It is worth making a historical remark here. When we began this project, we
first considered what we called “pre-nodal” log structures in which we allowed pre-
cisely those log structures coming via restriction from a log smooth curve. However,
we found the moduli space of pre-nodal log maps was very poorly behaved, almost
never Deligne–Mumford. The notion of punctured points along with the notion of
pre-stability of Definition 2.6 resolved these technical difficulties, and made gluing
possible.

2.1.2 Pre-stable punctured log structures

In case a puncturing is equipped with a morphism to another fine log structure there
is a canonical choice of puncturing. The following proposition follows immediately
from the definitions.

Proposition 2.5. LetX be a fine log scheme, and Y as in Definition 2.1, with a choice
of puncturing Y ı and a morphism f W Y ı ! X . Let zY ı denote the puncturing of Y
given by the subsheaf of MY ı generated by MY and f [.f �MX /. Then

(1) We have M zY ı is a sub-logarithmic structure of MY ı .

(2) There is a factorization

Y ı
f

//

  

X:

zY ı
Qf

>>

(3) Given Y ı1 ! Y ı2 ! Y with both Y ı1 , Y ı2 puncturings of Y , and compatible
morphisms fi W Y ıi ! X , then zY ı1 D zY

ı
2 .

Definition 2.6. A morphism f W Y ı ! X from a puncturing of a log scheme Y is
said to be pre-stable if the induced morphism Y ı ! zY ı in the above proposition is
the identity. In particular, one has f D Qf .

Proposition 2.5 yields the following criterion for pre-stability of a morphism from
a punctured log scheme, see Figure 2.2.

Corollary 2.7. A morphism f W Y ı ! X is pre-stable if and only if the induced
morphism of sheaves of monoids f � xMX ˚

xMY !
xMY ı is surjective.

2.1.3 Pull-backs of puncturings

Proposition 2.8. Let Z and Y be fs log schemes with log structures MZ and MY ,
and suppose given a morphism g W Z ! Y . Suppose also given an fs log structure
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P
:::

: : :

MW

: : :

Figure 2.2. A morphism of the previous puncturing Y ı which is not pre-stable, with f [MX

generated by .2;�1/. The submonoid generated by MY and f [MX , shown in solid dots, is a
different puncturing zY ı which is pre-stable.

PY on Y and an induced log structure PZ WD g
�PY on Z. Set

Z0 D
�
Z;MZ ˚O�

Z
PZ

�
; Y 0 D

�
Y ;MY ˚O�

Y
PY

�
:

Further, let Y ı be a puncturing of Y 0 along PY . Then there is a diagram

Zı
gı
//

��

Y ı

��

Z0
g0
//

��

Y 0

��

Z
g

// Y

with all squares Cartesian in the category of underlying schemes, the lower square
Cartesian in the category of fs log schemes, and the top square Cartesian in the
category of fine log schemes. Furthermore, Zı is a puncturing of Z0 along PZ , and
gı is pre-stable.

Proof. We define Zı to be the fiber product Z0 �f
Y 0 Y

ı in the fine log category. The
bottom square is Cartesian in all categories as PY is assumed saturated. Thus it is
sufficient to show (1) the upper square is Cartesian in the ordinary category, that is,
the underlying map of Zı ! Z0 is the identity and (2) Zı is a puncturing of Z0.

Note that the fiber product Z0 �Y 0 Y ı in the category of log schemes is defined
as .Z;M WDMZ0 ˚g�MY 0

g�MY ı/. This pushout need not, in general, be integral,
so we must integralize. Note there is a canonical isomorphism

Mgp
DM

gp
Z0 ˚g�M

gp
Y 0
g�M

gp
Y ı ŠM

gp
Z0
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given by .s1; s2/ 7! s1 � .g
0/[.s2/, where .g0/[ W g�Mgp

Y 0 ! M
gp
Z0 is induced by g0.

The integralization Mint of M is then the image of M in Mgp, which thus can be
described as the subsheaf of M

gp
Z0 generated by MZ0 and .g0/[.g�MY ı/. Note MZ0

and .g0/[.g�MY ı/ both lie in MZ ˚O�
Z

P
gp
Z , and hence we can replace Mgp with

this subsheaf of Mgp in describing Mint.
It is now sufficient to show that we can define a structure map ˛ W Mint ! OZ

compatible with the structure maps ˛Z0 WMZ0 ! OZ and ˛Y ı W g�MY ı ! OZ . If
s 2Mint is of the form s1 � .g

0/[.s2/ for s1 2MZ0 and s2 2 g�MY ı , then we define

˛.s/ D ˛Z0.s1/ � ˛Y ı.s2/:

We need to show this is well defined. If s2 2 g�MY 0 , then .g0/[.s2/ 2MZ0 , and thus
as g0 is a log morphism,

˛.s/ D ˛Z0.s1/ � ˛Y ı.s2/ D ˛Z0.s1/ � ˛Z0..g
0/[.s2// D ˛Z0.s/:

In particular, ˛.s/ only depends on s, and not on the particular representation of s as
a product, provided that s2 2 g�MY 0 .

On the other hand, if s2 2 .g�MY ı/ n .g
�MY 0/, then ˛Y ı.s2/ D 0 by definition

of a puncturing. So in this case ˛.s/ D 0. Hence to check that ˛ is well defined,
it is enough to show that if s D s1 � .g0/[.s2/ D s01 � .g

0/[.s02/ with s2 2 g�MY 0 but
s02 62 g

�MY 0 , then ˛Z0.s1/ � ˛Y ı.s2/D ˛Z0.s1 � .g0/[.s2//D 0. Writing si D .mi ;pi /,
s0iD.m

0
i ; p
0
i / using the descriptions MZ0DMZ˚O�

Z
PZ , g�MY ı�g

�MY˚O�
Z

P
gp
Z ,

we note that we must havem1g[.m2/Dm01g
[.m02/. As s02 62 g

�MY 0 , by Condition (2)
of Definition 2.1 we necessarily have ˛Y .m02/ D 0. Hence ˛Z.m01g

[.m02// D 0, so
˛Z.m1g

[.m2// D 0. We deduce that ˛Z0.s1.g0/[.s2// D 0, as desired. This shows ˛
is well defined.

Finally, it is clear from the above description that Zı is a puncturing. By Corol-
lary 2.7, the pre-stability of gı follows from the surjectivity of

g�1. xMY ı/˚ xMZ ! g�1. xMY ı/˚
f
g�1. xMY /

xMZ D
xMZı ;

where˚f denotes the fibered coproduct in the category of fine monoids.

Definition 2.9. In the situation of Proposition 2.8, we say that Zı is the pullback of
the puncturing Y ı.

Corollary 2.10. Consider the situation of Proposition 2.8, and suppose in addition
given a pre-stable morphism f W Y ı ! X . Then the composition f ı gı W Zı ! X

is also pre-stable.

Proof. This follows immediately from the definition of pre-stability and the construc-
tion of Zı in the proof of Proposition 2.8.
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2.1.4 Punctured curves

Throughout the paper, we will essentially only be interested in puncturing along
logarithmic structures from designated marked points of logarithmic curves. Let
� W C ! W be a logarithmic curve in the sense of [41].

(1) The underlying morphism � is a family of ordinary pre-stable curves with
pairwise disjoint sections p1; : : : ; pn of � disjoint from the critical locus
of � .

(2) � is a proper logarithmically smooth and integral morphism of fine and satu-
rated logarithmic schemes.

(3) IfU�C is the non-critical locus of � then xMC jUŠ�
� xMW ˚

Ln
iD1pi�NW .

Note that by (3), all marked points receive a non-trivial logarithmic structure. We
write ˛C WMC ! OC for the structure map of the logarithmic structure on C . We
call a geometric point of C special if it is either a marked or a nodal point.

Definition 2.11. A punctured curve over a fine and saturated logarithmic scheme W
is given by the following data:�

C ı
p
�! C

�
�! W;p D .p1; : : : ; pn/

�
(2.2)

where

(1) C ! W is a logarithmic curve in the sense of [41] with its collection of
pairwise disjoint sections p1; : : : ; pn of the underlying curve as above.

(2) C ı! C is a puncturing of C along P , where P is the divisorial logarithmic
structure on C induced by the divisor

Sn
iD1 pi .W /.

When there is no danger of confusion, we may call C ı ! W a punctured curve.
Sections in p are called punctured sections, or simply punctures. IfW D Spec � with
� a field, we also speak of a punctured point. We also say C ı is a puncturing of C
along the punctured sections p.

If locally around a punctured point pi the puncturing is trivial, we say that the
punctured point is a marked point. In this case, the theory will agree with the treatment
of marked points in [2, 15, 30].

Examples 2.12. (1) Let W D Spec k be the point with the trivial logarithmic struc-
ture, and C be a non-singular curve over W . Choose a closed point p 2 C and a
puncturing MCı of C at p. Then MCı D P , as MCı � P gp can have no sections s
with ˛Cı.s/ D 0. Thus, in this case the only puncturing C ı ! C is the trivial one.

(2) Let W D Spec.N ! k/ be the standard logarithmic point, and C be a non-
singular curve over W , so that MC D O�C ˚N, where N denotes the constant sheaf
on C with stalk N. Again choose a closed point p 2 C with defining ideal .x/.
Let MCı � �

�MW ˚O�
C

P gp be a puncturing. Let s be a local section of MCı
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P
:::

: : :

MW

: : :

P
:::

: : :

MW

: : :

Figure 2.3. The solid puncturing on the left extends to kŒ"�=."2/ but no further—the circled
elements are the ones allowed for k D 1. Its pullback (see below) via E2 D " is pictured on the
right—it is defined on kŒE�=.E4/ but does not extend further.

near p. Write s D ..'; n/; xm/ with ' 2 O�C;p , n 2 N. If m < 0, then Condition (2)
of Definition 2.1 implies that

˛��.MW /.'; n/ D 0;

so we must have n > 0. Thus we see that

xMCı;p �
®
.n;m/ 2 N ˚ Z j m � 0 if n D 0

¯
:

Conversely, any fine submonoid of the right-hand-side of the above inclusion which
contains N ˚N can be realized as the stalk of the ghost sheaf at p for a puncturing.
Note the monoid on the right-hand side is not finitely generated, and is the stalk of
the ghost sheaf of the final puncturing, see Remark 2.3.

(3) LetW DSpeckŒ"�=."kC1/, and letW be given by the chart N! kŒ"�=."kC1/,
1 7! ". Let C0 be a non-singular curve over Spec k with the trivial logarithmic struc-
ture, and let C D W � C0. Choose a section p W W ! C , with image locally defined
by an equation x D 0. Condition (2) of Definition 2.1 now implies that a section s of
a puncturing MCı near p takes the form ..';n/; xm/ where ' 2O�C;p , and 0� n� k
implies m � 0. In particular,

xMCı;p �
®
.n;m/ 2 N ˚ Z j m � 0 if n � k

¯
;

and any fine submonoid of the right-hand side containing N ˚N can be realized as
the stalk of the ghost sheaf at p of a puncturing. See Figure 2.3.

2.1.5 Pull-backs of punctured curves

Consider a punctured curve .C ı! C !W;p/ and a morphism of fine and saturated
logarithmic schemes h W T ! W . Denote by .CT ! T; pT / the pullback of the log
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curve C ! W via T ! W . By Proposition 2.8, we obtain a commutative diagram

C ıT
//

pT
��

C ı

p

��

CT //

�T

��

C

�

��

T
h // W

(2.3)

where the bottom square is cartesian in the fine and saturated category, and the square
on the top is cartesian in the fine category, and such that C ıT is a puncturing of the
curve CT along pT . See again Figure 2.3.

Definition 2.13. We call C ıT ! T the pullback of the punctured curve C ı ! W

along T ! W .

2.1.6 Punctured maps

We now fix a morphism of fine and saturated logarithmic schemes X ! B .

Definition 2.14. A punctured map to X ! B over a fine and saturated logarithmic
scheme W over B consists of a punctured curve .C ı! C ! W;p/ and a morphism
f fitting into a commutative diagram

C ı
f
//

�

��

X

��

W // B

Such a punctured map is denoted by .� W C ı ! W;p; f / or .C ı=W;p; f /.
The pullback of a punctured map .C ı=W; p; f / along a morphism of fine and

saturated logarithmic schemes T ! W is the punctured map .C ıT =T; pT ; fT / con-
sisting of the pullback C ıT ! T of the punctured curve C ! W and the pullback fT
of f .

Definition 2.15. A punctured map .C ı!W;p;f / is called pre-stable if f WC ı!X

is pre-stable in the sense of Definition 2.6.
A pre-stable punctured map is called stable if its underlying map, marked by the

punctured sections, is stable in the usual sense.

Proposition 2.16. Let .C ı=W;p; f / be a punctured map over W .

(1) The locus of points of W with pre-stable fibers forms an open sub-scheme
of W .



Definitions 19

(2) If f W C ı ! X is pre-stable, then the pullback fT W C ıT ! X along any
morphism of fine and saturated logarithmic schemes T ! W is also pre-
stable.

Proof. The map f W C ı ! X induces a morphism of fine logarithmic structures

f [ ˚ p[ W f �MX ˚O�
C

MC !MCı :

The pre-stability of f is equivalent to the condition that f [ ˚ p[ is surjective by
Corollary 2.7. Statement (1) can be proved by applying Lemma 2.17 to the neighbor-
hood of each puncture. Statement (2) follows immediately from Corollary 2.10.

Lemma 2.17. Let Y be a scheme, and  [ W M ! N be a morphism of fine log
structures on Y . Then the locus Y 0 � Y over which  [ is surjective forms an open
subscheme of Y .

