
Chapter 3

The stack of punctured maps

Throughout this chapter we fix as the target a morphism X ! B locally of finite type
between separated, locally noetherian fs logarithmic schemes over k. We assume
further that X is connected and that X ! B fits into a commutative diagram

X //

��

AX

��

B // AB

with strict horizontal arrows, AB the Artin fan of B , and AX an Artin fan repre-
sentable over Log or over Log1. If X has a Zariski log structure and X ! B is log
smooth then [3, Proposition 2.8] shows that we can take the Artin fan of X for AX ,
which is representable over Log by definition. In general, [5, Corollary 3.3.5] pro-
vides the desired diagram with AX representable over Log1.1 We define

X D B �AB AX ;

which by abuse of notation we refer to as the relative Artin fan of X ! B .

3.1 Stacks of punctured curves

The purpose of this section is the introduction of stacks of punctured curves as do-
mains for punctured maps.

3.1.1 Stacks of marked pre-stable curves

For a genus-decorated graph .G;g/ recall from [3, Section 2.4] the logarithmic stacks
M.G; g/ of .G; g/-marked pre-stable curves over the ground field k with its basic
log structure as a nodal curve, and MB.G; g/ D LogM.G;g/�B of .G; g/-marked log
smooth curves over B with arbitrary fs log structures on the base. For a leg L 2 L.G/
denote by pL the associated marked section.

3.1.2 The nodal log-ideal on M.G; g/

Since the basic monoid of an r-nodal curve is Nr , each .G; g/-marked nodal curve
C ! W comes with a homomorphism Nr ! xMW with r D jE.G/j. The image of

1The representability assumption is used in the proof of Lemma 3.11.
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Nr n ¹0º generates a coherent sheaf of ideals x	 � xMW with preimage 	 �MW map-
ping to 0 under the structure homomorphism MW ! OW . Thus 	 endows M.G; g/
with the structure of an idealized log stack.

Definition 3.1. We refer to 	 and to any pullback of 	 to a stack over M.G; g/ such
as M.G; g/ (and MM.G; g/ below) as the nodal log-ideal.

The local structure of moduli spaces of nodal curves implies that M.G;g/with the
nodal log-ideal is idealized logarithmically smooth over the trivial log point Spec k.
If .C=W; p/ is a .G; g/-marked curve, the log ideal is generated at a geometric point
Nw of W by those standard basis vectors of xMW; Nw ' Nr mapping to the smoothing

parameters of the nodes labeled by E.G/.

3.1.3 Enter stacks of punctured curves

We now define a stack MMB.G;g/ of punctured curves by admitting arbitrary punctur-
ings at these marked sections.

Definition 3.2. Let .G; g/ be a genus-decorated graph. A .G; g/-marking of a punc-
tured curve .C ı=W;p/ is a .G;g/-marking of the underlying marked curve .C=W ;p/.
The stack MMB.G;g/ is the fibered category over .Sch=B/with objects .G;g/-marked
punctured curves .C ı=W; p/ over B . Morphisms are given by strict fiber diagrams
of punctured curves respecting the markings by .G; g/.

Note that the morphisms in MMB.G; g/ are pull-backs of punctured curves as de-
fined in Definition 2.13.

The maps associating to a .G; g/-marked punctured curve the underlying .G; g/-
marked nodal curve with its basic log structure defines a morphism of logarithmic
stacks

MMB.G; g/!M.G; g/: (3.1)

3.1.4 The stacks of punctured curves are algebraic

Proposition 3.3. (1) The stack MMB.G; g/ is a logarithmic algebraic stack.
(2) Endowing MMB.G; g/ with the idealized log structure defined by the union of

its puncturing log-ideal (Definition 2.49) and its nodal log-ideal (Definition 3.1) and
MB.G; g/ with its nodal log-ideal, the strict morphism

MMB.G; g/!MB.G; g/

forgetting the puncturing, is locally of finite type, quasi-separated, representable,
unramified, and idealized logarithmically étale.
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Proof. We argue by showing that the morphism MMB.G; g/ !MB.G; g/ is repre-
sentable by algebraic spaces, satisfying the adjectives spelled out in (2).2 This is
sufficient as MB.G; g/ is a logarithmic algebraic stack.

The stack MB.G;g/ is locally noetherian, so it has a covering tW˛!MB.G;g/
in the strict smooth topology, where W˛ are noetherian logarithmic schemes. Letting
W be one of these, define

MW D W �MB .G;g/
MMB.G; g/;

viewed as a category fibered in groupoids over W , or, equivalently, over the cate-
gory of strict morphisms T ! W . It suffices to prove that MW is an algebraic space
satisfying the conditions of (2).

We show this directly by exhibiting MW as a sheaf of sets, with representable diag-
onal, having an étale covering by a scheme, and satisfying the above conditions.

The morphismW !MB.G;g/ corresponds to a .G;g/-marked logarithmic curve
� WC !W . Spelled out, the formation of MW means that for any strict morphism T !

W , the objects in MW .T / are punctured curves .C ıT ! CT ! T; pT / with punctures
at the markings of CT . Here CT D C �W T ! T is the pullback of the logarithmic
curve C ! W . Pull-backs in MW are defined as pull-backs of punctured curves along
strict morphisms over W . The markings by .G; g/ are inherited from C=W and do
not play any further role.

First, we note that MW is a sheaf of sets over W . We have to show that any auto-
morphism of the log curve parametrized by W induces at most one automorphism
of any corresponding punctured curve above it. Indeed, an isomorphism of punc-
tured curves over the identity of a given logarithmic curve is a pullback diagram as
in Diagram (2.3), with h W T D W ! W and CT D C ! C the identity. Such an
isomorphism is an equality of the submonoids of M˚O� P gp in the notation of Def-
inition 2.1. In particular, such an isomorphism is unique when it exists.

Second, Isom functors are representable, in fact by open subschemes of the base
T . Indeed, the locus on CT where two logarithmic structures inside M

gp
CT

coincide is
open in CT (as can be deduced from Lemma 2.17), and its complement is a closed
subscheme of the markings ofCT , whose image in T is closed. The complement is the
desired open subscheme of T . In particular, MW ! MW �W MW is an open embedding;
once we prove MW is locally of finite type over W , we will know the diagonal MW !
MW �W MW is quasi-compact. This will prove the quasi-separatedness in (2).

Third, it now remains to construct an étale atlas by a scheme, and verify the
various adjectives in (2).

We note that the statements of the proposition are both local on W . Further
shrinking W , we may assume that the Artin fan AW equals AQ for an fs and sharp
monoid Q.

2A simple reduction to known stacks would be welcome.
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To prove both statements of the proposition, it suffices to proceed as follows: For
any object C ıT ! CT ! T in MW .T /,

(1) we will construct a locally of finite type, unramified, idealized logarithmically
étale, and strict morphism V ! W , for V some log scheme,

(2) show that T ! W factors through V ,

(3) construct a punctured curve C ıV ! CV ! V , and

(4) show that C ıT ! CT ! T is the pullback of C ıV ! CV ! V .

(5) Finally, we will show that the tautological morphism V ! MW defined by the
family C ıV ! CV ! V is étale.

In particular, we obtain an étale cover tV ! MW of the sheaf MW by ordinary schemes,
or equivalently, by strict étale morphisms of log schemes.

Since the statements above are étale local on T , we may assume the Artin fan
AT equals AQ0 for some fs sharp monoid Q0. Since the puncturing ideal KT of
.C ıT ! T;pT / is coherent, further shrinking T we may assume that there is a monoid
ideal K � Q0 such that the corresponding log ideal K on AQ0 pulls-back to KT .

The strict morphism T ! W induces a strict open embedding AQ0 ! AQ.
ReplacingW by its strict open subschemeW �AQ AQ0 , we may assume thatQDQ0.

Step 1. Construction of V !W . Fix any point t 2 T over the unique closed point of
AQ. Consider the monoid ideal K D xKT jt � Q. Let V ! AQ be the strict closed
embedding defined by the ideal K, and KV be the corresponding log ideal over V .
Then V ! AQ is finite type, strict, and idealized logarithmically étale. Thus the
projection V WD V �AQ W ! W with the log ideal KV WD KV jV is a finite type,
strict closed embedding and idealized logarithmically étale.

Step 2. T ! W factors through V . Recall that KT is the pullback of K . By Propo-
sition 2.52 applied to C ıT =T the image ˛T .KT / D .˛AQ.K//T is the zero ideal.
Hence the morphism T ! AQ factors through V . Consequently, T ! W factors
through V , as claimed.

For the point t as in Step 1, we denote its image in V by w.

Step 3. Construction of the punctured curves C ıV ! CV ! V . To construct the sheaf
of monoids xMCı

V
, first notice that the inclusion xMCV �

xMCı
V

is an isomorphism
away from the points of p. For each puncture pw 2 pw overw, we define xMCı

V
;pw WD

xMCı
T
;pt using the fiber over t . Let pT ; pV be the punctured sections corresponding

to pw of C T =T , C V =V respectively. Note that we have

xMCı
T
;pt

Š
�! �

�
T ; p�T

xMCı
T

�
; xMCT ;pt D

xMCV ;pw D Q˚N
Š
�! �

�
V ; p�V

xMCV

�
:

Define xMCı
V
� xM

gp
CV

as the subsheaf of fine monoids generated by the image of
xMCı

V
;pw �

xM
gp
CV ;pw

under this isomorphism.
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Consider MCı
V
WDM

gp
CV
� xM

gp
CV

xMCı
V

. Observe that MCV �MCı
V

. We define the

structure morphism ˛Cı
V
WMCı

V
!OCV as follows. First, we require ˛Cı

V
jMCV

D˛CV .
Second, for a local section ı of MCı

V
not contained in MCV , we define ˛Cı

V
.ı/ D 0.

This defines a monoid homomorphism. Indeed, using the decomposition MCı
V
�

M˚O�
Cv

P gp as in Definition 2.1, write ı D .ı0; ı00/ with ı0 the pullback of a section
of MV . It is sufficient to check that when ı …MCV we have ˛V .ı0/ D 0.

In the notation of Section 2.5.2 the assumption ı …MCV implies ı 2 	p . Hence
according to Definition 2.49 we have ı0 2KV . As V is defined by ˛V .KV / D 0, we
have ˛V .ı0/ D 0 as needed.

This defines a logarithmic structure MCı
V

over C V . The inclusion of logarithmic
structures MCV � MCı

V
is a puncturing, hence defines a punctured curve C ıV !

CV ! V .

Step 4. C ıT ! CT ! T is the pullback of C ıV ! CV ! V via i W T ! V . Denote
by j W C T ! C V the pullback of i . Since CT ! T is given by base change from
CV !V , it suffices to show that j �MCı

V
DMCı

T
as sub-sheaves of monoids in M

gp
CT

.
Away from the punctures, the equality clearly holds. Along each puncture p 2 pT , we
have the equality j � xMCı

V
;pw D

xMCı
T
;pt at pt by the construction in Step 3, which

extends along the marking p by generization. This proves the desired equality.

Step 5. Étale covering. Consider a strict, square-zero extension T ! T 0 over W
and a family of punctured curves C ıT 0 ! CT 0 ! T 0 such that CT 0 D C �W T 0, and
C ıT ! CT ! T is the pullback of C ıT 0 ! CT 0 ! T 0. Since the strict morphism
T 0!AQ again factors through AQ0 , we may continue to assumeQDQ0. Applying
Step 2 again, we see that T 0 ! W factors through V uniquely.

Denote by t 0 2 T 0 the image of t via T ! T 0. The family C ıV ! CV ! V is
constructed using the same geometric fiber over t . Applying Step 4 again, we see that
C ıT 0 ! CT 0 ! T 0 can be obtained via pulling back C ıV ! CV ! V .

This shows that V ! MW is formally étale, and we claim it is actually étale, in
other words, for any scheme T 00 and morphism T 00 ! MW , we need to show that
T 00 � MW V ! T 00 is locally of finite presentation. The question being local, we may
assume T 00 ! MW factors through some V 00 ! MW in our covering, and may as well
replace T 00 by V 00. In this case V � MW V 00 ! V �W V 00, the pullback of the diagonal
MW ! MW �W MW along V �W V 00 ! MW �W MW , is an open embedding. As V , V 00

and W are noetherian, the map V � MW V 00 ! V 00 is of finite presentation.

Moreover, since tV ! W is locally of finite presentation and tV ! MW is étale
and surjective, we have that MW ! W is locally of finite presentation, see [67, Sec-
tion 06Q1]. As indicated earlier, this implies that the diagonal is quasi-separated,
completing the proof.
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3.2 Stacks of punctured maps marked by tropical types

3.2.1 Weak markings and markings

In analogy with [3, Definition 2.31] we define the following notion.

Definition 3.4. Let � D .G; g; � ; Nu/ be a global type of punctured maps (Defini-
tion 2.44). A weak marking by � of a basic punctured map .C ı=W; p; f / to X is a
.G; g/-marking of the domain curve .C ı=W; p/ (Definition 3.2) with the following
properties:

(1) The restriction of f to the closed subschemeZ �C (a subcurve or punctured
or nodal section of C ) defined by x 2 V.G/[E.G/[L.G/ factors through
the closed stratum X� .x/ � X (Section 2.2.1).

(2) For each geometric point Nw of W with � Nw D .G Nw ; g Nw ; � Nw ; u Nw/ the associ-
ated type of .C ı=W; p; f / at Nw (Definition 2.24), the contraction morphism
.G Nw ; g Nw/! .G; g/ of decorated graphs given by the marking defines a con-
traction morphism of the associated global types

.G Nw ; g Nw ; � Nw ; Nu Nw/! � D .G; g; � ; Nu/: (3.2)

A weak marking of .C ı=W; p; f / by � is a marking if in addition the following
condition holds.

(3) For all geometric points Nw of W , the ideal in MW; Nw defined by the monoid
ideal I�� Nw� xMW; Nw in (2.32) maps to 0 under the structure morphism MW; Nw!

OW; Nw .

A marking of .C ı=W; p; f / by a decorated global type � D .�;A/ is defined anal-
ogously, with the associated types replaced by associated decorated types introduced
in (2.13).

In the definition, basicness is not necessary for (1) and (2), but is needed when
referring to (2.32) in (3).

Note that a marking of a punctured map by a global type � does not mean that � is
realizable. It just means that there is a contraction morphism x� 0 ! � from the global
type x� 0 associated to a realizable type � 0, the type of the given punctured map.

Remark 3.5. The difference between weak markings and markings is fairly subtle
and is related to saturation in the definition of the basic monoid. Recall first the con-
struction of the basic monoid from [30, Construction 1.16]. Let f W C=W ! X be
a punctured map defined over a log point. The basic monoid Q associated to this
log map was constructed as the saturation of a quotient of the monoid

Q
�2C P� �Q

q2C N. Here � runs over generic points of C and q runs over the nodes of C .
Denote byQfine this quotient before saturating, so thatQ is the saturation ofQfine, as
in [30, eq. (1.14)].
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Now suppose that f W C=W ! X is a weakly � -marked log map with W an
arbitrary fs log scheme, but suppose in addition that for every geometric point Nw of
W , C Nw ! X is of type � . Thus xMW is locally constant with stalk Q. The proof of
Lemma 3.21 below implies in particular that if s is any section of MW whose image
Ns in xMW has stalk lying in Qfine n ¹0º at each geometric point, then ˛W .s/ D 0.
However, the condition for being marked requires this vanishing even when Ns lies in
Q n ¹0º.

For an explicit example where Qfine is not saturated, see [30, Example 1.17 (3)].
There, Qfine is the submonoid of Z2 generated by .1;�6/, .0; 2/ and .0; 3/. In such
a situation, it is not difficult to construct an example of a weakly � -marked but not
� -marked curve, as follows.

Start with a basic � -marked log map f W C=W ! X with W a log point, and
assume thatQ 6DQfine. LetW fineD Spec.Qfine!k/. Since all nodal generators �E 2
Q already lie in Qfine by construction, we may find a sub-log structure MC fine �MC

so that C fine ! W fine is a log smooth curve (in the category of fine log schemes) and
f induces a morphism C fine! X . SaturatingW fine may yield a non-reduced scheme
W sat with reduction W . The composition

C sat
WD C fine

�W fine W sat
! C fine

! X

yields a stable log map in the category of fs log schemes which is weakly marked, but
not marked, by � .