Proof. We thank the anonymous referee for suggesting the following simplified proof.
Since both M and N are O�Y -torsors over xM and xN respectively, the surjectivity
of  [ is equivalent to the surjectivity of the induced morphism xM ! xN of ghost
sheaves. Since the statement is local on Y , we may assume that xN is globally gener-
ated.

Suppose y 2 Y is a geometric point over which xMy !
xNy is surjective. Then

each global section of xN lifts to a section of xM in an étale neighborhood of y. Since
�.Y ; xN / is finitely generated, there is a common étale neighborhood of y over which
all the global sections of xN lift to xM. This finishes the proof.

The most interesting aspect of punctured curves is the appearance of negative
contact orders, defined as follows.

Definition 2.18. The contact order of a punctured map .C ı=W; p; f / to X ! B

over a log point W D Spec.Q! �/ at p 2 p is the composition

up W xMX;f .p/

f [

��! xMC;p ! Q˚ Z
pr2
��! Z (2.4)

with the second map the canonical inclusion. We say that the contact order up is
negative if up. xMX;f .p// 6� N.

The difference with the case of logarithmic stable maps [30, Definition 1.8] is the
appearance of Z instead of N. The tropical interpretation of this condition will be
discussed in Section 2.2 below. Note that if .C ı=W; p; f / is pre-stable, the contact
order at p 2 p is negative if and only if p is not a marked point.

Example 2.19. Here is a simple example featuring a negative contact order. Let X
be a smooth surface, D � X a non-singular rational curve with self-intersection �1
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C

X

D :: :

: : :

MW

:::

Figure 2.4. The .�1/-curve and its monoid.

inducing the divisorial log structure X on X . Let C ! W be the punctured curve of
Example 2.12 (2), with C Š P1. Let f W C ! X be an isomorphism of C with D.
This can be enhanced to a punctured map C ı ! X as follows.

We first define Nf [ W f � xMX DN! xMCı �
xE DN ˚Zp by 1 7! .1;�1/, where

Zp denotes the sky-scraper sheaf at p with stalk Z. Note that the inverse image of
1 2 �.X; xMX / under the projection map MX !

xMX is the O�X -torsor contained in
MX corresponding to the line bundle OX .�D/, and thus 1 2 �.C; f � xMX / similarly
yields the O�C -torsor corresponding to OC .1/, using�D2 D 1. On the other hand, the
torsor contained in MCı corresponding to .1; 0/ is the torsor of OC , and the torsor
corresponding to .0;1/ is the torsor of the ideal OC .�p/. Hence .1;�1/2�.C; xMCı/

corresponds to OC .1/. Choosing an isomorphism of torsors then lifts the map Nf [ to
a map f [ W f �MX !MCı inducing a morphism f W C ı ! X (Figure 2.4).

Note this morphism does not lift to C 0 ! W 0 D Spec.kŒ"�=."2// as in Exam-
ple 2.12 (3), since we cannot even lift Nf [ at the level of ghost sheaves. Indeed, .1;�1/
is not a section of the ghost sheaf of .C 0/ı.

Remark 2.20 (Geometric implication of negative contact orders). Let f WC ı=W!X
be a punctured map with W D Spec.Q! k/. Suppose p 2 C is a punctured point
which is not a marked point, and let C 0 be the irreducible component containing p,
with generic point �. Then, intuitively, C 0 has negative order of tangency with certain
strata in X , and this forces C 0 to be contained in those strata.

Explicitly, let Pp D xMX;f .p/ and let up W Pp ! Z be as in Definition 2.2. Then
if ı 2 Pp with up.ı/ < 0, we must have pr1 ı Nfp.ı/ 6D 0, as there is no element of
xMCı;p � Q˚ Z of the form .0; n/ with n < 0. Thus if � W Pp ! xMX;f .�/ denotes

the generization map, we must have u�1p .Z<0/\ ��1.0/D ;. This restricts the strata
in which f .C 0/ can lie.

For example, if X D .X;D/ for a simple normal crossings divisor D with irre-
ducible components D1; : : : ; Dn, then Pp D

L
i Wf .p/2Di

N. The value up on the
generator of Pp corresponding to Di is the contact order with Di . Then f .C 0/ must
lie in the intersection of those Di that have negative contact order at p.

A critical aspect of this phenomenon is discussed in Section 2.5, see especially
Proposition 2.52 and Example 2.54.
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2.2 The tropical interpretation

We now introduce the tropical picture, which gives the underlying organizing lan-
guage for punctured Gromov–Witten theory. We assume familiarity with the discus-
sion in ordinary logarithmic Gromov–Witten theory as presented in [3, Section 2].
We review in Section 2.2.1 the notations and basic concepts briefly while discussing
the modifications needed for including non-trivial punctures.

2.2.1 Tropical punctured maps

In Appendix C we define tropicalization as a functor associating to a fine log algebraic
stack a generalized cone complex †.X/. There is one stratum of j†.X/j for each
logarithmic stratum of X , the latter defined as a maximal connected locally closed
subset Z � jX j with xMX jZ locally constant. For each logarithmic stratum Z we
choose, once and for all, a geometric point NxZ with image inZ. Then†.X/ is defined
as the diagram with only one cone

�Z D Hom
�
xMX; NxZ ;R�0

�
(2.5)

for each logarithmic stratum Z, along with all its faces, and arrows induced by all
sequences of generization morphisms and all face inclusions, including inverses of
those that are isomorphisms. Note that due to monodromy, †.X/ may contain non-
trivial arrows � ! � . The group

Aut†.X/.�/ D ¹� ! � arrow in †.X/º

is a subgroup of the permutation group of the set of rays of � , hence is always finite.
Note that the map

�Z=Aut†.X/.�Z/! j†.X/j

induced from �Z ! j†.X/j may still not be injective due to arrows from strata of
X whose closure intersect the closure of Z and that are not induced by monodromy
on Z. Accordingly, the image of � in j†.X/j may be a finite quotient even on its
interior.

By abuse of notation, †.X/ denotes both the distinguished presentation or the
equivalence class as a generalized cone complex. When writing � 2 †.X/ we refer
to the chosen presentation, so there is a unique logarithmic stratum Z � X with
� D �Z . For any geometric point Nx with image in Z we have the cone

� Nx D Hom
�
xMX; Nx;R�0

�
together with an isomorphism

�Z ! � Nx;
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but this isomorphism is only unique up to pre-composition with arrows �Z ! �Z in
†.X/. In other words, the isomorphism �Z ! � Nx is unique up to the action of the
monodromy group Aut†.X/.�Z/ of the logarithmic stratum Z.

For � 2 †.X/ we denote by

X� D
®
x 2 X j there exists an arrow � ! � Nx in †.X/

¯
� X (2.6)

the closed set of points x 2 X with � connected to � Nx D Hom. xMX; Nx;R�0/ by a
sequence of generizations and inverses of invertible generizations of the stalks of
xMX . We endowX� with the reduced induced scheme structure. In practice, say when
X is log smooth over a log point, X� is the closure of the logarithmic stratum given
by � 2 †.X/. For brevity, we refer to the X� as strata of X , but note that from the
point of view of stratified spaces, and differing from the use in Appendix C, these are
at best closures of strata. Note also that for � D ¹0º we obtain X¹0º D X assuming
†.X/ connected, even if there is no geometric point Nx of X with xMX; Nx D 0.

A stable logarithmic map .C=W;p; f / gives rise via functoriality of the tropical-
ization functor † to the diagram

†.C/
†.f /

//

†.�/

��

†.X/

��

†.W / // †.B/

(2.7)

We will almost exclusively consider such diagrams in whichW is covered by a single
chart and †.W / has a single maximal cone ! D .M_W; Nw/R for Nw some geometric
point ofW . Then it is shown in [3, Proposition 2.25] that†.�/ along with the genera
of the irreducible components of the geometric fiber C Nw is a (family of) abstract
tropical curves over !, also written .G; g; `/. Here G is the dual intersection graph of
C Nw with sets V.G/, E.G/, L.G/ of vertices, edges and legs, and the maps

g W V.G/! N; ` W E.G/! Hom.!Z;N/ n ¹0º;

record the genera of the irreducible components of C Nw and the lengths of edges as
functions on !, respectively, see [3, Definition 2.19]. If G arises from the tropical-
ization of a log curve over a geometric logarithmic point, we denote elements of
V.G/,E.G/,L.G/ both by their graph-theoretic notations as vertices v, edgesE, and
legs L, or the corresponding algebraic geometric notations as generic points �, nodes
q, and marked points p. By abuse of notation, we view homomorphisms !Z ! N
also as homomorphisms !!R�0 respecting the integral structure. Conversely, from
.G; g; `/, the cone complex

� D �.G; `/
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Figure 2.5. The length of a bounded leg varies piecewise linearly under linear variations of the
adjacent vertex. The figure shows the intersection of the situation with an affine hyperplane.

recovering †.C/ has one copy of ! for each v 2 V.G/, a cone

!E D
®
.s; �/ 2 ! �R�0 j � � `.E/.s/

¯
(2.8)

for each edge E 2 E.G/, and a copy of ! � R�0 for each leg. Note that legs have
infinite lengths for any parameter s 2 !R when viewing � as a family of metric
graphs.

The only change in the punctured setup is that a leg may now have finite length.
Indeed, ifL2L.G/ corresponds to a non-trivial puncture with puncturing submonoid
Qı � Q˚ Z, then .Qı/_R D !L with

!L D
®
.s; �/ 2 ! �R�0 j � � `.L/.s/

¯
(2.9)

defined in analogy with (2.8) by a length function `.L/ W ! ! R�0 with `.L/ ¤ 0.
Note, however, that `.L/ is now only piecewise linear as illustrated in Figure 2.5.
Here a continuous function ` W ! ! R�0 on ! 2 Cones is piecewise linear if there
exists a fan subdivision of ! such that ` is the restriction of a linear form on each
cone of the fan. For the following relation to monoids recall (2.1) from Remark 2.2.

Lemma 2.21. LetQ be a sharp toric monoid and!DQ_R. Assume further thatQı�
Q˚Z is a finitely generated submonoid withQ˚N ¨Qı,Qı \ .¹0º �Z<0/D ;.
Then there exists a nonzero, concave, piecewise linear function

` W ! ! R�0

with rational slopes such that

.Qı/_R D ¹.s; �/ 2 ! �R�0 j 0 � � � `.s/º: (2.10)

Each such ` W ! ! R�0 arises in this fashion, and two submonoids Qı1; Q
ı
2 �

Q ˚ Z with Qi ˚N ¨ Qıi , Q
ı
i \ .¹0º � Z<0/ D ;, i D 1; 2, lead to the same ` if

and only if .Qı1/
sat D .Qı2/

sat.
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Proof. Let .s; �/ 2 .Qı/_R. Then since Q˚N � Qı, necessarily s 2 ! D Q_R and
� � 0. Conversely, .s; 0/ 2 .Qı/_R for all s 2 !, and in fact,

! � ¹0º � .Qı/_R

is a facet. Since Qı ¤ Q ˚ N no ray of .Qı/_R is vertical, that is, agrees with
R�0 � .0; 1/. Thus the union of the maximal cells of @.Qı/_R neither contained in
! � ¹0º nor in @! �R form the graph of a piecewise linear function ` W ! ! R�0 as
in the statement of the lemma. Convexity of .Qı/_R implies that ` is concave. Finally,
` ¤ 0 for otherwise .0;�1/ 2 QıR, contradicting Qı \ .¹0º � Z<0/ D ;.

Conversely, given a nonzero, concave, piecewise linear ` W !!R�0 with rational
slopes, the cone � on the right-hand side of (2.10) contains ! � ¹0º as a facet. Hence

�_ � !_ �R D QR �R and QR �R�0 � �
_:

The case QR � R�0 D �_ does not occur since � ¤ ! � R�0 by finiteness of the
values of `. Moreover, `¤ 0 implies � is a full-dimensional cone, and hence .0;�1/ 62
�_, or �_ \ .¹0º � Z<0/ D ;. This shows that knowing ` retrieves the convex hull
of Qı in QR �R, hence the set of integral points of its saturation .Qı/sat.

Definition 2.22. (1) A (family of) punctured tropical curves over a cone ! 2 Cones
is a graph G together with two maps

g W V.G/! N; ` W E.G/ [ Lı.G/! Map.!;R�0/

for some subset Lı.G/ � L.G/, with `.E/ 2 Hom.!Z;N/ n ¹0º for E 2 E.G/ and
`.L/ W ! ! R�0 for L 2 Lı.G/ nonzero, concave, piecewise linear, with rational
slopes. We refer to elements of Lı.G/ as finite or punctured legs, all other legs as
infinite or marked.

(2) A (family of) punctured tropical maps over ! 2Cones is a map of generalized
cone complexes h W � ! †.X/ for � D �.G; `/ the cone complex defined by a
punctured tropical curve .G; g; `/ over !.

For readability and as in [3] throughout, we assume for the rest of this subsection
that †.X/ is simple [3, Definition 2.1]. This means that for each � 2 †.X/ the map
� ! j†.X/j is injective. We will treat the general case in Section 2.6. As in [3,
Proposition 2.26], it then follows readily from the definitions that the tropicalization
of a punctured map to X over a logarithmic point Spec.Q! �/ with � algebraically
closed is a punctured tropical map over Q_R.

Given a punctured tropical map, one extracts associated discrete data as in [3,
Remark 2.22]. These are an image cone map

� W V.G/ [E.G/ [ L.G/! †.X/ (2.11)
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Figure 2.6. A curve in the fiber of a one-parameter family of surfaces (a threefold) and its
tropicalization. There are two components, represented by vertices; one node represented by an
edge; one regular marked point represented by an infinite leg and one puncture represented by
a finite leg, which, by pre-stability, extends exactly as far as the cone allows.

associating to each object ofG the (distinguished representative of the) minimal cone
of†.X/ it maps to, and, referring again to the notation in Section 1.6, contact orders

uq D uE 2 N� .E/; up D uL 2 N� .L/ (2.12)

for edges E D Eq 2 E.G/ and for legs L D Lp 2 L.G/, respectively.
Contact orders are defined by the image of the tangent vector .0; 1/ in the tangent

space N! � Z of !E or !L under h. The contact order for an edge E depends, up
to sign, on a choice of orientation on E, which we suppress in the notation. For legs,
this definition is consistent with the definition of contact orders of punctured maps in
Definition 2.18.

Note that the contact order up 2 N� .Lp/ of a marked point p 2 C Nw lies in � .Lp/.
Conversely, a non-trivial puncture is forced by a legLDLp if for any parameter value
s 2!, the line segment h.¹sº � Œ0;`.L/.s/�/ inside the image cone � .L/2†.X/ does
not extend to a half-line.

There is a simple tropical interpretation of pre-stability saying that images of legs
extend as far as possible inside their image cones. See Figure 2.6 for an illustration.
We call such tropical punctured maps pre-stable.

Proposition 2.23. Let .C ı=W;p; f / be a pre-stable punctured map over a log point
W D Spec.Q! �/ and h D †.f / W �.G; `/! †.X/ its tropicalization. For each
finite leg L 2 Lı.G/, we write !L � ! �R�0 as in (2.9). Then for all s 2 !, we have

h.s; `.L/.s// D h.s; 0/C `.L/.s/ � uL 2 @� .L/;

while h.s; `.L/.s//C "uL 62 � .L/ for all " > 0.
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Proof. Let Np! C be the punctured point defined by L, and write ! DQ_R, � D P_R
for P D xMX;f . Np/. The map hL W !L ! � defined by h is dual to

Nf [f . Np/ W P !
xMC; Np D Q

ı
� Q˚ Z:

By pre-stability, Qı is generated by Q ˚N and by the image of Nf [
f . Np/

. Dually, we
obtain

!L D .Q
ı/_R D .! �R�0/ \ h

�1
L .�/:

Now !L is the convex hull of ! � ¹0º and of ¹.s; `.L/.s// 2 ! �R�0º, the graph of
`.L/ as a map ! ! R�0. This shows that no point .s; `.L/.s// maps to an interior
point of � , and the line segment in � connecting h.s; 0/ with h.s; `.L/.s// can not be
extended, as claimed.

Note that while !_L \ .N! �Z/� only computes the saturation ofQı, the tropical
picture also contains the map P !Q˚Z. In the pre-stable case,Qı is then the sub-
monoid generated by the image of this map and byQ˚N, so can be fully computed
tropically.

2.2.2 Types of punctured maps

As in [3, Definition 2.23] for stable logarithmic maps, we now capture the combina-
torics underlying punctured maps and their tropicalization by the notion of type.

Definition 2.24. (1) The type of a family of tropical punctured maps h W�D�.G;`/!
†.X/ over ! 2 Cones is the tuple

� D .G; g; � ;u/

consisting of the associated genus-decorated connected graph .G; g/, the image cone
map � from (2.11) and the collection u D ¹uq; upºp;q D ¹uE ; uLºE;L of contact
orders from (2.12). In particular, for x 2 E.G/ [ L.G/ we require ux 2 N� .x/. We
also sometimes write u.x/ instead of ux when referring to a contact order given by a
type rather than by a punctured map.

(2) The type of a punctured map .C=W; p; f / to X at a geometric point Nw of W
is the type of the associated tropical map � ! †.X/ over ! D . xM_W; Nw/R.

Thus the type records the combinatorial data associated to h W � ! †.X/, but
forgets the length function ` W E.G/ [ Lı.G/! Map.!;R�0/.

For a punctured map over a logarithmic point, one sometimes also wants to keep
the curve classes A.v/ D f

�
.ŒC .v/�/ for C.v/ � C the irreducible component of

C given by v 2 V.G/. Here A.v/ is a class of curves in singular homology of the
corresponding stratum X� .v/, or in some other appropriate monoid of curve classes,
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written HC2 .X� / for � 2 †.X/ in any case.1 We refer to [33, Basic setup 1.6] for
a listing of the properties of HC2 assumed throughout. Adding this information, one
arrives at the notion of decorated type

� D .�;A/ D .G; g; � ;u;A/: (2.13)

Finally, just as in logarithmic Gromov–Witten theory, generization of punctured
maps gives rise to contraction morphisms of graphs: Let .C ı=W;p;f / be a punctured
map toX and let Nw0! Nw be a specialization arrow of geometric points ofW . Denote
by h W � D �.G; `/! †.X/ and h0 W � 0 D �.G0; `0/! †.X/ the tropicalizations of
the strict restrictions of .C ı=W;p;f / to Nw, Nw0. Then as in [3, eq. (2.15)], generization
defines a contraction morphism of the associated decorated graphs

� W .G; g/! .G0; g0/;

given by contracting those edges E D Eq 2 E.G/ with corresponding node Nq! C Nw
not contained in the closure of the nodal locus of C Nw0 . By abuse of notation we write
� also for the maps

V.G/! V.G0/; L.G/! L.G0/; E.G/ nE�
bij
�! E.G0/

defining �. Here E� � E.G/ is the subset of contracted edges. Analogous to [3,
Definition 2.24] there is a corresponding natural notion of contraction morphism of
(decorated) types of tropical punctured maps

� D .G; g; � ;u/! � 0 D .G0; g0; � 0;u0/;
� D .G; g; � ;u;A/! �0 D .G0; g0; � 0;u0;A0/:

(2.14)

Under such contraction morphisms, legs never get contracted. Moreover, identify-
ing L.G/ D L.G0/, the contact order u.L/ 2 N� .L/ of a leg of G is the image
of u0.L/ 2 N� 0.L/ under the inclusion of lattices N� 0.L/ ! N� .L/ induced by the
face map � 0.L/! � .L/. An analogous statement applies to contact orders of non-
contracted edges.

Proposition 2.25. Let .C ı=W; p; f / be a stable punctured map to X over some
logarithmic schemeW and .� Nw ;A Nw/ with � Nw D .G Nw ;g Nw ;� Nw ;u Nw/ its decorated type
at the geometric point Nw ! W according to Definition 2.24 and (2.13).

Then if Nw0 ! Nw is a specialization arrow of geometric points of W , the map

.� Nw ;A Nw/! .� Nw0 ;A Nw0/

induced by generization is a contraction morphism.

1The notation allows defining HC
2
.X� / WD HC

2
.X/ for all � 2 †.X/, by interpreting

classes of curves in a stratum X� as classes of curves in X .
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Proof. The proof is essentially identical to [3, Lemma 2.30], noting that the proof
of [30, Lemma 1.11] also works for contact orders at punctures.

2.2.3 The balancing condition

The above discussion fits well with the tropical balancing condition at vertices of the
dual graph of C ı. In fact, the statement [30, Proposition 1.15] holds unchanged as
there is no balancing condition at the endpoint of a leg L 2 L.G/. As we will need
the balancing condition to prove boundedness, we review this statement here. We
note that the balancing conditions discussed here are heavily used in applications such
as [33], [27, Section 4] or [32], as balancing severely limits the possible combinatorial
types.

Suppose given a stable punctured map .C ı=W; p; f / with W D Spec.N ! �/

the standard log point over an algebraically closed field, and denote by .G; g; � ; u/
its type. Let g W zD ! C be the normalization of an irreducible component D with
generic point � of C . One then obtains, with xM D f � xMX , composed maps

�X� W �.
zD;g� xM/! Pic zD

deg
��! Z

�C� W �.
zD;g� xMCı/! Pic zD

deg
��! Z

with the first map on each line given by taking a section of the ghost sheaf to the
corresponding O�

zD
-torsor, the inverse image of this section in g�M or g�MCı . These

are compatible: the pullback of f [ to zD, ' W g�M ! g�MCı , induces x' W g� xM !
g� xMCı and a commutative diagram

�. zD;g� xM/
x'
//

�X�
((

�. zD;g� xMCı/

�C�
��

Z

The map �X� is given by f and M, so depends on the logarithmic geometry of
f W C ı ! X ; however if f contracts D, then �X� D 0. On the other hand, �C� is
determined completely by the geometry of D � C and g� xMCı as follows. We use
the notation in [30, Section 1.4]. For each point q 2 D over a node of C we have
xMCı; Nq D Seq , the submonoid of N2 generated by .0; eq/, .eq; 0/ and .1; 1/. The

generization map �q W xMCı; Nq !
xMCı;x� D N is given by projection to the second

coordinate: �q.a; b/ D b. In what follows, we use q always to denote points over
nodes and p to denote punctured points. We then have

�
�
zD;g� xMCı

�
�
®
.nq/q2 zD j nq 2Seqand �q.nq/D�q0.nq0/ for q;q0 2 zD

¯
˚

M
p2 zD

Z:
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This inclusion induces an equality at the level of groups. The equation �q.nq/ D
�q0.nq0/ allows us to write b D bq D �q.nq/ independent of q. We then obtain, with
proof identical to that of [30, Lemma 1.14].

Lemma 2.26. �C� ...aq; b/q2 zD; .np/p2 zD// D �
P
p2 zD np C

P
q2 zD

b�aq
eq

,

The equation �X� D �C� ı ' is a formula in ND WD �. zD; g� xMgp/�, which is
described in [30, eqs. (1.12), (1.13)] as follows. Let † � zD be the set of points x
in zD mapping to a special point of C . Thus † can be identified with the subset of
E.G/ [ L.G/ of edges or legs adjacent to the vertex v corresponding to �. For any
point x 2 zD, we write Px WD xMX;g.x/. Then

ND D lim
�!

x2 zD

P �x D
�M
x2†

P �x

�.
�

where for any a 2 P �� and any x; x0 2 †,

.0; : : : ; 0; �x;�.a/; 0; : : : ; 0/ � .0; : : : ; 0; �x0;�.a/; 0; : : : ; 0/:

Here �x;� W P �� ! P �x is the dual of generization, and the non-zero entries lie in the
position indexed by x and x0 respectively. Thus an element of ND is represented
by a choice of tangent vector nx 2 N� .x/ D P �x , one for each preimage x 2 zD of
a special point of C ; and two such choices are identified if they can be related by
repeatedly subtracting a tangent vector inN� .v/ D P �� from one of the nx and adding
it to another.

We then have, exactly as in [30, Proposition 1.15], the balancing condition:

Proposition 2.27. Suppose .C ı=W; p; f / is a stable punctured map to X=B with
W D Spec.N ! �/ a standard log point. Let D � C be an irreducible component
with generic point � and † � zD the preimage of the set of special points. If �X� 2
�. zD;g� xMgp/� is represented by .�x/x2†, then

.ux/x2† C .�x/x2† D 0

in ND D �. zD;g� xMgp/�.

Remark 2.28. With regard to the above interpretation of elements of ND in terms
of the type of .C ı=W; p; f /, Proposition 2.27 says the following. The degree data
of the O�C -torsors contained in g�M defines a tuple of tangent vectors �x 2 N� .x/,
one for each edge or leg x 2 E.G/[L.G/ adjacent to the vertex v corresponding to
�, well-defined up to trading elements of N� .v/ via the embedding N� .v/ ,! N� .x/
defined by the face morphism � .v/ ! � .x/. Then (1) �x C ux lies in the image
of P �� ! P �x , and (2) the traditional tropical balancing condition holds in P �� for
�x C ux , x running over the set of special points.
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Traditional tropical geometry arises for the case that X is a toric variety with its
toric log structure. Then M

gp
X is the sheaf of rational functions that are invertible on

the big torus. Monomial functions define trivial O�X -subtorsors of M
gp
X . Denoting by

N the cocharacter lattice of the torus, we thus have a canonical monomorphism

N � ! �
�
X;M

gp
X

�
! �

�
X; xM

gp
X

�
with composition with �X� identically zero. Composing the equation displayed in
Proposition 2.27 with the induced mapND!N then yields the traditional balancing
condition

P
x Nux D 0 for Nux the image of ux under the embedding N�.x/ ! N .

The following is an encapsulation of balancing which gives easy to use restric-
tions on curve classes realized by punctured maps with given contact orders. For the
statement we denote by L�s the torsor corresponding to s 2 �.X; xMgp

X /, that is, the
inverse image of s under the homomorphism M

gp
X !

xM
gp
X , and write Ls for the cor-

responding line bundle. Furthermore, the germ of s at f .pi / lies in P gp
pi D

xM
gp
X;f .pi /

and hence defines a homomorphism P �pi ! Z, which we write as h�; si.

Proposition 2.29. Suppose given a punctured map .C ı=W;p; f / for W a log point.
Let .G;g;� ;u/ be the type of this map, and letD � C be an irreducible component of
the domain, corresponding to v 2 V.G/. Let p1; : : : ; pn 2 p be the punctured points
of C ı contained inD, and let q1; : : : ; qm be the nodes of C contained inD but which
are not nodes of D. This gives rise to contact orders upi , uqj , noting that for the
contact orders of the nodes, we orient the corresponding edge away from v. Then we
have

deg
�
f �Ls

�ˇ̌
D
D �

nX
iD1

hupi ; si �

mX
iD1

huqi ; si:

Proof. First, by making a base-change, we can assume W is the standard log point.
Note f �Ls must be isomorphic to the line bundle L Nf [.s/ associated to the torsor
corresponding to Nf [.s/.