In the cited example [30, Example 1.17 (3)],Q is the submonoid of Z2 generated
by .1;�6/ and .0; 1/, and one checks that

W sat
Š Spec kŒQ�=hz.1;�6/; z.0;2/i;

which is a scheme of length two.

Under the presence of monodromy, the following more refined version of marked
punctured maps using framed types rather than global types is sometimes more appro-
priate, notably in gluing. Note however that framed types work with contact orders
living on a single stratum X� . Hence this refined notion is inappropriate when study-
ing punctured maps with a contact order propagating into several X� not contained
in a single stratum.

Definition 3.6. Let � D .G; g; � ;u; �/ be a framed type of a family of tropical punc-
tured maps (Definition 2.24). A weak marking by � of a basic punctured map .C ı=W;
p; f / to X is a weak marking by the global type .G; g; � ; Nu/ associated to � , along
with, for each x 2 E.G/ [ L.G/ with associated nodal or punctured locus Zx � C ,
a homomorphism of sheaves of monoids

�.x/ W .f jZx /
�1 xMX ! � .x/_Z;
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whose stalkwise duals at all geometric points Nw ofW are arrows in†.X/, and which
lift the contraction morphism of global types (3.2) to a contraction morphism of
framed types (Definition 2.62). Here � .x/_Z is the constant sheaf with stalks the dual
of the set of integral points of � .x/.

A marking by a framed type is then defined by replacing I�� 0 in Definition 3.2 (3)
by ��1�� 0.Q�� 0 n ¹0º/, noting that�.x/makes it possible to defineQ�� 0 and ��� 0 unam-
biguously and consistently.

Remark 3.7. We expect that all results that we formulate for (weak) markings by
global types hold for (weak) markings by framed types. Since the framed notions
have only been included in a late revision of the paper, we nevertheless decided to
leave the full development of this modified theory to other occasions. We emphasize
that in most applications one is either interested in simple X from the outset or one
can reduce to this situation, and in this case the framed perspective does not provide
any additional information.

3.2.2 Enter stacks of punctured maps

We continue to assume that X ! B is a morphism of fs log algebraic schemes ful-
filling the assumptions stated at the beginning of Chapter 3.

Definition 3.8. Let � D .G; g; � ; Nu;A/ D .�;A/ be a decorated global type (Defini-
tion 2.44). Then

M.X=B;�/ and M.X=B; �/

are defined as the stacks over .Sch=B/ with objects basic stable punctured maps to
X over B (Definition 2.15) marked by � and by � , respectively (Definition 3.4).

Weakening stability to pre-stability, the analogous stacks to the relative Artin fan
X of X over B , as defined at the beginning of Chapter 3, are denoted3

M.X=B;�/ and M.X=B; �/:

The corresponding stacks with markings replaced by weak markings are denoted by
the same symbols adorned with primes:

M0.X=B;�/; M0.X=B; �/; M0.X=B;�/; M0.X=B; �/:

An important special case is that � is the class ˇ D .g; Nu; A/ of a punctured
map (Definition 2.44). Then G is the graph with only one vertex v of some genus
g, stratum � .v/ D 0 2 †.X/, and curve class A, no edges, and any number of legs.

3Stability being a concept for graphs decorated by genera and curve classes, there does exist
a stable version of M.X=B;�/. We omit this variant.
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Recalling from Section 2.2.1 that the stratum of X associated to the origin 0 2 †.X/
equals X , the resulting stacks

M0.X=B; ˇ/ DM.X=B; ˇ/; M0.X=B; ˇ/ DM.X=B; ˇ/ (3.3)

restrict only the total genus and total curve class, as well as the number of punctures
and their global contact orders.

Remark 3.9. We will see in Proposition 3.30 that for a realizable global type � the
moduli spaces M.X=B; �/ of � -marked punctured maps to X=B are reduced and
pure-dimensional, at least for simple X . For a general global type the reduction of
M.X=B;�/ is stratified by the images of the morphisms M.X=B;� 0/!M.X=B;�/

for realizable types � 0 dominating � , see Remark 3.31 below. Thus from the stratified
point of view, markings as in Definition 3.4 (3) are the correct notion. This feature
explains their appearance in [3, Definition 2.31].

However, the notion of weak marking, as in Definition 3.4 (1)–(2), appears nat-
urally in gluing situations. Notably the commutative square in Theorem 5.8 is only
cartesian with weak markings. For applications in Gromov–Witten theory, one works
with cycles in the moduli spaces of punctured maps appearing in this diagram and
the difference between markings and weak markings disappears, possibly up to com-
putable multiplicities. See for example [71] where this approach is taken.

3.2.3 The stacks are algebraic

Theorem 3.10. Let X ! B be a morphism of fs logarithmic schemes fulfilling the
assumptions stated at the beginning of Chapter 3, and let � D .G;g;� ; Nu;A/D .�;A/
be a decorated global type of punctured maps to X . Then the stacks

M.X=B;�/; M.X=B; �/; M.X=B;�/; M.X=B; �/

are logarithmic algebraic stacks locally of finite type over B . Moreover, M.X=B; �/
and M.X=B; �/ are Deligne–Mumford, and the forgetful morphisms to the stack
M.X=B/ of ordinary stable maps are representable.

Analogous results hold for the weakly marked versionsM0.X=B;�/, M0.X=B;�/,
M0.X=B;�/, M0.X=B; �/.

Proof. We first restrict to M0.X=B; �/ and then comment on the minor changes for
the other cases.

Step 1: An algebraic stack of prestable maps. Denote by

MC D MC.G; g/! MM D MM.G; g/

the universal curve over the logarithmic algebraic stack MM.G; g/ of .G; g/-marked
punctured curves from Definition 3.2 and Proposition 3.3. This morphism is proper,
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flat, integral, of finite type and has geometrically reduced fibers. Hence [70, Corol-
lary 1.1.1] applies to show that

Hom MM

�
MC; MM �f

B X
�

is representable by a logarithmic algebraic stack, locally of finite type.4

The rest of the proof is analogous to [3, Proposition 2.34].

Step 2: Carving out weakly marked basic stable maps. Condition (1) in Definition 3.4
of marking by � defines a closed substack of Hom MM

. MC; MM �f
B X/, while all the

remaining conditions in Definition 3.4 (2) are open, see Proposition 2.63. Note here
we are using that curve classes are locally constant in flat families. The condition on
a map being basic is open by Proposition 2.34; stability is open since it is open on the
underlying stable maps. Thus the morphism

M0.X=B;�/! Hom MM

�
MC; MM �f

B X
�

forgetting all parts of the marking except the .G; g/-marking of the domain curve
identifies the stack M0.X=B; �/ with an open substack of a strict closed substack of
Hom MM

. MC; MM �f
B X/.

Step 3: Verifying properties. By Proposition 2.37, logarithmic automorphisms of basic
stable maps acting trivially on underlying maps are trivial. Hence M0.X=B; �/ !

M.X=B/ is representable. Since M.X=B/ is a Deligne–Mumford stack, so is
M0.X=B;�/. Ignoring curve classes yields the statement for M0.X=B; �/.

Step 4: Weakly marked maps to X. The morphism X ! B from the relative Artin
fan is well behaved.

Lemma 3.11. The morphism X ! B is quasi-separated, locally of finite type, and
has affine stabilizers.

Proof. It suffices to verify these properties for the morphism AX ! AB . This is
shown in [6, Lemma 2.5.5] in caseX!B is logarithmically smooth, and we indicate
here why the argument applies here. Since the properties claimed are local in B (or
AB ), we may assume AB is an Artin cone A� . Since AX has a cover by étale maps
from Artin cones A�!� , we have that AX is locally of finite type.

Quasiseparation follows in the same way as in [6, Lemma 2.3.8 (ii)], applied to
AX!AX �AB AX instead of AX!AX �AX and using representability over Log1

instead of Log: one needs to show, for two charts A�1!� and A�2!� of AX , that
A�1!� �AX A�2!� is quasicompact. By [6, Lemma 2.3.8 (i)] and representability

4This last property is not explicitly stated in [70], but follows by inspection of the proof.
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it suffices to show that the stack A�1!� �Log1 A�2!� has finitely many points. The
argument of [6, Lemma 2.3.8 (ii)] then applies as stated.