Now the total degree of L Nf [.s/ can be calculated using Lemma 2.26 and details

of the proof of [30, Proposition 1.15]. Let g W zD! C be the normalization ofD, and
let � be the generic point of D. Then

deg.f ı g/�Ls D degg�L Nf [.s/ D �
C
� .'.s//

D

X
q2 zD

1

eq
.hV�; si � hV�q ; si/ �

X
pi2 zD

hupi ; si;

in the notation of [30, Lemma 1.14, Proposition 1.15], and the last equality com-
ing from the proof of [30, Proposition 1.15]. Here V� W P� ! N is the map Nf [ W
xMX;f .�/!

xMC;� , and similarly V�q , where �q is the generic point of the other branch
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of C at the node q. By [30, eq. (1.9)], 1
eq
.V� � V�q / D �uq , where uq is the contact

order of the node q with corresponding edge oriented away from v. Note that self-
nodes of D appear twice in this sum, with opposite sign, and hence cancel. This then
yields the desired formula.

Corollary 2.30. Suppose given a punctured curve .C ı=W;p; f / withW a log point,
p D ¹p1; : : : ; pnº. Then we have

degf �Ls D �

nX
iD1

hupi ; si:

Proof. This is obtained from the previous proposition by summing over all irreduci-
ble components of C .

2.3 Basicness

A key concept in logarithmic moduli problems is the existence of basic or minimal
logarithmic structures. The existence of such distinguished logarithmic structures on
the base space of families is a necessary condition for a logarithmic moduli problem
to be represented by a logarithmic algebraic stack. A good notion of basicness should
be an open property, and hence is typically defined by a condition at geometric points.

The definition of basic stable logarithmic maps from [30, Section 1.5] is based on
universality of the associated family of tropical maps. The original definition in [30,
Definition 1.20] phrases this property in terms of the dual monoids and only indi-
cates the tropical interpretation in [30, Remark 1.18]. A proof of the equivalence of
the definitions in the present notation is given in [3, Proposition 2.28]. This equiva-
lence of descriptions really only reflects the anti-equivalence between the categories
of fs monoids and of rational polyhedral cones. In the following, we freely use this
equivalence of categories when referring to material from [30].

The definition of basicness in the punctured case is formally the same as for stable
logarithmic maps. Here we take the concrete, tropical view. For readability, we again
assume that X is simple, deferring the general discussion to Section 2.6.

Definition 2.31. A pre-stable punctured map .C=W; p; f / is basic at a geometric
point Nw of W if the associated family of tropical maps

h W � D �.G; `/! †.X/

over . xMW; Nw/
_
R is universal among tropical maps of the same type .G; g; � ; u/. This

means that each family of stable tropical maps of type .G; g; � ;u/ over some cone !
arises by pullback from h W � ! †.X/ via a unique map ! ! . xMW; Nw/

_
R in Cones.

Basicness without specifying Nw refers to basicness at all geometric points.
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The monoids xMW; Nw obtained from basic punctured maps also formally have the
same description as for stable logarithmic maps described in [30, Proposition 1.19]
and [3, Proposition 2.28]. We provide a full proof of this description emphasizing the
tropical perspective.

Proposition 2.32. Let .C ı=W ; p; f / be a basic, pre-stable punctured map over a
logarithmic point Spec.Q!�/with � an algebraically closed field, and let .G;g;� ;u/
be its type. For each generic point � 2 C with v D v� 2 V.G/ the associated vertex
write

P� D xMX;f .�/ D .� .v/Z/
_:

Then the map

Q_ !
°
..V�/�; .`q/q/ 2

Y
�

P_� �
Y
q

N j V� � V�0 D `q � u.q/
±

(2.15)

given by the duals of .�[�/
�1 ı Nf [� W P� !Q and of the classifiying map

Q
q N !Q

of the log smooth curve C=W , is an isomorphism. Here q runs over the set of nodes
of C and, in the equation, �, �0 are the generic points of the adjacent branches, with
the order chosen as in the definition of u.

Proof. Denote by ! 2 Cones the cone defined by the right-hand side of (2.15). We
first construct a tropical punctured map

h0 W � D �.G; `0/! †.X/

over ! as follows. Define

`0.E/ W !Z ! N; h0.v/ W !Z ! P_� (2.16)

forE DEq 2E.G/ and v D v� 2 V.G/ as the projections to the q-th factor in
Q
q N

and to P_� D � .v/Z, respectively. For an edge E D Eq with adjacent vertices v, v0

and associated cone !E from (2.8), the map h0 is defined by

.h0/E W !E ! .P_q /R D � .E/;

.s; �/ 7! h0.v/.s/C � � u.E/ D h0.v0/.s/C .`0.E/ � �/.�u.E//;

with the sign of u.E/ chosen according to the orientation of E. In this definition, we
view h0.v.s//, h0.v0.s// as elements of .P_q /R via the face inclusions P_� , P_�0 !
P_q . The equality holds by the relation in the definition of ! by the right-hand side of
equation (2.15). In particular, .h0/E restricts to h0.v/, h0.v0/ on its two faces defined
by v, v0.

Finally, for a leg L D Lp 2 L.G/ with adjacent vertex v 2 V.G/, the length
function `0.L/ and the map .h0/L defined on .!L/Z is uniquely determined by h0.v/
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and by the contact order u.L/ via pre-stability (Proposition 2.23). This finishes our
construction of a pre-stable tropical punctured map h0 over !.

Conversely, if h W � D �.G; `/ ! †.X/ is a tropical punctured map of type
.G; g; � ;u/ over some cone !0 2 Cones, the map

!0 ! !; s 7! .h.v�.s//; `.Eq//�;q;

with v� W !0! � the section of � ! !0 defined by v� 2 V.G0/, is readily seen to be
the unique morphism in Cones producing h by pullback from h0.

Definition 2.33. The fs monoidQ defined by (2.15) is called the basic monoid asso-
ciated to the type � D .G;g;� ;u/, while its dualQ_ 2Cones (orQ_R with the integral
structure understood) is called the associated basic cone.

Note that while the definition of the basic monoid makes sense for all types, the
length function `0.E/ constructed in (2.16) in the proof of Proposition 2.32 may be
zero for some edge E. In this case, the universal tropical domain �.G; `0/ in the
proof of Proposition 2.32 is not the domain of a tropical punctured map according
to Definition 2.22. The basic monoid is therefore only meaningful if there exists at
least one tropical punctured map of the given type.2 Observe also that just as marked
points do not enter the definition of basicness, there is no role for punctures in the
statement of Proposition 2.32.

Proposition 2.34. Let .C ı=W;p; f / be a pre-stable punctured map. Then

� WD
®
Nw 2 jW j j ¹ Nwº �W .C ı=W;p; f / is basic

¯
is an open subset of jW j.

Proof. This is identical to [30, Proposition 1.22].

Proposition 2.35. Any pre-stable punctured map to X ! B arises as the pullback
from a basic pre-stable punctured map to X ! B with the same underlying ordi-
nary pre-stable map. Both the basic pre-stable punctured map and the morphism are
unique up to a unique isomorphism.

Proof. The proof is almost identical to [30, Proposition 1.24]. Let .� W C !W;p; f /
be a pre-stable punctured map over B . For each geometric point Nw! W one obtains
a tropical punctured map

h Nw W � Nw ! †.X/

over ! Nw D . xMW; Nw/
_
R, of some type .G Nw ; g Nw ; � Nw ; u Nw/. By Proposition 2.25, gener-

ization Nw 2 cl. Nw0/ (i.e. existence of a specialization arrow Nw0! Nw as in Appendix C)

2The analogue of this statement in [30] is the condition GS. xM/ ¤ ;.
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leads to a contraction morphism (2.14)

.G Nw ; g Nw ; � Nw ;u Nw/! .G Nw0 ; g Nw0 ; � Nw0 ;u Nw0/:

This contraction morphism induces an embedding of � Nw0 as a subcomplex of � Nw
such that h Nw0 becomes the restriction of h Nw . These maps are compatible with the
classifying maps to the dual of the respective basic monoids in Proposition 2.32,
producing a cartesian diagram of pre-stable tropical punctured maps.

As in the proof of [30, Proposition 1.24], this situation produces monoid sheaves
xMbas
Cı , xM

bas
W on C and W , respectively, and a commutative diagram

f � xMX
// xMbas

Cı
// xMCı

�� xMbas
W

//

OO

�� xMW

OO

(2.17)

In case B has a non-trivial log structure, all morphisms are compatible with mor-
phisms from the pullback of xMB . Continuing as in [30, Proposition 1.24], we can
now define the desired basic log structures by fiber product:

Mbas
W DMW � xMW

xMbas
W ; Mbas

Cı DMCı � xMCı
xMbas
Cı :

Each of these defines a log structure with the structure map being the composition of
the projection to the first factor followed by the structure map for that log structure.
The pair of induced morphisms

�bas W C
ı
bas D .C ;M

bas
Cı/! Wbas D .W ;M

bas
W /; fbas W C

ı
bas ! X

have tropicalizations at any geometric point Nw of W given by the universal pre-
stable tropical punctured map to †.X/ over †.B/ of type .G Nw ; g Nw ; � Nw ; u Nw/. Thus
.C ıbas=Wbas; p; f / is a basic punctured map to X . By the construction by fiber prod-
ucts of monoid sheaves, it follows that fbas commutes with the morphisms to B ,
and that .C ı=W; p; f / is the pullback of .C ıbas=Wbas; p; f / by W ! Wbas. The con-
structed basic punctured map is also pre-stable since .C ı=W; p; f / is and by the
definition of Mbas

Cı as a fiber product. Finally, the universal property of the basic
monoid with regard to pre-stable tropical punctured maps in Proposition 2.32 implies
uniqueness.

Remark 2.36. Following [30], our construction of the basic pre-stable punctured
map in the proof of Proposition 2.35 argues pointwise and uses compatibility with
generizations to obtain the universal diagram of ghost sheaves. However, the exis-
tence of an étale sheaf with the stated stalks and generization maps is never checked,
notably in the proof of [30, Lemma 1.23]. We use this occasion to close this gap.
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The basic monoids and generization homomorphisms define a contravariant func-
tor

Pt.W /!Mon; Nw 7! Q Nw (2.18)

from the category of geometric points Pt.W / with specialization arrows, recalled at
the beginning of Appendix C, to the category of monoids. A specialization arrow
Nw ! Nw0 maps to an epimorphism of monoids Q Nw0 ! Q Nw given by localization at a

face and subsequently dividing out the subgroup of invertible elements. In any case,
from a functor as in (2.18) one can define an étale sheaf xMbas by associating to an
étale map h W U ! X the monoid

xMbas.U / D colim Nw!hQ Nw ;

together with the obvious restriction maps. Here the colimit is taken over all factor-
izations of Nw W Spec �. Nw/! X over h. The gap in [30] concerns the implicit claim
that for a geometric point Nw of X the natural map

Q Nw ! xMbas
Nw

is an isomorphism.
This claim is étale local in W . Hence we can assume that the given (non-basic)

log structure MW on W is a Zariski log structure with a global chart that is neat at
some geometric point Nw. We may also assume that the logarithmic stratum containing
Nw lies in the closure of all other strata, and that the restriction map

�.W; xMW /! xMW; Nw

is an isomorphism. By [52, Proposition II.2.1.2] we obtain a continuous map

g W jW j ! S D Spec xMW; Nw

from the topological space underlying W to the monoidal scheme of prime ideals of
xMW; Nw , a finite topological space, together with an isomorphism

g�1 xMS !
xMW :

Here xMS is the structure sheaf of Spec xMW; Nw , a sheaf of sharp monoids.3

Note that a finite topological space is an Alexandrov space. Thus a subset is closed
iff it is closed under specialization, and sheaves (of sets, say) are indeed given by
contravariant functors from the category of points to Sets, see e.g. [46, Section 2].

3We have reinterpreted the statement in [52] as a statement for Kato fans to avoid dealing
with invertible elements, which are irrelevant for our discussion.
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The universal property of basic monoids provides a monoid homomorphism

Q Nw ! xMW; Nw ;

hence a morphism of monoid spectra

k W S D Spec xMW; Nw ! Sbas D SpecQ Nw :

Compatibility of the basic monoids and their universal property with generization
now shows first that .k ı g/�1 xMSbas is a sheaf of monoids with stalks equal to the
basic monoids on W and having the expected generization homomorphisms, hence
defines xMbas

W , and second that the composition

xMbas
W D .k ı g/

�1 xMSbas ! g�1 xMS !
xMW

stalkwise restricts to the classifying homomorphisms for xMW .
A similar argument on C provides the remaining parts of Diagram (2.17).

Proposition 2.37. An automorphism ' W C ı=W ! C ı=W of a basic pre-stable
punctured map .C ı=W;p; f / with ' D idCı is trivial.

Proof. This is identical to [30, Proposition 1.25].

2.4 Global contact orders and global types

A fundamental ingredient in the definition of logarithmic Gromov–Witten invariants
is the global specification of contact orders at the marked points. The local behaviour
of contact orders in families of stable logarithmic maps is captured by the notion of
morphism of types (2.14), implying that generization leads to the possible propaga-
tion of contact orders via face inclusions in†.X/. The global definition can be subtle
in the presence of monodromy, as the following examples show.

Example 2.38. This example is modeled on the well-known toric construction of the
Tate curve. Let Y be the three-dimensional toric variety (not of finite type) defined by
the fan consisting of the collection of three-dimensional cones

†Œ3� D
®
R�0.n; 0; 1/CR�0.nC 1; 0; 1/CR�0.n; 1; 1/CR�0.nC 1; 1; 1/ j n 2Z

¯
and their faces. Projection onto the third coordinate yields a toric morphism Y !A1.
After a base-change

yY D Y �A1 Spec kŒŒt ��! Spec kŒŒt ��;

one may divide out yY by the action of Z defined as follows. This action is generated
by an automorphism of yY induced by an automorphism of Y defined over A1. This
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Flip

Figure 2.7. Tropicalization of a Zariski logarithmic scheme with contact order monodromy:
` D 2.

automorphism is given torically via the linear transformation Z3 ! Z3 given by the
matrix 0@1 0 `

0 �1 1

0 0 1

1A
where ` is a fixed positive integer. We then define X D yY =Z, with log structure
induced by the toric log structure on Y (Figure 2.7).

Then X ! Spec kŒŒt �� is a degeneration of the total space of a Gm-torsor over an
elliptic curve, the torsor corresponding to a 2-torsion element of the Picard group of
the elliptic curve. As long as ` � 2, X has a Zariski log structure. Further, †.X/ is a
cone over a Möbius strip composed of ` squares. If one takes u D .0; 1; 0/ 2 �gp for
any three-dimensional cone in†.X/, then propagating u via chains of face inclusions
identifies u with �u due to the twist in the Möbius strip.

Example 2.39. A variant of the previous example that we learnt from Jonathan Wise
also produces monodromy of infinite order.

Let � � R4 be the cone generated by the following column vectors:

v1 D .0; 0; 0; 1/
t ; v2 D .0; 1; 0; 1/

t ; v3 D .0; 0; 1; 1/
t ; v4 D .0; 1; 1; 1/

t ;

v5 D .1; 0; 1; 1/
t ; v6 D .1; 1; 1; 1/

t ; v7 D .2; 1; 0; 1/
t ; v8 D .2; 2; 0; 1/

t :

The linear transformation of R4 with matrix

A D

0BB@
1 0 �1 2

0 1 �1 1

0 0 1 0

0 0 0 1

1CCA
fulfills

Av1 D v7; Av2 D v8; Av3 D v5; Av4 D v6:
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Thus A�1 D �2 for the two facets

�1 D hv1; v2; v3; v4i; �2 D hv5; v6; v7; v8i

of � .
Now �

gp
1 \ �

gp
2 is the lattice spanned by

x D 2v3 � v1 D 2v6 � v8 D .0; 0; 2; 1/; y D v2 � v1 D v6 � v5 D .0; 1; 0; 0/:

The restriction of A to this sublattice is a shear transformation, hence is of infinite
order:

Ax D x � y; Ay D y:

It is not hard to define a log structure on the nodal cubic curve X with xM_X;q '
� \ Z4 at the node q, and the generization maps to the two branches of C at q dual
to the inclusions �1; �2 ,! � . Then X D .X;MX / has infinite monodromy.

By pulling back MX to a two-nodal curve of arithmetic genus 1, with the map
to X contracting a P1, produces an example with Zariski log structure and infinite
monodromy.

Note that the feature of infinite monodromy can not be seen from the underly-
ing topological space of the tropicalization †.X/. In fact, as a topological space, �
is the cone over a polyhedron „ � R3 that is the convex hull of two disjoint facets
with four vertices each, the intersections of �1, �2 with the affine hyperplane x4 D 1
for x1; : : : ; x4 the coordinates on R4. Thus j†.X/j is the cone over the cell com-
plex obtained from „ by identifying these two facets. But replacing v7, v8 with
.2; 0; 0; 1/t , .2; 1; 0; 1/t and adapting A accordingly produces an example with home-
omorphic j†.X/j and without monodromy.

In the presence of monodromy as in Examples 2.38 and 2.39, the naïve defi-
nition of global contact orders by a reduced subscheme Z � X and a section s 2
�.Z; . xMX jZ/

�/ not extending to any larger subscheme from [30, Definition 3.1]
does not work. We provide here an alternative treatment based on a notion of tangent
vectors for the generalized cell complex †.X/ that suffices for the definition of finite
type moduli spaces and of certain punctured Gromov–Witten invariants also in cases
with monodromy. Some applications such as gluing (Theorem 5.8) in rare cases may
require the more refined definition presented in Appendix A. For the sake of sim-
plicity of presentation, we merely indicate what has to be modified to treat such rare
cases.

2.4.1 Global contact orders

For � 2 †.X/ denote by †� .X/ the star of � , considered as the category †.X/
under � , i.e., the category with objects face embeddings � ! � 0 in †.X/ and arrows
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given by morphisms � 0 ! � 00 commuting with the given morphisms from � . Thus
the star †� .X/ is formed by all cones � Nx D Hom. xMX; Nx;R�0/ with Nx running over
the geometric points of X� . Associating to .� ! � 0/ 2 †� .X/ the free abelian group
N� 0 , viewed as a set, gives a diagram in the category of sets indexed by †� .X/.
This diagram can be viewed as the diagram of integral tangent vectors of †� .X/.
Taking the colimit in the category of sets provides a set of homomorphisms xMX; Nx !

Z for geometric points Nx of X� compatible with all generization homomorphisms.
Elements of this colimit therefore provide a way to specify compatible sets of contact
orders along the stratum X� independently of monodromy.

Definition 2.40. Let � 2 †.X/ and N� W †� .X/! Sets be the diagram in the cat-
egory of sets mapping � ! � 0 to N� 0 . A global contact order for � 2 †.X/, or for
the corresponding stratum X� � X , is an element Nu of

C� .X/ WD colimSetsN� D colimSets
�!� 0N� 0 ;

the set of contact orders for � . For � 0 2 †� .X/, or for a geometric point Nx of X� , we
denote by

��� 0 W N� 0 ! C� .X/; �� Nx W N� Nx ! C� .X/

the canonical maps.
A global contact order is a contact order for some � 2 †.X/. The set of global

contact orders is denoted C.X/ WD
`
�2†.X/ C� .X/.

We say a contact order Nu for � 2†.X/ has finite monodromy if for all .�! � 0/ 2

†� .X/ the set ��1�� 0. Nu/ � N� 0 is finite.
A global contact order Nu2C� .X/ is monodromy-free if for all .�! � 0/2†� .X/

there exists at most one u 2 N� 0 with Nu D ��� 0.u/.

To be explicit, we spell out the definition of �� Nx for Nx a geometric point of X� .
LetZ � X be the smallest logarithmic stratum containing the image of Nx. Then since
Z \X� ¤ ;, the definition of †.X/ provides an isomorphism

� Nx D Hom
�
xMX; Nx;R�0

� '
�! Hom

�
xMX; NxZ ;R�0

�
D �Z

together with a face map �! �Z , unique up to arrows �! � and �Z! �Z in†.X/.
Then �� Nx is defined by composing the induced isomorphism of lattices N� Nx ' N�Z
with ���Z . The definition of C� .X/ is designed to make all maps �� Nx independent of
choices. In particular, a contact order as in (2.4) and (2.12) has an associated global
contact order.

Note that if xMX has monodromy along X� , there is a non-trivial group G of
arrows � ! � in †.X/. In this case, the map ��� W N� ! C� .X/ factors over the
quotient N� ! N�=G of the induced linear action of G on N� . In particular, two
tangent vectors u;u0 2N� define the same global contact order NuD ��� .u/D ��� .u0/
if they are related by monodromy along X� .
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Given a punctured map .C ı=W;p; f / to X and s W W ! C a punctured or nodal
section, each geometric point Nw of W has an associated contact order us. Nw/ at s. Nw/,
giving the contact orders up , uq of (2.12) of the associated tropicalization:

us. Nw/ W xMX;f .s. Nw// ! Z:

Recall also that the contact order for a node, defined in [30, eq. (1.8)], depends on the
choice of an ordering of the two branches of C Nw through the node q, just as uE D uq
depends on the choice of orientation of the edge E. Now for any � 2 †.X/ with
im.f ı s/ � X� and any Nw ! W , we obtain the induced global contact order

u�s . Nw/ D ��f .s. Nw//.us. Nw// (2.19)

The following lemma shows that fixing global contact orders in families of punctured
maps is both an open and closed condition. In particular, prescribing global contact
orders for strata, formalized in the notion of marking below (Definition 3.4), works
well in moduli problems.

Lemma 2.41. Let .C ı=W; p; f / be a punctured map, s W W ! C a punctured or
nodal section, and � 2 †.X/ with im.f ı s/ � X� . Then the function Nw 7! u�s . Nw/

from (2.19), associating to a geometric point Nw of W the global contact order of
.C ı
Nw= Nw;p Nw ; f Nw/ for � , is locally constant.

Proof. The existence of neat charts for the punctured map f W C ı ! X [52, Theo-
rem III.1.2.7] shows that the composition

s�1f �1 xMX ! s�1 xMCı ! Z;

is a morphism of constructible sheaves of sets. See also [52, Theorem II.2.5.4]. This
composition defines the contact order as a function on W . Hence the subset of W
with f of a given contact order is a constructible set. It remains to show that con-
tact orders are compatible with generization. Consider a specialization Nw0 of Nw, with
f ı s. Nw0/D Nx0 a specialization of f ı s. Nw/D Nx. By Proposition 2.25 the face embed-
ding N� Nx ! N� Nx0 dual to generization, which is an arrow in N� , maps the contact
order u Nx 2 N� Nx to u Nx0 2 N� Nx0 . Hence �� Nx.u Nx/ D �� Nx0.u Nx0/, as needed.

Definition 2.42. Let .C ı=W;p; f / be a punctured map, and s WW ! C a punctured
or nodal section with im.f ı s/ � X� for some � 2 †.X/. Then .C ı=W; p; f / is
said to have global contact order Nu 2C� .X/ for � along s if for each geometric point
Nw of W the function in (2.19) fulfills u�s . Nw/ D Nu.

Remark 2.43. A previous version of this paper contained a notion of evaluation stra-
tum for a global contact order. This was meant as the analogue of the pullback via
X ! AX of the image of Z� ! AX in the notion of contact orders based on the
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Artin fan of X developed in Appendix A.2. We decided to remove this part for sev-
eral reasons.

First, the given treatment was ad hoc since unlike in the notion based on Artin
fans, there is no good functorial characterization of schematic evaluation strata based
on families of punctured curves. This lack of a universal property is due to possi-
ble obstructions to deformations of punctured maps not coming from obstructions to
deformations of the evaluation point.

Second, contact orders are naturally selected after fixing a reference stratum, see
Section 3.2 below. In the most important case of realizable types of punctured maps
(Definition 2.44 (2) below), the reference stratum already defines a reduced closed
subscheme of the evaluation stratum for the given contact order. Thus defining a non-
reduced evaluation stratum is pointless in this case. Indeed, so far there has not been
any use of non-reduced evaluation strata in practice, and notably not in the applica-
tions mentioned in the introduction.

Third, should there ever be a need to define a non-reduced evaluation stratum, it
can easily be defined via the theory of contact orders developed in Appendix A.

2.4.2 Global types

As emphasized throughout the paper, a central aspect of the theory of punctured maps
involves the underlying combinatorics in terms of tropical geometry. On the level of
moduli spaces, this aspect is captured by the notion of marking by tropical types.

For this purpose, we need a global version of the type of punctured maps (Def-
inition 2.24). Crucially we replace contact orders by the global contact orders from
Definition 2.40. For readability, we again restrict to the case of simpleX first. The dis-
cussion of the additional data needed for the general case is contained in Section 2.6.

Definition 2.44. (1) A global type (of a family of tropical punctured maps to †.X/)
is a tuple

� D .G; g; � ; Nu/

consisting of a genus-decorated connected graph .G; g/ and two maps

� W V.G/ [E.G/ [ L.G/! †.X/; Nu W E.G/ [ L.G/! C.X/

with Nu.x/ 2 C� .x/ for each x 2 E.G/ [ L.G/. A (type of) punctured maps has an
associated global type by replacing the contact orders by the associated global contact
orders. Morphisms of global types are defined analogously to morphisms of types of
tropical punctured maps in (2.14).

If the composition of Nu with the natural map C.X/! C.B/ equals 0, we say �
is a global type for X=B or relative B .
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(2) A global type � is realizable4 if there exists a tropical map to †.X/ with
associated global type � .

(3) A decorated global type � D .�;A/ of tropical punctured maps is obtained by
adding a curve class A as in (2.13).

(4) A class of tropical punctured maps for a connected X is a decorated global
type with a graph G with only one vertex v, no edges, and all strata � .x/ D ¹0º. We
write a class of tropical punctured maps as ˇ D .g; Nu; A/ with g 2 N, A 2 HC2 .X/
and Nu W L.G/! C¹0º.X/. The class of a decorated global type is the class of tropical
punctured maps obtained by contracting all edges and keeping the set of legs, but
with associated strata 0 2 †.X/ and each global contact order the image under the
canonical map

C� .L/.X/! C¹0º.X/:

For a class ˇ of a global type we write ˇ D .g; k; A/ with k D jL.G/j for the class
of the underlying ordinary stable map.

If X is disconnected, one takes one class of tropical punctured map for each
connected component of X .

We will often drop the adjective “tropical” and refer to a global type, decorated
global type, or class of punctured maps.

The following lemma will only be used in the proof of Proposition 3.24, which in
turn is only used in the dimension formulas of Proposition 3.30.