The claim about stabilizers follows as in [6, Lemma 2.5.5].

It follows that [70, Corollary 1.1.2] still applies. The rest of the proof for the
stacks M0.X=B; �/ and M0.X=B; �/ is the same, except we can not conclude the
Deligne–Mumford property due to the absence of stability.

Step 5: Marked maps. Stacks of marked maps are closed substacks of stacks of
weakly marked maps, locally defined by the log-ideal I�� Nw in Definition 3.4 (3).5

Hence the result also holds for these cases.

3.3 Boundedness
For ordinary stable logarithmic maps, boundedness of M.X=B; ˇ/ is established
in [2, 30] for projective X ! B under the technical assumption that xMX is globally
generated. Reference [5] removed the technical assumption by showing that there is
a logarithmic blowing up Y ! X with xMY globally generated and then using bira-
tional invariance of the moduli spaces M.X=B; ˇ/ under this process. Since this
birational invariance seems to be rather more subtle in the punctured case, we content
ourselves with a statement assuming global generatedness, which suffices for most
practical applications. Throughout this and the next subsections we assume that the
log structure on X is Zariski as in [30], which we follow. We believe this assumption
could be removed by minor adaptations of the proof.

Theorem 3.12. Suppose the underlying family X ! B is projective, and the sheaf
xM

gp
X ˝Z Q is generated by its global sections.6 Then the projection M.X=B;ˇ/!B

is of finite type.

Proof. We split the proof into several steps. The theorem follows from Proposi-
tions 3.16 and 3.17 below.

Global generatedness of xMgp
X ˝Z Q can be easily read off from the cone complex

†.X/ as follows.

Proposition 3.13. The sheaf xMgp
X ˝Z Q is generated by global sections if and only

if there exists a continuous map

j†.X/j ! Rr

with restriction to each � 2 †.X/ an injective homomorphism of additive monoids.

5For a much more detailed discussion of this point, in terms of the idealized structure
defined by markings, see Section 3.5 below, and notably Theorem 3.25.

6Samuel Johnston in [39] has meanwhile removed the global generatedness assumptions
along the same line as [5].
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Proof. A map j†.X/j ! Rr which is injective when restricted to any � 2 †.X/ is
dual to a system of surjective homomorphisms

'� W R
r
! Hom.�;R/;

compatible with the dual of the face maps defining †.X/. But such a compatible
system .'� /�2†.X/ of surjections is equivalent to a linear map

Rr ! �
�
X; xM

gp
X ˝Z R

�
D �

�
X; xM

gp
X ˝Z Q

�
˝Q R

with composition to xMgp
X;x ˝Z R surjective for each x 2 X . The claim follows.

Remark 3.14. We remark that if xMgp
X ˝Z Q is generated by global sections, then all

global contact orders ofX are monodromy free, which we see as follows. The map of
Proposition 3.13 gives a well-defined map C� .X/!Zr �Rr . Indeed, if � 0 2†� .X/
and u 2 N� 0 , we may view u as an integral tangent vector (i.e., an element of N� 0) to
� 0 2 †.X/ and take its image under the map j†.X/j ! Rr . Since u is compatible
with inclusion of faces, this provides a point v of Zr �Rr only depending on ��� 0.u/
(see Definition 2.40 for notation). Since j†.X/j ! Rr is injective on cones, v arises,
for each � 0, as the image of at most one u 2 N� 0 . Hence all global contact orders are
monodromy free.

3.3.1 Boundedness of M.X=B;ˇ/

Definition 3.15. A class ˇ of a punctured map (Definition 2.44) is called combi-
natorially finite if the set of types (Definition 2.24) of stable punctured maps with
associated class ˇ is finite.

Proposition 3.16. Suppose ˇ is combinatorially finite. Then the forgetful map

M.X=B; ˇ/!M.X=B; ˇ/ (3.4)

is of finite type.

Proof. The strategy of the proof is similar to those in [30, Section 3.2] and [15,
Section 5.4] by showing that each stratum with constant combinatorial structure is
bounded. The proof is largely the same, with extra care needed only in the proof
of [30, Proposition 3.17].

By Theorem 3.10, M.X=B; ˇ/ ! B is locally of finite type, and hence so is
the morphism M.X=B; ˇ/ ! M.X=B; ˇ/. Thus it is sufficient to prove the latter
morphism is quasi-compact. We thus need to show thatW �M.X=B;ˇ/M.X=B;ˇ/ is
quasi-compact for any quasi-compact scheme W and morphism W !M.X=B; ˇ/.
Using [30, Lemma 3.14], it is enough to find a weak cover in the sense of [30,
Definition 3.13] of W ! M.X=B; ˇ/ by finitely many quasi-compact subsets. We
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may weakly cover W by a finite number of locally closed strata on which the cor-
responding ordinary stable map is combinatorially constant (in the sense of [30,
Definition 3.15]), and replace W with one of these locally closed strata. Thus we
may assume given f D .C=W ;p; f / a combinatorially constant ordinary stable map
over an integral, quasi-compact scheme W . Then W �M.X=B;ˇ/ M.X=B; ˇ/ classi-
fies punctured enhancements of the ordinary stable maps parametrized byW , and we
need to show this fiber product is quasi-compact.

As the combinatorial type of a log curve with constant dual intersection graph is
locally constant, we have a decomposition

W �M.X=B;ˇ/ M.X=B; ˇ/ D
a

u

M.X; f;u/

into disjoint open substacks according to the type u. As ˇ is assumed combinatorially
finite, this is a finite union. Hence it is sufficient to show that each M.X; f; u/ is
quasi-compact. As in the proof of [30, Proposition 3.17], it is sufficient to construct
a quasi-compact stack Z with a morphism Z ! M.X; f; u/ which is surjective on
geometric points.

To do so, set Q1 WD Nk , where k is the number of nodes of any fiber of C !
W . By Proposition 2.32 and the fact we have fixed the type u, the basic monoid Q
is constant on M.X; f; u/, and there is a canonical morphism Q1 ! Q. The latter
induces a morphism of Artin cones AQ_ ! AQ_

1
. We equip W with the canonical

log structure coming from the family of pre-stable curves C ! W , and consider
Z1 D AQ_ �A

Q_
1

W . Pulling back the universal family from W , we obtain a family

of log curves C1 ! Z1 and an ordinary stable map f W C 1 ! X=B . Observe that
there is a global chart Q ! xMZ1 . To check Z1 is quasi-compact we can, and do,
replace Z1 with its underlying reduced substack.

The type u prescribes, for each marked section p 2 p, an ideal sheaf

x	p � xMW ˚ Z � p� xMgp
C

generated by u�1p .Z<0/, which, we note, is constant along Z1. These ideals produce
an ideal xK �Q as in Definition 2.49 by taking into account all punctures in p. Denote
by K D xK � xMZ1

MZ1 the resulting log ideal, where the arrow on the left is given

by the composition xK ! Q! xMZ1 with the last arrow the global chart.
To obtain a family of punctured stable maps of type u over Z1 then requires

that ˛Z1.K/ D 0 by Proposition 2.52. Thus in particular if 0 2 xK , then there are no
punctured maps of type u and we can ignore such a u; otherwise, as Z1 is reduced
and xMZ1 is locally constant with stalk Q, necessarily ˛Z1.K/ D 0. Indeed, any
local section m of K maps to a nowhere zero section of xMZ1 , and hence ˛Z1.m/ is
nowhere invertible, thus zero, since Z1 is reduced.
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We now construct a punctured family of curves C ı1 ! Z1. First, the ghost sheaf
xMCı

1
is identical to xMC1 away from the punctures. Along each puncture p 2 p, we

take xMCı
1
;p �

xM
gp
C1;p

to be the smallest fine submonoid generated by xMC1;p and the
image of f �1 xMX !

xM
gp
C1;p

determined by the type u. As all the ghost sheaves and
morphisms between them are constant along Z1, this yields a well-defined sheaf of
monoids xMCı

1
, hence MCı

1
WD xMCı

1
� xM

gp
C1

M
gp
C1

over C 1.