Lemma 2.45. Let .G;g;� ; Nu/ be a realizable global type, and assume all logarithmic
strata Z� � X for � 2 im.� / are monodromy-free. Then there is a unique type � D
.G; g; � ;u/ of punctured maps with associated global type .G; g; � ; Nu/.

Proof. Indeed, realizability implies in particular that for each x 2 E.G/[L.G/, the
contact order ux 2C� .x/.X/ lies in the image of the natural mapN� .x/!C� .x/.X/.
However, it follows immediately from the definition of C� .X/ that the map N� !
C� .X/ is injective for each � 2 †.X/.

A sufficient condition for the absence of monodromy in Lemma 2.45 is of course
that X is simple.

Remark 2.46 (Relation with types). There are two differences of the notion of global
type to the notion of type in Definition 2.24. First, contact orders are replaced by
global contact orders. Second, the requirement Nu.x/2C� .x/.X/ for x2E.G/[L.G/
does not imply ux 2 N� .x/. The lack of the latter condition for edges makes it impos-
sible to define a basic monoid just depending on a global type.

4The term signifies that the combinatorial data underlies a tropical object. It should not be
confused with realizability in tropical algebraic geometry, which signifies that a tropical object
is the tropicalization of an algebraic object.
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However, some useful discrete data remain. For simplicity we assume X is sim-
ple again, deferring the discussion of the general case to Section 2.6.4. Consider a
tropical punctured map � ! †.X/, with associated type � 0 D .G0; g0; � 0; u0/, basic
monoid Q� 0 as in (2.15), and dual monoid Q_� 0 underlying the corresponding moduli
of tropical maps. We have an associated global type x� 0 D .G0; g0; � 0; Nu0/ as in Def-
inition 2.44 (1) obtained by replacing the contact orders u0.x/ with their images in
C� .x/.X/.

Now fix a contraction morphism � W x� 0 ! � to a global type � D .G; g; � ; Nu/,
with set of contracted edges E� . We claim that there is a well-defined face Q_�� 0
of Q_� 0 , see (2.20), with dual localization (2.21), not requiring a morphism of types
lifting x� 0 ! � . Fix a point of Q_� 0 given as a tuple .Vv; `E /v2V.G/;E2E.G/. Then
.Vv; `E /v;E 2 Q

_
�� 0 if and only if

(1) the position Vv of any vertex v maps to the cell � .�.v// associated to �.v/ 2
V.G/ by � , and

(2) if E 2 V.G0/ is an edge contracted by � then `E D 0.

Here we replaced generic points � and nodal points q in (2.15) by vertices v 2 V.G0/
and edges E 2 E.G0/. It is critical that � .�.v// is a well-defined face of � .v/. This
is where we use the simplicity assumption. DefineQ�� 0 as the dual of this face, given
precisely as:

Q_�� 0 D
®
.Vv; `E / 2 Q

_
� 0 j 8v 2 V.G

0/ W Vv 2 � .�.v//

8E 2 E� W `E D 0
¯
:

(2.20)

We then obtain a localization morphism

��� 0 W Q� 0 ! Q�� 0 ; (2.21)

just as for basic monoids associated to types of tropical punctured maps [3, Defini-
tion 2.31 (3)]. The difference is that now both Q�� 0 and ��� 0 depend not only on the
morphism � W x� 0 ! � of global types, but also on the lift of x� 0 to a type � 0 of tropical
punctured maps.

2.5 Puncturing log-ideals

The punctured points which are not marked points impose extra important constraints
on the possible deformations of a punctured curve, hence of punctured stable maps,
captured by an ideal in the base monoid. This is a key new feature of the theory which
we now describe.

2.5.1 Review of idealized log schemes

We review here the notion of idealized log schemes from [52], as this notion is con-
siderably less common in the literature.
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Given a sheaf of monoids M on a scheme X , we use the term log-ideal for a
sheaf of monoid ideals K �M. The sheaf of monoid ideals K is said to be coher-
ent (see [52, Proposition II.2.6.1]) if locally on X , K is generated by a finite set of
sections.

An idealized log scheme is data .X;MX ; ˛X ;KX / where .X;MX ; ˛X / is an
ordinary log scheme, with ˛X WMX ! OX the structure map, and KX �MX a log-
ideal such that KX � ˛

�1
X .0/. A morphism of idealized log schemes f W .X;KX /!

.Y;KY / is a morphism f W X ! Y of log schemes such that

f [.f �1.KY // �KX :

See [52, Definition III.1.3.1].
If f W X ! Y is a morphism of log schemes and KY �MY is a log-ideal, we

adopt the notation of [52] by writing f �.KY / �MX as the log-ideal generated by
f [.f �1.KY //. We say a morphism f WX ! Y of idealized log schemes is idealized
strict [52, Definition III.1.3.2] if KX D f

�KY .
If W is a fine log scheme and K �MW is a log-ideal, then K is invariant under

the multiplicative action of O�W , and the quotient xK DK=O�W is a log-ideal in xMW .
As the stalks of xMW are finitely generated monoids, the stalks of xK are then finitely
generated ideals.

Lemma 2.47. Let .W;MW / be a fine log scheme and K �MW a log-ideal. Then
the following are equivalent:

(1) K is a coherent sheaf of ideals;

(2) for any geometric points Nx, Ny of W with Ny ! Nx a specialization arrow, the
stalk K Ny is generated by the image of the generization map K Nx !K Ny .

Proof. (1))(2): Suppose K is a coherent sheaf of ideals. Then given geometric
points as in the statement of the lemma, there is an open neighborhood U of Nx and a
finite set of sections S � �.U;MW / generating KjU . In particular, Ny lifts to a geo-
metric point of U and hence K Nx and K Ny are both generated by S . In particular, the
generization map K Nx !K Ny is surjective.

(2))(1): Suppose the generatedness statement always holds. Since MW is fine,
for any geometric point Nx of W , one may find an étale neighborhood U with a chart
� W Q !MW jU inducing an isomorphism Q ! xMW; Nx . Let K � Q be the inverse
image of xK Nx under this isomorphism, and let S � K be a finite generating set.
Then �.S/ provides a subset of �.U;MW /, necessarily generating an ideal sub-
sheaf K 0 of K . However, because of the assumed surjectivity, it follows immediately
that K 0 DK .

Many notions in log geometry have idealized versions. In particular, there are
notions of idealized log étale and idealized log smooth morphisms, defined using ide-
alized versions of formal lifting. We send the reader to [52, Section IV.3.1] for details.
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Morally, an idealized log smooth morphism is one modeled on a morphism between
torus invariant subschemes of toric varieties; alternatively it is a morphism X ! Y

such that there is a closed substack ZX=Y of a relative Artin fan AX=Y [5, Corol-
lary 3.3.5] defined by a monomial ideal such that the induced morphism X ! AX=Y
factors through a smooth morphism X ! ZX=Y . See Proposition B.2 for precise
statements as needed in this paper.

Proposition 2.48. If X ! B is log smooth, and B is log smooth over k or is a log
point, then every stratum X� of X is idealized log smooth over B , where � 2 †.X/.
Here we endow X� with its reduced induced subscheme structure, and with the log
structure induced by the closed embedding X� ,! X .

Proof. Since the statement is étale local in B , we may assume there exists a global
chart B ! AQ D Spec kŒQ�. Note also that by Proposition C.11, X� is irreducible,
hence is set-theoretically the closure of a geometric generic point x� of X� .

Define the log ideal K �MX� on X� by

K.U / WD
®
s 2MX� .U / j ˛X� .s/ D 0

¯
:

To check that .X� ;K/! .B; ;/ is idealized log smooth near a point x 2 X� , we
consider a chart for X ! B as in Proposition B.4, an étale neighborhood h W U ! X

of x fitting into a commutative diagram

U
g
//

$$

B �AQ AP

��

// AP

��

B // AQ;

with all horizontal arrows strict, g W U ! B �AQ AP smooth, P � D ¹0º, and a lift
Qx of x to U mapping to the closed (deepest) stratum of AP . Then we obtain an
isomorphism  W P ! xMX; Nx D .�

_
Nx /Z. Each specialization arrow x�! Nx defines a

face inclusion � ! � Nx , hence a closed reduced substack Z � AP with

h.g�1.B �AQ Z// � �� ;

where Z� is the logarithmic stratum of X with closure X� . Thus if Fi � P denotes
the dual faces of P defined by such specializations, then by the definitions of K and
X� ,

 
�
P n

[
i

Fi

�
D xK Nx � xMX; Nx : (2.22)

Note this gives an alternative, stalkwise definition of the log ideal K , using the rea-
soning in Remark 2.36.
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To show the claim on idealized smoothness, it thus remains to show that the
preimage in U of the closed reduced substacks of AP are reduced for then the sub-
scheme of U defined by P n

S
i Fi agrees with h�1.X� /.

Now a closed reduced substack Z � AP maps onto a closed reduced substack T

of AQ, which by our assumptions on B pulls back to a reduced subscheme S � B .
Therefore B �AQ Z D S �T Z is reduced since S ! T is smooth, and so is its
preimage in U .

2.5.2 Log-ideals of punctured curves

Let .� W C ı ! W; p/ be a punctured curve. For each of the punctures p W W ! C

consider the composition

vp W p
�MCı !

xMW ˚ Z! Z (2.23)

of fine monoid sheaves, with the first map induced by the canonical monoid inclusion
p� xMCı !

xMW ˚ Z and the second map the projection. Denote by 	p � p
�MCı

the sheaf of ideals generated by .vp/�1.Z<0/.

Definition 2.49. The puncturing log-ideal KW �MW of the punctured curve .� W
C ı ! W;p/ is the ideal sheaf[

p

.�[/�1.	p/ �MW ;

with p running over all punctures.

In the context of the definition we abuse notation when writing �[ for the com-
position

MW
�[

�! ��MCı ! ��p�p
�MCı D p

�MCı ;

where as usual p�MCı denotes the pullback log structure, while the right arrow
is induced by the adjunction unit morphism 1 ! p�p

�1 of the associated abelian
sheaves.

We sometimes also refer to the quotient xKW of KW by O�W as the puncturing
log-ideal, but will then write xKW �

xMW for clarity.
An illustration for the definition is contained in Figure 2.8.
This picture indicates an equivalent way to identify xKW . For the stalkwise char-

acterization we may do a strict base change to a geometric point of W and hence
assume W is a log point. For a marking p on a component of C ı with generic point
�, consider the generization map �p;� W xMCı;p !

xMCı;� '
xMW . Identify xMW as a

submonoid of xMCı;p via �[, making �p;� an idempotent homomorphism on xMCı;p

with image xMW . An element m 2 xMW is in xKW if and only if there is a marking p
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Figure 2.8. An idealized punctured point (ideal lightly shaded) and the resulting log ideal (the
horizontal shaded ray). If there are several punctures, one takes the ideal generated by these
horizontal regions.

and an element n2 .up/�1.Z<0/ such that �p;�.n/Dm, where up W xMCı;p!Z is the
contact order associated to the identity morphism. Indeed, if there is n 2 .up/�1.Z<0/
and n0 2 xMCı;p with �[.m/ D n C n0 then, writing n00 D n C �p�.n

0/ we have
m D �p�.n

00/; conversely, if m D �p�.n
00/ with up.n00/ D �b < 0 then, using the

notation of (2.23), we have �[.m/ D n00 C b � .0; 1/.

Lemma 2.50. The puncturing log-ideal KW of a punctured curve .� W C ı ! W; p/
is coherent.

Proof. We verify the characterization of Lemma 2.47. Let Nx; Ny!W with Nx 2 cl. Ny/.
Fix a generization map � Nx Ny W xK Nx ! xK Ny and let m Ny 2 xK Ny . We wish to construct
m Nx 2 xK Nx with � Nx Ny.m Nx/ D m Ny .

We refer to the following commutative diagram of generizations and contact
orders:

xMW; Nx D
xMCı;� Nx

� Nx NyD�� Nx� Ny
// xMCı;� Ny D

xMW; Ny

xMCı;p Nx

�p Nx� Nx

OO

�p Nxp Ny

//

up Nx

��

xMCı;p Ny

�p Ny� Ny

OO

up Ny

��

Z Z

Note that m Ny 2 xK Ny means that there is a puncture p Ny lying on a component with
generic point � Ny of C Ny and an element mp Ny 2 .up Ny /

�1.Z<0/ whose generization is
�p Ny� Ny .mp Ny / D m Ny .

Since MCı is coherent, there is an element mp Nx 2 xMCı; Nx such that

�p Nxp Ny .mp Nx / D mp Ny :
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Note that up Ny ı�p Nxp NyDup Nx , see Lemma 2.41. This impliesmp Nx2.up Nx /
�1.Z<0/.

Write m Nx WD �p Nx� Nx .mp Nx /. By definition m Nx 2 xK Nx .
We obtain thatm Ny D �p Ny� Ny ı �p Nxp Ny .mp Nx /D �� Nx� Ny�p Nx� Nx .mp Nx /D �� Nx� Ny .m Nx/D

� Nx Ny.m Nx/, as needed.

Puncturing log-ideals behave well under pull-backs.

Proposition 2.51. Let .� W C ı ! W; p/ be a punctured curve, .�T W C ıT ! T; pT /
its pullback via h W T ! W and KW , KT the respective puncturing log-ideals. Then
KT D h

�KW .

Proof. Denote by g W C ıT ! C ı the pullback of h to the curves. By coherence of KW

and KT it suffices to check that for each geometric point Nt! T , the image of xKW;h.Nt/

under Nh[
Nt

generates xKT;Nt . Denote by Nw D h.Nt /. For a puncture p of C ı consider the
commutative diagram

xMW; Nw
x�[ //

Nh[

��

xMCı;p. Nw/
//

Ng[

��

xMW; Nw ˚ Z //

��

Z

D

��
xMT;Nt

x�[
T // xMCı

T
;pT .Nt/

// xMT;Nt ˚ Z // Z

The two left squares are cocartesian in the category of fine monoids by the definition
of pullback of punctured curves. This shows first that Ng[. x	p; Nw/ generates x	pT ;Nt , and
in turn that Nh[..x�[/�1. x	p; Nw// generates .x�[T /

�1. x	pT ;Nt /. Taking the union over all
punctures finishes the proof.

Here comes the crucial vanishing property putting restrictions on deformations of
punctured curves.

Proposition 2.52. Let .C ı=W;p/ be a punctured curve and KW �MW its punctur-
ing log-ideal. Then it holds

˛W .KW / D 0:

Proof. Let 	p D v
�1
p .Z<0/ � p�MCı be the ideal sheaf defined after (2.23). Defi-

nition 2.1 (2) implies .p�˛Cı/.	p/ D 0. Pulling back via �[ WMW ! p�MCı thus
yields

˛W ..�
[/�1.	p// D .p

�˛Cı/.	p/ D 0:

The claimed vanishing follows by taking the union over the punctures p.

Proposition 2.52 demonstrates the announced statement that the base of a family
of punctured curves is naturally an idealized log scheme (or stack).

Corollary 2.53. For a punctured curve .C ı=W;p/with KW its puncturing log-ideal,
the triple .W;MW ;KW / is a coherent idealized log scheme.
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Example 2.54. Let .C ı=W;p/ be a punctured curve over the logarithmic pointW D
Spec.Q ! k/, with Q D N2, C a smooth and connected curve and with only one
punctured point p with

xMCı;p D .Q˚N/CN � .a; 0;�1/CN � .0; b;�1/ � Q˚ Z;

for some a; b 2 N n ¹0º. Then the puncturing log-ideal xKW is generated by .a; 0/,
.0; b/. This implies that if we view W as the strict closed subspace of A2 D
Spec kŒt1; t2� with its toric log structure, then the maximal subscheme of A2 to which
.C=W;p/ extends is given by the ideal .ta1 ; t

b
2 / � kŒt1; t2�.

2.5.3 Log-ideals of punctured maps

We define puncturing log-ideals only for pre-stable punctured maps.5

Definition 2.55. The puncturing log ideal KW of a pre-stable punctured map
.C ı=W;p; f / is the puncturing log-ideal of the punctured domain curve .C ı=W;p/,
as defined in Definition 2.49.

It is clear from the definition and Proposition 2.51 that puncturing log ideals of
punctured maps are stable under base change, and they also enjoy the vanishing prop-
erty ˛W .KW / D 0 from Proposition 2.52.

We finish this subsection by giving a tropical interpretation in the spirit of Propo-
sition 2.23 of the radical of the puncturing log-ideal KW of a pre-stable punctured
map, see Proposition 2.57. This interpretation is based on the following technical
result concerning monoid ideals.

Lemma 2.56. Suppose given a sharp toric monoidQ, and a collection of sharp toric
monoids Pp1 ; : : : ; Ppr along with monoid homomorphisms 'pi W Ppi ! Q˚ Z with
upi WD pr2 ı'pi . Let evi WD .pr1 ı'pi /

t W Q_R ! .Ppi /
_
R. Let the ideal I � Q be the

monoid ideal

I D

r[
iD1

˝
pr1 ı'pi .m/ j m 2 Ppi and upi .m/ < 0

˛
:

For � a face of the cone Q_R, let A� D Spec kŒ�? \Q� be the closed toric stratum
of Spec kŒQ� corresponding to � . Then there is a decomposition

Spec kŒQ�=
p
I D

[
�

A�

5If .C ı=W; p; f / has associated pre-stable map . zC ı=W; p; Qf / (Proposition 2.5), the ideal
KW of Definition 2.49 associated to C ı=W may strictly include the corresponding ideal asso-
ciated to zC ı=W .
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where the union is over all faces � ofQ_R such that if x 2 Int.�/, then evi .x/C "upi 2
.Ppi /

_
R for " > 0 sufficiently small and 1 � i � r .6

Proof. Let Ipi � Q be the monoid ideal

Ipi D
˝
pr1 ı'pi .m/ j m 2 Ppi satisfies upi .m/ < 0

˛
:

Of course V.I / D
T
i V.Ipi /. We first show that if � satisfies the given condition,

then A� � V.Ipi / for each i . The monomial ideal defining A� isQ n .�? \Q/, so it
is enough to show that �? \ Ipi D;. Choose an x 2 Int.�/. Let q 2 Ipi be a generator
of Ipi , that is, there exists an m 2 Ppi such that q D pr1.'pi .m// and upi .m/ < 0.
Since m 2 Ppi and evi .x/C "upi 2 .Ppi /

_
R for some " > 0, we have

0 � hevi .x/C "upi ; mi:

Thus hupi ; mi < 0 implies hevi .x/; mi > 0, or hx; pr1.'pi .m//i D hx; qi > 0, as
desired.

Conversely, suppose that A� � V.I / for some face � ofQ_R, but there exists an i
and some x 2 Int.�/ such that evi .x/C "upi 62 .Ppi /

_
R for any " > 0. Then there exists

anm 2 Ppi such that hevi .x/C "upi ;mi < 0 for all " > 0. Since hevi .x/;mi � 0, we
must have hevi .x/; mi D 0 and upi .m/ < 0. Thus q D pr1.'pi .m// lies in Ipi . We
have

hx; qi D hevi .x/;mi D 0;

so q 2 �?. In particular, zq does not vanish on A� , contradicting A� � V.I /.

Proposition 2.57. Let .C ı=W; p; f / be a punctured map to X over the logarithmic
point W D Spec.Q! �/,

h W � D �.G; `/! †.X/

the associated tropical curve over ! D Q_R, and .G; g; � ; u/ its type. Denote byp
xKW � Q the radical of the puncturing log-ideal of .C ı=W;p; f /.
Then a face Q0 � Q lies in Q n

p
xKW if and only if for any punctured leg L 2

L.G/ it holds7

`.L/..Q0/? \ !Z/ ¤ 0:

In other words, Q0 determines a face .Q0/? \ !Z of !Z, and each point of this face
corresponds to a tropical map. Thus we require that the length function `.L/ of each
punctured leg be non-vanishing on this face of !Z.

6See Example 2.58 below.
7Again, see Example 2.58 below.
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Proof. By pre-stability, xKW is generated by those q 2Q such that there exists a punc-
ture pi!C ofC ı andm2 xMX;f .pi / with Nf [.m/D .q;a/ and aD upi .m/< 0. Thus
xKW D I in Lemma 2.56 applied with Ppi D xMX;f .pi /. Using the characterization of

punctured legs in the pre-stable case in Proposition 2.23, the statement to be proved is
then a reformulation of the conclusion of Lemma 2.56 in terms of tropical maps.

Phrased more geometrically, the conclusion of Proposition 2.57 says that exactly
those faces of the basic cone of a tropical punctured map (Definition 2.33) can pos-
sibly arise from a generization of punctured maps if the puncturing legs remain of
positive length.

We end this section with an example highlighting the fact that the natural base
spaces in punctured Gromov–Witten theory are possibly reducible spaces due to the
puncturing ideals. See Theorem 3.25 and Remark 3.27 for the general picture under-
lying this phenomenon.

Example 2.58. Algebraic setup. Take B D Spec k, and consider X a smooth sur-
face with log structure coming from a smooth rational curve D � X with D2 D 2.
Consider a type of punctured maps of genus 0, underlying curve class ŒD�, and four
punctures, p1; : : : ; p4, with contact orders �1;�1; 2 and 2 respectively. Consider a
punctured curve f W C ı ! X where C D C1 [ C2 [ C3 has three irreducible com-
ponents and two nodes q1 D C1 \ C2, q2 D C1 \ C3. We assume p1; p3 2 C2,
p2; p42C3. Finally, f identifies C1 with D and contracts C2 and C3. Orienting
the node qi from C1 to Ci , it is not difficult to check such a curve exists with
uq1 D uq2 D 1 (Figure 2.9).

The tropical curve. The corresponding tropical curve � has three vertices, v1, v2, v3,
edges Eq1 , Eq2 , and legs Ep1 ; : : : ; Ep4 . The moduli space of tropical curves of this
type is R3�0, with coordinates �, `1, `2, where � gives the distance of the image of v1
from the origin of †.X/ D R�0, and `1, `2 give the lengths of the edges Eq1 , Eq2 .
In particular, the basic monoid for this punctured log curve is Q D N3, generated by
�, `1, `2.

The punctured ideal. In this case we may easily calculate the puncturing ideal (Defi-
nition 2.55). We have contributions from each of the two punctures. Using the defini-
tion, we note that at the puncture pi , i D 1 or 2, the map 'x� ı ��;pi W Ppi D N !Q

is dual to evi WQ_R! .Ppi /
_ D R�0 evaluating the tropical curve parametrized by a

point atQ_R at v2 or v3, see Lemma 2.56. Thus form 2Q_R, evi .m/D �.m/C `i .m/.
Dually 'x� ı ��;pi W P ! Q is given by 1 7! � C `i . As upi .1/ D �1, i D 1; 2,
we see the puncturing ideal K is generated by � C `1; � C `2. Writing kŒQ� D
kŒx; y; z�, with the three variables corresponding to �; `1; `2 respectively, we see
Spec kŒQ�=K D Spec kŒx; y; z�=.xy; xz/, which has two irreducible components of
differing dimension.
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Figure 2.9. The algebraic map and its tropical counterpart. Here � D 1, `1 D 2, and `2 D 1.

The participating and excluded cones. The decomposition
S
� A� of Lemma 2.56

translates to the statement that the cones excluded in this decomposition are the origin,
the `1-axis, and the `2-axis. Indeed, these are the cones where at least one puncture is
positioned with its tail at the origin, hence forced to have length 0, which is excluded
by Proposition 2.57.

The components of the algebraic moduli space. Note that deformation theory pro-
vides two deformation classes of the punctured map. The first smooths one or both
of the nodes, resulting in a punctured map with at least one pair p1, p3 or p2, p4
now being distinct points on the component of the domain mapping surjectively to
D. Since this component contains a negative contact order point, its image cannot be
deformed away from D by Remark 2.20.

The second deformation class keeps the domain of f fixed, but deforms the image
of C1 away from D, so that it meets D transversally in two points. The remaining
components C2 and C3 are then contracted to the points of intersection of f .C1/
with D. It is then no longer possible to smooth the nodes.

The data captured by the ideal. This local reducibility of moduli space happens
despite the obstruction group H 1.C; f �‚X / for deformations with fixed domain
(see Chapter 4) being zero. The point of the puncturing ideal is that it captures
these intrinsic singularities of the moduli space. These obstructions really come from
obstructions to deforming the punctured domain curve.

The general picture explaining this phenomenon is developed in Section 3.5. In
particular, Example 3.32 revisits the present example from the general perspective.
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2.6 Targets with monodromy

We now drop the assumption that X is simple and discuss what is needed to treat the
general case.

2.6.1 Tropicalization of punctured maps with non-simple targets

Let .C ı=W; p; f / be a punctured map over a logarithmic point W D Spec.Q! �/

with � algebraically closed. Then the inclusion of a nodal point q or punctured point
p into C ı is a geometric point of C that we denote by Nq and Np, respectively. For
a node q of C , the generic points �; �0 2 Spec OC; Nq of the two branches of C at Nq
provide two specialization arrows of geometric points (see Appendix C)

x�! Nq; x�0 ! Nq;

unique up to order and precomposition with an isomorphism in the category of geo-
metric points in Spec OC; Nq . The node q is a self-intersection point of C iff x�, x�0 have
the same image in C , that is, iff they are isomorphic as geometric points of C . In
any case, denoting by G the dual intersection graph of C ı, each specialization arrow
x�! Nx with x 2 E.G/ [ L.G/ gives rise to a face inclusion

Q_ D xM_C;x� !
xM_C; Nx : (2.24)

The equality on the left-hand side is the canonical isomorphism obtained since C ı is
a log smooth curve over Spec.Q! �/.

Applying f yields a specialization arrow f .x�/! f . Nx/ and a corresponding face
embedding

xM_X;f .x�/ !
xM_X;f . Nx/ (2.25)

Our tropicalization procedure for f W C ı ! W requires us to choose, for each x 2
V.G/ [E.G/ [ L.G/ with associated geometric point Nx of C , an isomorphism

Hom
�
xMX;f . Nx/;R�0

�
! � .x/ (2.26)

in †.X/. Composing these isomorphisms or their inverses with the arrow in (2.25)
defines an arrow

�x� W � .�/! � .x/

in †.X/. If †.X/ is simple there is only one arrow � .�/! � .x/ in †.X/. In the
general case, the �x� are part of the data defining the tropicalization, up to the simul-
taneous action of

G D
Y

x2V.G/[E.G/[L.G/

Aut†.X/.� .x// (2.27)
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on the choices of isomorphisms (2.26). Note that G may not act transitively on the
set of arrows � .�/! � .x/, and then the specialization morphism x�! Nx in C at a
node or marked point distinguishes a G-orbit of such arrows.