We define the structure homomorphism ˛Cı
1
WMCı

1
! OC1 by ˛Cı

1
jMC1

D ˛C1
and ˛Cı

1
jM

Cı
1
nMC1

D 0. The same argument as in the proof of Proposition 3.3, Step 3,
shows that this defines a logarithmic structure MCı

1
, hence the desired punctured

curve C ı1 ! Z1.
The remainder of the proof is now identical to that of [30, Proposition 3.17].

3.3.2 Finiteness of the combinatorial data

In order to complete the proof that M.X=B; ˇ/ is finite type, it remains to bound the
combinatorial data.

Proposition 3.17. Suppose xMgp
X ˝Z Q is generated by its global sections. Then any

class of punctured map ˇ is combinatorially finite.

Proof. Arguing stratawise as in [30, Section 3.2], it is sufficient to show that for any
combinatorially constant family of ordinary stable maps .C=W ; p; f / in the sense
of [30, Definition 3.15], there are only finitely many combinatorial types of liftings
of such a family to a punctured log curve of type ˇ. Since types are constant along
a combinatorially constant family, we may further assume that W is the spectrum of
a field. Finiteness of the number of types of a logarithmic stable map with a given
underlying stable map over a field with fixed contact orders up is proved in [30,
Theorem 3.9].

One small difference in our setup concerns the definition of contact orders. In [30]
these were given by a sheaf homomorphism xMZ ! N, hence were fixed at f .p/ by
the underlying ordinary stable map and the contact orders up . In contrast, a global
contact order may give an infinite set of maps xMX;f .p/ ! Z. The argument is saved
under the assumption that xMgp

X ˝Z Q is generated by its global sections: The injectiv-
ity statement in Proposition 3.13 implies that there is at most one local representative
of up .

3.4 Valuative criterion

We now show stable reduction for basic stable punctured maps, which allows us to
conclude properness of the moduli spaces of such maps. Recall that for a given class
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ˇ D .g; Nu; A/ of stable punctured maps to X ! B , we have the class ˇ D .g; k; A/
for ordinary stable maps to X ! B by removing contact orders. We will show that

Theorem 3.18. Assume that the log structure onX is defined in the Zariski topology.
Then the tautological morphism removing all logarithmic structures

M.X=B; ˇ/!M.X=B; ˇ/

satisfies the valuative criterion for properness.

Proof. In what follows, we assume given R a discrete valuation ring over B with
maximal ideal m, residue field � D R=m, and fraction field K. Suppose we have a
commutative square of solid arrows of the underlying stacks:

SpecK //

��

M.X=B; ˇ/

��

SpecR //

88

M.X=B; ˇ/:

We want to show that there is a dashed arrow making the above diagram commutative,
which is unique up to a unique isomorphism.

The top arrow of the above diagram yields a stable punctured map

.�K W C
ı
K ! Spec.QK ! K/;pK ; fK/

over the logarithmic point Spec.QK ! K/. The bottom arrow of the above diagram
yields an ordinary stable map .C= SpecR; p; f / with its generic fiber given by the
underlying stable map of fK . To construct the dashed arrow, it suffices to extend the
stable punctured map fK across the closed point 02 SpecR with the given underlying
stable map f . The task is to then extend the logarithmic structures and morphisms
thereof. The proof is almost identical to that of [30, Theorem 4.1]. Since that proof is
quite long, we only note the salient differences.

Reference [30, Section 4.1] accomplishes this extension at the level of ghost
sheaves; in particular, [30, Proposition 4.3], which states that the type of the cen-
tral fiber is uniquely determined by the stable log map on the generic fiber, carries
through with up for a puncture p determined as for marked points. Indeed, if p is a
punctured point on C 0 in the closure of the punctured point pK on CK , then up must
be the composition

Pp ! PpK
upK
���! Z; (3.5)

where the first map is the generization map .f � xMX /p ! .f � xMX /pK . In particular,
the contact orders up and upK both have global contact order as specified in ˇ.
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By Proposition 2.32, the type of the central fiber then determines the extension
xMCı of xMCı

K
and a map Nf [ W f � xMX !

xMCı extending the corresponding map on
the generic fiber. Here xMCı is defined at punctures by pre-stability via Corollary 2.7.

Next, [30, Section 4.2]7 shows that the logarithmic structure on the base SpecR
is uniquely defined. In this argument, marked points play no role, and the argument
remains unchanged in the punctured case. In particular, this produces a unique choice
of logarithmic structure MR on SpecR, which in addition comes with a morphism
of logarithmic structures M0

R ! MR where M0
R is the basic logarithmic structure

(pulled back from the moduli space of pre-stable curves M with its basic logarithmic
structure, see [30, Appendix A]) associated to the family C ! SpecR. In particular,
one obtains a logarithmic structure .C ;M0C /D .SpecR;MR/�.SpecR;M0

R
/ .C ;M

0
C /,

where M0
C is the logarithmic structure pulled back from the basic logarithmic struc-

ture of the universal curve over M.X=B; ˇ/. The logarithmic structure M0C then has
logarithmic marked points along the punctures p, but there is a sub-logarithmic struc-
ture MC �M0C which only differs in that we remove the marked points, that is, we
make .C ;MC /! .SpecR;MR/ strict away from the nodes.

By Corollary 2.7, there is a natural inclusion xMCı � . xM
0
C /

gp. We form MCı WD

xMCı �. xM0
C
/gp .M

0
C /

gp and define a structure homomorphism ˛Cı WMCı ! OC by
˛Cı jMC 0

D ˛C 0 and ˛Cı.MCı nM0C / D 0, as in Proposition 3.3, Step 3. To show
that this is a homomorphism, it is enough to show that if s 2MCı;p nM0C;p , writing
s D .s1; s2/ as a stalk of MC ˚O�

C
P gp, then ˛C .s1/ D 0. But necessarily .Ns1; Ns2/ D

Nf [.m/C .Ns01; Ns
0
2/ for some m 2 Pp with up.m/ < 0 and .Ns01; Ns

0
2/ 2

xMC;p ˚N. Write
for points x;x0 2C with x in the closure of x0 the generization map �x0;x WPx!Px0 .
Then upK .�pK ;p.m// D up.m/ by (3.5). Thus upK .�pK ;p.m// < 0 and necessar-
ily ˛CK .s1jCK / D 0. But since C is reduced and CK is dense in C , this implies
˛C .s1/ D 0, as desired. Thus we have a punctured log scheme C ı.

We can now extend f [K W f
�
KMX ! MCı

K
to f [ W f �MX ! MCı as in [30,

Section 4.3].

Corollary 3.19. Let � D .G; g; � ; Nu;A/ be a decorated global type of punctured
maps (Definition 2.44) and assume X ! B is projective, the log structure on X is
Zariski, and xMgp

X ˝Z Q is globally generated.8 Then M.X=B; �/! B is proper. In
particular, M.X=B; ˇ/ is proper for any ˇ D .g; Nu; A/.

7We take the opportunity to correct an error, pointed out by the referee of the current paper,
in the first paragraph of [30, Section 4.2]. Two descriptions of a set U.�/ are given. The first
description, as the set of generizations of points in A, the set of non-special points in C 0, is
not correct (it is not necessarily an open set). Thus the reader should rely only on the second
description of the set U.�/.

8Again, the latter assumption has been removed by [39].
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Proof. Theorem 3.12 shows that M.X=B; ˇ/! B is of finite type. Properness for
� D ˇ now follows from the valuative criterion verified in Theorem 3.18.

For general �, the proof of [3, Proposition 2.34] generalizes to the present punc-
tured setup to exhibit M.X=B;�/ as a closed substack of the base change of the stack
M.X=B; ˇ/ by the finite map M.G; g/!M.

3.5 Idealized smoothness of M.X=B; �/ ! B

For simplicity of presentation, we restrict to X simple throughout this section. Thus
for any �; � 2 †.X/ there is at most one arrow � ! � in †.X/.

3.5.1 Marking log-ideals

Let � D .G; g; � ; Nu/ be a global type of punctured maps. Recall from the discus-
sion after Definition 3.1 that the moduli stack M.G; g/ of .G; g/-marked pre-stable
curves with its nodal log ideal sheaf is idealized logarithmically smooth over the
trivial log point Spec k. A similar result holds for our moduli spaces M.X=B; �/.
To introduce the idealized structure let .� W C ı ! W; p; f / be a � -marked basic
punctured map and let Nw of W be a geometric point. Let � Nw D .G Nw ; g Nw ; � Nw ; u Nw/
be the type of the punctured map over Nw, equipped with its marking contraction
morphism � W � Nw ! � (Definitions 2.24 and 3.4 (2)), with set of contracted edges
E� . For the sake of Definition 3.20 below, we introduce the following notation. For
x 2 V.G Nw/[L.G Nw/[ .E.G Nw/ nE�/ the face inclusion � .�.x//! � Nw.x/ is dual
to a localization map

�x W Px ! P�.x/

of stalks of xMX . We also have homomorphisms

'x W Px ! xMCı;x; ux W Px ! Z

defined by Nf [
Nw and by the contact order u Nw . For uniformity of notation we define

ux D 0 for x 2 V.G Nw/. Moreover, by Definition 2.18 of contact order, 'x.u�1x .0// �
xMCı;x is contained in the image of x�[x W xMW; Nw!

xMCı;x . For the following definition
recall also the homomorphism ��� Nw W Q� Nw ! Q�� Nw from (2.21).

Definition 3.20. The � -marking ideal x	�W of the � -marked basic punctured map .� W
C ! W;p; f / is the sheaf of ideals in xMW with stalk at the geometric point Nw of W
generated by the following subsets:

(i) (Target stratum generators) the preimage under x�[x of 'x.Px n ��1x .0// for
x 2 V.G Nw/ [ L.G Nw/ [ .E.G Nw/ nE�/;

(ii) (Nodal generators) the nodal generators �E 2 xMW; NwDQ� Nw forE2E.G Nw/n
E� ;

(iii) (Basic monoid generators) ��1�� Nw .Q�� Nw n ¹0º/.
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The collection of stalks x	�W; Nw � xMW; Nw in Definition 3.20 form a coherent ideal
x	�W �

xMW . Indeed, we obtain a sheaf by the method of Remark 2.36, and, as W
is fine and saturated, we may apply Lemma 2.47, noting that all generating sets are
compatible with generization. As usual, we also refer to the preimage 	W �MW of
x	W under MW !

xMW as the � -marking ideal. Without the generators specified in
(iii) we speak of the weak � -marking ideal.

3.5.2 The base of a punctured map is idealized by the marking log-ideal

The � -marking ideal defines an idealized log structure on base spaces of � -marked
punctured maps as follows.

Lemma 3.21. Let .C ı=W; p; f / be a � -marked basic punctured map. Then the � -
marking ideal 	W �MW maps to 0 under the structure homomorphism MW !OW .

Proof. It is enough to show that any lift s 2 MW; Nw of an element of one of the
generating sets satisfies ˛W .s/ D 0. This holds for elements described in (iii) of Def-
inition 3.20 by Definition 3.4 (3).

Similarly, Definition 3.4 (1) guarantees the required vanishing for elements de-
scribed in (i) of Definition 3.20. Indeed, consider first the case of x D v 2 V.G Nw/,
where we defined uv D 0. Then

u�1v .0/ n �
�1
v .0/ D Pv n �

�1
v .0/;

and ˛X .Pv n ��1v .0//� OX locally generates the ideal 	X� .�.v//
� OX of the stratum

X� .�.v// in X . Thus, the condition that the restriction of f to the closed subscheme
of C corresponding to �.v/ factors throughX� .�.v// implies the desired vanishing in
this case. A similar argument works for legs and edges.

Finally, the lift to MW; Nw of a nodal generator �E 2 xMW; Nw lies in the nodal log-
ideal (Definition 3.1) of the .G; g/-marked curve C=W , which maps to zero in OW
by Proposition 3.3 (2).

Remark 3.22. Omitting the last set (iii) of generators in Definition 3.20 leads to
the idealized structure for moduli spaces of weakly marked punctured maps (Defini-
tion 3.4).

As shown in Proposition 2.52, the base W is also idealized by the puncturing log
ideal K . It is therefore natural to combine the two.

Definition 3.23. We call the union 	� [K of the � -marking and the puncturing
log ideals the canonical idealized structure on our � -marked moduli spaces such as
M.X=B; �/.
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3.5.3 The realizable case

While the definition of the � -marking ideal may seem complicated, in fact in the
case we most frequently need it, namely the realizable case, the canonical idealized
structure has a simpler description: By Lemma 2.45 there is a unique lift to a type,
and the associated basic monoid already knows about marked strata, non-deforming
nodes and punctures.

Proposition 3.24. If � is a realizable global type, then x	�W; Nw C xKW; Nw with xKW the
puncturing log ideal (Definition 2.55) is given by the set (iii) in Definition 3.20.

Proof. Denote by � W Q� Nw ! Q�� Nw the localization homomorphism from (2.21) de-
fined by the � -marking of .C ı=W; p; f /. By Lemma 2.45 there is a unique type of
punctured map with associated global type � . Hence in particular Q�� Nw agrees with
the basic monoid for a tropical punctured map of this type and does not depend on Nw.
We write this basic monoid as Q� . Denote by R � Q� Nw the ideal ��1.Q� n ¹0º/.

We need to show that R contains the elements listed in (i) and (ii) of Defini-
tion 3.20 as well as generators of the puncturing log ideal stated in Definition 2.49.
Adopting the notation given in Definition 3.20, for v 2 V.G Nw/ we have a commuta-
tive diagram

Pv

�v

��

'v // Q� Nw

�

��

P�.v/ '�.v/
// Q�

The fact that � is realizable implies that'�.v/ is a local homomorphism, i.e.'�1
�.v/

.0/ D

¹0º. Indeed, dually, the map Q_� ! P_
�.v/

is given by evaluation of the tropical map
at the vertex v, and realizability implies the image of this map intersects the interior
of P_

�.v/
. This is equivalent to the local homomorphism statement. But this implies

that 'v.Pv n ��1v .0// � �
�1.Q� n ¹0º/ D R.

In the case of a leg L, we similarly have a diagram

PL

�L

��

'L // Q� Nw ˚ Z

�˚id
��

pr1 // Q� Nw

�

��

P�.L/ '�.L/
// Q� ˚ Z pr1

// Q�

Again, '�.L/ is necessarily local by realizability. Note that, with � WQ� Nw !Q� Nw ˚Z
given by m 7! .m; 0/,

��1
�
'L
�
PL n �

�1
L .0/

��
D ��1

�
'L
�
u�1L .0/ n ��1L .0/

��
D pr1 ı'L

�
u�1L .0/ n ��1L .0/

�
:
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Thus pr1 ı'L.u
�1
L .0/ n ��1L .0// � ��1.Q� n ¹0º/ D R, as desired. In fact we obtain

more from this. If instead p 2 PL with uL.p/ < 0, then pr1.'L.p// is a generator
of xKW; Nw , and �.pr1.'L.p/// is a generator of the puncturing ideal for the type � .
But as the type is realizable, this ideal does not contain 0. Thus pr1.'L.p// 2 R, so
xKW; Nw � R.

For an edge E 2 V.G/, the argument that �E .u�1E .0/ n �
�1
E .0// � R is similar

and we leave the details to the reader. Finally, for the corresponding nodal generator
�E 2 Q� Nw from Definition 3.20 (ii), observe that �.�E / is the edge length function
of the edge E. Again, since � is realizable, �.�E / 6D 0 and �E 2 R.

3.5.4 The stacks are idealized log smooth

Theorem 3.25. Assume that X is simple. Then the forgetful morphisms

M.X=B; �/!M.G; g/ � B

remembering only the domain curve as a family of marked curves over B , is idealized
logarithmically étale for the canonical idealized structures. An analogous result holds
for � replaced by a decorated global type �D .�;A/ of a punctured map, and for weak
markings.