We emphasize that if x D q is a node there are two such arrows, regardless if q
is self-intersecting or not, one for each branch of C at q. Thus the proper labelling
would not be by pairs .�; q/ but by half-edges of the dual intersection graph G of
C ı. By abuse of notation we nevertheless denote these two half-edges by .q; �/ and
.q; �0/.

Given a node q with adjacent geometric generic point x�, we can compose f [
x� W

xMX;f .x�/ !
xMC;x� with the identification xMC;x� D Q and the isomorphisms (2.26),

and dualize to obtain the map of cones

V� W Q
_
! � .�/:

The defining equation [3, eq. (2.22)] of the contact order uq 2 � .q/ at q now takes
the form

�q�0 ı V�0 � �q� ı V� D `.Eq/ � uq; (2.28)

an equality in Hom.Q_; � .q//. Here �0 is the other geometric generic point of
Spec OC; Nq as above.

The pair .V�; V�0/, or equivalently .V�; `.Eq/; uq/, determines the tropicalization
of .C ı=W;p; f / at q. At a marked point p, the tropicalization is similarly defined by
V� and the contact order up .

Taken together, we obtain the following description of the tropicalization of
.C ı=W;p; f /.

Proposition 2.59. The tropicalization of a punctured map .C ı=W; p; f / to X with
W D Spec.Q! �/ an algebraically closed logarithmic point is given by the abstract
tropical curve .G; g; `/, i.e. the tropicalization of C ı=W , and the tuple

.V�; ux; �x�/�;x;

as discussed. Here � 2 V.G/, x 2 E.G/ [ L.G/, with � adjacent to x for �x� , and
the data is subject to (2.28). A self-intersecting node q produces two arrows �x� , as
commented on above. The tuple .V�; ux; �x�/�;x is unique up to the obvious action of
G from (2.27) on the set of tuples.

Conversely, a tropical punctured map over !2Cones consists of two maps �!!
and � ! †.X/ of generalized cone complexes. Lifting both maps locally near the
strata of j�j labeled by vertices, edges and legs to maps of cone complexes provides
a tuple .V�; ux; �x�/�;x that is again unique up to the action of G. Thus we have a
one-to-one correspondence between tropical punctured maps and G-orbits of tuples
.V�; ux; ��x/�;x . Note in particular that each individual contact order ux 2 � .x/,
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x 2 E.G/ [ L.G/, is only defined up to the action of Aut†.X/.� .x//, but more
information is retained when considering contact orders simultaneously and together
with the set of face inclusions �x� . Here is a simple example illustrating the effect of
monodromy on the procedure.

Example 2.60. This is a modification of the Whitney umbrella example in [4, Sec-
tion 5.4.1]. Let C be the nodal cubic with its log smooth structure over the standard
log point Spec.N ! k/. Define X as the quotient of .A1 n ¹0º/ � C by the Z=2-
action that swaps the two branches of C at the node and acts by multiplication by
�1 on A1 n ¹0º. We can view X as a non-trivial, log smooth fibration over .A1 n
¹0º/ � Spec.N ! k/ with all fibers Xs isomorphic to the nodal cubic C . Thus X
is irreducible with two logarithmic strata with closures X and X sing, respectively.
Denoting by x�0, x�1 geometric generic points for these strata, we have xMX;x�0 D N,
xMX;x�1 D N2. The tropicalization †.X/ has a presentation with two non-zero cones

�0 D R�0; �1 D R2�0;

and non-trivial arrows the two face inclusions �0 ! �1 and the automorphism �1 !

�1 swapping the two coordinates.
The inclusion C ! X of a closed fiber defines a stable log map with unique

generic point �, one node q, and no marked points. We have � .�/ D �0, � .q/ D �1,
and a unique arrow (2.26) in †.X/ for x D �, hence a unique map of cones V� W
Q_ D R�0 ! �0. There are, however, two choices of isomorphisms

Hom
�
xMX;f . Nq/;R�0

�
! � .q/ D �1:

Each such choice gives two arrows �q�; �q�0 W �0 ! �1 and a contact order uq . If one
choice gives

.V�; uq; �q�; �q�0/

for the tuple in Proposition 2.59, the other choice swaps �q� , �q�0 and replaces uq by
�uq . This is indeed the action of G D Z=2 on the set of tuples as stated in the same
proposition.

The relation to the Whitney umbrella Y D V.x2z � y2/ � A3 is as follows.
Endow Y with the restriction of the divisorial log structure on A3 defined by Y . We
view Y n V.z/ as a fibration over A1 n ¹0º by one-nodal rational curves via projection
to the z-coordinate. Then there is an étale map Y n V.z/! X of degree two of fiber
spaces over A1 n ¹0º that separates the branches of the fibers of X ! A1 n ¹0º.

2.6.2 Types of punctured maps with non-simple targets

One way to define the type of a punctured map in general is as an equivalence class of
tropicalizations which identifies two tropical punctured maps whenever they fit into
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one family. The action of the automorphism group G on a face map �x� in Proposi-
tion 2.59 is induced by propagation along appropriate families. Thus in the general
case, the type of a punctured map at a geometric point, or of a tropical punctured
map, in addition to .G;g;� ;u/ needs to specify these face maps �x� , at least up to the
overall action by G. This leads to the following modification of Definition 2.24.

Definition 2.61. (1) A framed type (of a family of tropical punctured maps) is a tuple
.G;g;� ;u/with u.x/2N� .x/ for all x 2E.G/[L.G/ as in Definition 2.24, together
with arrows8 in †.X/,

�xv W � .v/! � .x/;

for all x 2 E.G/ [ L.G/ and v 2 V.G/ an adjacent vertex.
(2) The type (of a family of tropical punctured maps) is an equivalence class of

framed types under the obvious action of G on the set of framed types, as obtained
from Proposition 2.59. The notation for a framed type is .G; g; � ; u; �/ with � D
.�xv/x;v .

The type of a punctured map .C ı=W; p; f / to X at a geometric point Nw of W is
the type of the associated tropical map � ! †.X/ over ! D . xM_W; Nw/R.

Note that G acts trivially on the domain data .G; g/, the strata map � and on
global contact orders. So for framed types the action is on the tuple .u.x/; �xv/ with
x running through E.G/ [ V.G/ and v through vertices adjacent to x. In particular,
since the group G acts also trivially on the space C� of global contact orders for
� 2 †.X/, the definition of global type in Definition 2.44 remains unchanged.

We skip the obvious decorated versions of the notions of types in the general case.
These just add the data of curve classes to vertices.

2.6.3 Contraction morphisms of types for non-simple targets

The definition of contraction morphism of types

� W � D .G; g; � ;u/! � 0 D .G0; g0; � 0;u0/

from [3, Definition 2.24] imposes the condition that � 0.�.x// is a face of � .x/ for
all x 2 V.G/ [ .E.G/ n E�/ [ L.G/. In the general case, this condition has to be
replaced by the choice of an arrow

� 0.�.x//! � .x/

in †.X/ as part of the data defining �. We obtain the following definition.

8In the case of a self-intersecting node x D q there are two such arrows, which as before
we do not distinguish by the notation.
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Definition 2.62. (1) Let � D .G; g; � ; u; �/, � 0 D .G0; g0; � 0; u0; �0/ be two framed
types. A contraction morphism of framed types � ! � 0 is a contraction morphism
� W .G; g/! .G0; g0/ of genus-decorated graphs together with arrows

�x W �
0.�.x//! � .x/

in †.X/ for all x 2 V.G/ [ .E.G/ n E�/ [ L.G/. We require that the �x are com-
patible with �, �0, that is, the diagrams

� 0.�.v//
�v //

�0
�.x/�.v/

��

� .v/

�xv

��

� 0.�.x//
�x // � .x/

(2.29)

commute, for all x 2 .E.G/ nE�/ [ L.G/ and all v 2 V.G/ an adjacent vertex.9

(2) An equivalence class for the obvious action of the group G from (2.27) acting
on the set of contraction morphisms with domain framed types with given .G; g; � /
defines the notion of contraction morphism of types.

There is again no change in the definition of contraction morphism of global types
compared to the case with simple X .

As in the discussion of types in the preceding Section 2.6.2, we have again skipped
spelling out the trivial generalization to the decorated versions.

Contraction morphisms arise from specializations in families of punctured maps,
as proved in the case of simple X in Proposition 2.25. Here is the version for the
general case.

Proposition 2.63. Let .C ı=W; p; f / be a stable punctured map to X over some
logarithmic scheme W , and let Nw0 ! Nw be a specialization arrow of geometric
points of W . Let .�; A/ with � D .G; g; � ; u; �/ be the decorated framed type of
.C=W; p; f / at the geometric point Nw of W according to Definition 2.61 (2) by a
choice of arrows (2.26). Let similarly .� 0;A0/ with � 0 D .G0; g0; � 0; u0/ be the deco-
rated framed type of .C ı=W;p; f / at Nw0, for the induced choice of arrows (2.26).

Then the map
.�;A/! .� 0;A0/

induced by generization is a contraction morphism.

Proof. The proof is again identical to the proof of [3, Lemma 2.30] save keeping
track of the choices of arrows in †.X/.

9Note that �0
�.x/�.v/

is uniquely determined by the diagram from �v , �xv , �x .
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2.6.4 The basic monoid and tropical moduli in general

The definition of basicness (Definition 2.31) makes sense in complete generality by
replacing “type” by “a framed type representing the type of .C ı=W; p; f / at the
geometric point Nw”. Indeed, given a framed type, the space of tropical curves of the
given framed type is a subspace of the set of tuples .V�; `q/ with entries taking values
in strongly convex rational polyhedral cones and subject to some integral equalities,
hence is parametrized by a strongly convex rational polyhedral cone itself. This cone
has been made explicit in Proposition 2.32 in the case of simpleX . Here is the restate-
ment of this proposition with reference to a framed type.

Proposition 2.64. Let .� W C ı=W;p; f / be a basic, pre-stable punctured map over a
logarithmic point Spec.Q! �/ with � an algebraically closed field. Denote byG the
dual intersection graph of C ı. For each x 2 V.G/ [ E.G/ [ L.G/ with associated
geometric point Nx of C ı and smallest stratum � .x/ 2 †.X/ containing f . Nx/ choose
an isomorphism

�x W xMX;f . Nx/ ! .� .x/Z/
_;

dual to an arrow in †.X/ as in (2.26). Denote by .G; g; � ; u; �/ the framed type
of .� W C ı=W; p; f / defined by this choice according to the discussion leading to
Proposition 2.59. Then the map

Q_ !
°
..V�/�; .`q/q/ 2

Y
�

� .�/Z �
Y
q

N j �q� ı V� � �q�0 ı V�0 D `q � u.q/
±

(2.30)
with V�-entry the dual of .�[�/

�1 ı Nf [
x� ı �

�1
� W � .�/

_
Z ! Q and `q-entries given by

the dual of the classifiying map
Q
q N ! Q of the log smooth curve C=W , is an

isomorphism. Here � and q run over the set of generic points and nodes of C , respec-
tively. The equation in the bracket holds in N� .q/ for all nodal points q with adjacent
generic points �, �0 ordered according to the orientation of Eq (with the usual ambi-
guity of notation concerning self-intersecting nodes).

Proof. The proof is identical to the proof of Proposition 2.32 once the refined tropi-
calization procedure of Section 2.6.1 is taken into account.

With this description of the basic monoid in the general case the proof of Propo-
sition 2.34, which proves that basicness is an open condition, generalizes without
problems.

The final point we want to discuss concerns the monoid quotient

��� 0 W Q� 0 ! Q�� 0 ; (2.31)

of basic monoids from (2.21) obtained from a framed type � 0 and contraction mor-
phism x� 0 ! � of the associated global type. The basic monoid Q� 0 depends only on
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the framed type, as spelled out in (2.30). But note that the group G from (2.27) gen-
erally acts non-trivially on the right-hand side of (2.30), so the basic monoid is not
intrinsic to the type.

Similarly, the description of Q�� 0 in (2.20) requires the knowledge of the image
of the arrows �v W � .�.v//! � 0.v/, hence works only for a contraction morphism
of framed types as follows. Let .C ı=W; p; f / be a basic punctured map and Nw a
geometric point of W . Then a choice of isomorphisms in (2.26), or equivalently of
� D .�x/ in Proposition 2.64, provides a framed type � 0 D .G0; g0; � 0; u0; �0/ and an
isomorphism of xM_W; Nw with the submonoid Q_� 0 �

Q
� �
0.�/_Z �

Q
q N on the right-

hand side of (2.30). Let � W x� 0 ! � be a contraction morphism of the global type x� 0

associated to � 0 to some other global type � D .G; g; � ; Nu/. Then each choice �� of
arrows

�v W � .�.v//! � 0.v/; v 2 V.G/

in †.X/ provides a face Q_�� 0.��/ � Q� 0 as in (2.20), hence a dual localization mor-
phism

��� 0.�; ��/ W xMW; Nw
'
�! Q� 0 ! Q�� 0.��/

as in (2.31). Thus this quotient of xMW; Nw depends on both the choices of � and ��.
Note that Q�� 0 ¤ 0 only if there exists a degeneration of tropical punctured maps of
framed type � compatible with the restriction on the images of vertices given by ��.

The schematic restriction to punctured maps of global type � is then locally
reflected in the monoid ideal

I�� 0 D
\
�

.��� 0.�; ��//
�1.Q�� 0.�/ n ¹0º/ � xMW; Nw : (2.32)

Note that unlike in the simple case, SpeckŒQ� 0 �=I�� 0 may now be a reducible scheme.
See Definition 3.4 (3) for the use of this ideal in a moduli context.