Proof. Step 1. Lifting to the stack of punctured curves. We first note that the mor-
phism in question is in fact idealized. Indeed, the generators of the nodal log-ideal
(Definition 3.1) on M.G; g/ � B are pulled back to the nodal generator �E of Defi-
nition 3.20 (ii) for E 2 E.G/. The morphism then factors over the idealized logarith-
mically étale morphism

MMB.G; g/!MB.G; g/ D LogM.G;g/�B

from Proposition 3.3 (2). Moreover, by [53, Theorem 4.6 (iii)], the morphism

LogM.G;g/�B !M.G; g/ � B

is also logarithmically étale. It thus suffices to prove the statement with M.G; g/ �
B replaced by the stack MMB.G; g/ of .G; g/-marked punctured curves. Note that
the morphism M.X=B; �/! MMB.G; g/ is strict, but not in general idealized strict:
the nodal log-ideal of MMB.G; g/ from Definition 3.1 involves only the nodes of the
domain curves, whereas the � -marking ideal of M.X=B; �/ from Definition 3.20, in
particular part (i), also records target data.

Step 2. Lifting to the prestable map. According to the definition of idealized log
étale, it is sufficient to consider a diagram of solid arrows in the category of idealized
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log spaces

T0
g0 //

��

M.X=B; �/

��

T
g

//

66

MMB.G; g/

(3.6)

where T0 ,! T is an idealized strict closed embedding defined by a square-zero ideal.
Denote by KT0 and KT the log-ideals of T0 and T respectively. We wish to show
that there is a unique dashed arrow making the above diagram commutative.

Denote by fT0 W C
ı
T0
! X the punctured map over T0 corresponding to the mor-

phism g0, and by C ıT0 ,! C ıT the extension given by g. Write also �T0 W C
ı
T0
! T0,

�T W C
ı
T ! T . Thus the lifting problem (3.6) reduces to the following:

C ıT0

fT0 //

��

X

��

C ıT
//

fT

88

B

Since X! B is log étale, by the infinitesimal lifting property of log étale morphisms
in the category of idealized log schemes [52, p. 399], such fT exists and is unique.

It remains to check that fT is also a � -marked curve. Item (2) of Definition 3.4
is automatic as T0 and T have the same geometric points. As a preparation for estab-
lishing (1) and (3), we first check the vanishing of the � -marking ideal.

Step 3. The marking ideal vanishes. Fix a geometric point Nt of T0. Let I �0 �MT0;Nt

be the stalk of the log-ideal g�0	
�
M.X=B;�/

at Nt , and write xI �0 � xMT0;Nt
for its image. As

xMT0;Nt
D xMT;Nt , we also obtain an ideal I � �MT;Nt as the inverse image of xI �0 under

the map MT;Nt !
xMT;Nt . As g0 is idealized, necessarily I �0 �KT0;Nt

. Since T0! T is
idealized strict, we thus have I � �KT;Nt and hence ˛T .I � /D 0. This finishes Step 3.

Now let x 2 V.G/[E.G/[L.G/, and letZ � CT be the corresponding closed
subscheme. To verify condition (1) of Definition 3.4, we need to show that fT jZ
factors through X� .x/. Let Nw D g0.Nt /, with corresponding type of tropical curve
� Nw , equipped with a contraction morphism � W � Nw ! � . We now check the needed
factorization for each kind of x in the following steps.

Step 4. The marking lifts at a vertex. First consider the case that x is a vertex. In this
caseZ is a sub-curve ofC T , flat over T . LetU �Z be the open subset of non-special
points; it is then sufficient to show that f

T
jU factors through the closed substack

X� .x/. So let Nu be a geometric point of U lying over Nt , contained in an irreducible
component of ZNt indexed by a vertex v 2 V.G� Nw /. Note then that �.v/ D x. It is
enough to show that f ]T W OX;f

T
. Nu/ ! OCT ; Nu takes the stalk Jf

T
. Nu/ of the ideal J
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of X� .x/ in X to 0. Using the notation of Definition 3.20, we have xMX;f
T
. Nu/ D Pv

and a generization map �v W Pv ! P�.v/. If p 2 Pv , write sp 2MX;f
T
. Nu/ for a lift

of p. We next observe that since B is a log point or is log smooth over Spec k and
X is simple, the ideal Jf

T
. Nu/ is generated by the set ¹˛X.sp/ j p 2 Pv n �

�1
v .0/º.

Indeed, this is the idealized smoothness statement of the strata in Proposition 2.48,
applied on a smooth chart of X, together with the stalkwise characterization (2.22) of
the log ideal K in the proof of that proposition. Note that due to simplicity, the only
face map is �tv W � .x/! P_R in the present case, and hence xKf

T
. Nu/ D Pv n �

�1
v .0/.

Now by Definition 3.20 (i) and strictness of �T at Nu, for each p 2 Pv there exists
s0p 2 I

� �MT;Nt with f [T .sp/ D h � �
[
T .s
0
p/ for some h 2 O�CT ; Nu. Thus

f
]
T .˛X.sp// D ˛CT .f

[
T .sp// D ˛CT .h � �

[
T .s
0
p// D h � �

]
T .˛T .s

0
p// D 0:

This shows that f
T
jU factors through X� .x/.

Step 5. The marking lifts at a leg. Second consider the case that xDL2L.G/. In this
case Z is the image of a section of �T , with Z Š T . Let Nu be the unique geometric
point of Z over Nt . We now have a generization map �L W PL D xMX;f

T
. Nu/ ! P�.L/.

Following the same notation as in the previous paragraph, it is then sufficient to
show that for each p 2 PL n ��1L .0/, we have 0 D ˛CT .f

[
T .sp//jZ 2 OZ; Nu. As in

the previous paragraph, this is forced by the generators of the puncturing ideal in
Definition 3.20 (i) in case uL.p/ D 0. If uL.p/ > 0, then ˛CT .f

[
T .sp// contains a

positive power of the defining equation of Z as a subscheme of CT , and hence van-
ishes along Z. If uL.p/ < 0, then we achieve vanishing by Definition 2.1 (2). Thus
we obtain the desired vanishing.

Step 6. The marking lifts at an edge. The third case is x D E 2 E.G/. The argument
is similar to the second case, and we leave the details to the reader. This verifies that
fT satisfies condition (1) of � -marked curve.

Step 7. Base marking, decoration and weak marking. Finally, condition (3) holds.
Indeed, the generators in Definition 3.20 (iii) guarantee the desired vanishing.

This completes the proof for markings by � . The proof for � replaced by � is
identical. The weakly marked case is obtained by the same proof omitting (iii) in
Definition 3.20.

Remark 3.26. The proof in the weakly marked case uses simplicity only when argu-
ing that the ideal defining X� .x/ locally is generated by expressions ˛X.sp/, p 2
Pv n �

�1
v .0/ for the unique generization map �v W Pv ! P�.v/, Pv D xMf

T
. Nu/. In

general there is still always a log ideal K � xMf
T
. Nu/ with this property, as we saw in

the proof of Proposition 2.48. This larger log ideal can be accounted for by modify-
ing Definition 3.20 (i) accordingly. In the marked case, we also need to refine Q�� Nw
in Definition 3.20 (iii) to the version stated in (2.32) in Section 2.6.4.
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Thus we expect the statement of Theorem 3.25 to hold true in the non-simple case
with these adjustments. Details are left to the interested reader.

Remark 3.27 (Local structure of stacks of prestable maps). Theorem 3.25 gives the
following local description of M.X=B; �/. Let .C ı=W;p; f / be a basic stable punc-
tured map over a log point W D Spec.Q ! �/ over B marked by � . Denote by s
the number of edges of the graph G given by � D .G; g;� ; Nu/ and assume that C has
s C r nodes. Thus r nodes of C can be smoothed while keeping a marking by .G; g/.

The underlying object .C=W ; p/, viewed as a pre-stable curve with its basic log
structure, is a point Spec � !M.G; g/ � B .

By the deformation theory of nodal curves, there exists a strict smooth neighbor-
hood of this point étale locally isomorphic to

Ar � U � B: (3.7)

Here Ar is endowed with the idealized log structure obtained by restricting the toric
log structure of AsCr to an intersection of s coordinate hyperplanes, and corresponds
to deforming the r smoothable nodes; U is smooth with trivial log structure corre-
sponding to equisingular deformations of C ; and the étale local isomorphism is a
product of an étale local isomorphism of Ar � U with an open substack of M.G; g/
and idB .

Note that the image of .C ı=W;p/ in M.G;g/ is defined by the underlying marked
nodal curve .C=W ;p/ endowed with its basic log structure of marked nodal curves.

Consider the pointW !M.X=B; �/ corresponding to the object .C ı=W;p; f /.
Pulling back the neighborhood (3.7) along M.X=B; �/ ! M.G; g/ � B gives a
smooth neighborhood V of W !M.X=B; �/ equipped with a morphism � W V !

Ar � U � B . We may now apply Proposition B.4 to describe this neighborhood
explicitly étale locally, as follows. We use the notation AP and AP;I defined in (B.1),
for P a monoid and I � P a monoid ideal.

The log-ideal 	�
M.X=B;�/

[KM.X=B;�/ induces a monoid ideal I � Q, as con-
structed in Definition 3.20, with associated idealized Artin fan AQ;I . Let QB be the
stalk of xMB at the image point of the composition W !M.X=B; �/! B . We may
first replace B with an étale neighborhood of this image point and so assume given
a map QB ! xMB , or equivalently a strict morphism B ! AQB . Then by Proposi-
tion B.4, possibly after passing to an étale neighborhood of V , there is a diagram

V
�

%%

�

!!

 

))

V 0

��

// AQ;I

�
��

Ar � U � B // ANsCr ;J �AQB

(3.8)
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with the square Cartesian in the log, fine and fs categories,  and both horizon-
tal arrows strict and idealized strict, and � étale and strict. Further, � is induced
by the map on stalks of ghost sheaves NsCr ˚ QB ! Q given by the morphism
M.X=B; �/! M.G; g/ � B . Finally, J � NsCr is the ideal generated by the first
s generators of NsCr , so that the morphism Ar ! ANsCr ;J is strict and idealized
strict.

In conclusion, we see that V is étale locally isomorphic to

V 0 Š U �
�
.Ar � B/ �ANsCr ;J�AQB

AQ;I

�
: (3.9)

Thus the local models of M.X=B; �/ and their idealized structures are explicitly de-
scribed from the types of tropical punctured maps admitting a contraction morphism
to � .

3.5.5 Dimension formulas

Example 2.58 exhibits a case where M.X=B; �/ is not pure-dimensional. Before
revisiting this example, we give a useful condition which implies M.X=B;�/ is pure-
dimensional, of the expected dimension. The statement involves a refinement of the
notion of realizability of global types from Definition 2.44 (2) relative to B .

Definition 3.28. Let � be a global type of punctured map to X . We say that � is
realizable over B if there exists a geometric point Nw of M.X=B; �/ such that the
corresponding punctured map has global type � .

Proposition 3.29. Suppose the Artin fan AX of X is Zariski (Definition A.7). Then a
global type � D .G;g;� ; Nu/ is realizable overB if and only if the following conditions
hold:

(1) � is realizable, hence there is a universal family h W � D �.G; `/! †.X/

of type � , parametrized by !� WD Q_�;R, where Q� is the basic monoid for
tropical maps of type � .

(2) The universal family of tropical maps of type � is defined over †.B/, i.e.,
there is a map !� ! †.B/ making the diagram

�
h //

��

†.X/

��

!� // †.B/

commute.

(3) Let � 2 †.B/ be the minimal cone containing the image of !� . Then there
exists a point b 2 B� such that � D Hom. xMB;b;R�0/.
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Proof. That conditions (1)–(3) are necessary is clear. Conversely, suppose (1)–(3)
hold. Let C= Spec k be a pre-stable curve with dual intersection graph G. Pull-back
the basic log structure on C=Spec k by the canonical morphism N jE.G/j!Q� from
the nodal parameters to the basic monoid for � to define a log smooth curve C=W
over the log pointW D Spec.Q� ! k/. We may then construct a morphismW ! B

with image a point b 2 B� given by item (3) in the statement of the proposition. Note
we may take b to be a closed point, so that b D Spec k. At the logarithmic level, this
morphism can be taken so its induced tropicalization is the given map !� ! � .

Next apply the correspondence [3, Proposition 2.10] (it is here we need the hypoth-
esis that AX is Zariski) between morphisms from a logarithmic space to an Artin
fan and their tropicalizations to first construct a saturated puncturing zC ı ! C and
then a logarithmic map zC ı ! AX with tropicalization of type � . Prestabilizing then
leads to a basic pre-stable punctured map .C ı=W; p; f / to AX of type � . Note that
C ı is not necessarily saturated. On the other hand, we have a composed morphism
C ı ! W ! B , with W ! B constructed in the previous paragraph. The composi-
tions C ı ! AX ! AB and C ı ! B ! AB agree by item (2) of the proposition,
and hence we obtain a punctured map C ı ! X D AX �AB B defined over B with
the necessary properties.

Proposition 3.30. Let � D .G;g;� ; Nu/ be a global type (Definition 2.44) and assume
X is simple and B is either log smooth over Spec k or B D Spec k�, the standard log
point. Assume further � is realizable overB . Then M.X=B; �/ is non-empty, reduced
and pure-dimensional. If B is log smooth over Spec k, then

dim M.X=B; �/ D 3jgj � 3C jL.G/j � rkQgp
� C dimB;

while if B D Spec k�, then

dim M.X=B; �/ D 3jgj � 3C jL.G/j � rkQgp
� C 1:

Proof. By Proposition 3.24, as � is a realizable type, the � -marked ideal at a point Nw0

of M.X=B; �/ takes the form ��1�� Nw0 .Q� n ¹0º/. Thus, in the description of a smooth
neighborhood V of Nw0 as given in (3.8), AQ;I is reduced, and if B is log smooth over
Spec k, the bottom horizontal arrow is smooth, and hence V 0 is also reduced as the
square is Cartesian. This shows that M.X=B; �/ is reduced in this case.

If on the other handBDSpeck�, we may takeQBDN in (3.8). Since M.X=B;�/

is defined over B , the induced morphism of stalks of ghost sheaves N ! Q� is local
and hence N n ¹0º maps into Q� n ¹0º, and thus more generally N ! Q� Nw0 maps
N n ¹0º into ��1�� Nw0 .Q� n ¹0º/ by compatibility of these maps with generization. Hence
we may replace AQB with the closed substack AN;Nn¹0º in (3.8) without affecting
this diagram in any other way. In particular, the bottom horizontal arrow is now still
smooth. So V 0 is again reduced.
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Let Nw be a point as in Definition 3.28. We may now calculate dimensions by
looking at the description of (3.8) for a neighborhood of Nw in M.X=B; �/. Since the
corresponding curveC ı= Nw now has no smoothable nodes, we may take r D 0 and sD
jE.G/j in (3.8). Further, since I D Q� n ¹0º, necessarily dim AQ� ;I D � rankQgp

� .
Thus we may calculate, with the cases being for B log smooth and B D Spec k�

respectively,

dim M.X=B/ � dim M.G; g/ � B D dimV 0 � dimU � B

D

´
dim AQ� ;I � dim ANs ;J �AQB

dim AQ� ;I � dim ANs ;J �AN;Nn¹0º

D

´
� rankQgp

� � .�s/

� rankQgp
� � .�s � 1/

As dim M.G; g/D 3jgj � 3C jL.G/j � jE.G/j, and s D jE.G/j, we then obtain the
desired dimension formulas in the two cases.

Remark 3.31 (Stratified structure of M.X=B;�/). If � 0! � is a morphism of global
types (Definition 2.44), a marking by � 0 induces a marking by � by composition of
the marking morphism with � 0! � . The same arguments as for ordinary logarithmic
maps [3, Proposition 2.34] shows that the corresponding morphism of stacks

j�� 0 WM.X=B; � 0/!M.X=B; �/

is finite and unramified. If � 0 is realizable over B , then Proposition 3.30, under the
assumptions onB stated there, further shows that im.j�� 0/ defines a pure-dimensional
substack of M.X=B; �/. Conversely, if there is no � 00 which is realizable over B
mapping to � 0 then M.X; � 0/ D ;. Thus the images of j�� 0 for morphisms of global
types � 0 ! � with � 0 realizable over B define a stratification of M.X=B; �/ into
pure-dimensional strata.

In particular, the closure of a maximal stratum is the image of M.X=B; � 0/ for
� 0 a minimal global type realizable over B dominating � . Minimality here means that
the morphism � 0 ! � does not factor over any other global type realizable over B .

Note, however, that M.X=B; � 0/ is not in general irreducible even for realizable
� 0, due to saturation phenomena already present in ordinary stable logarithmic maps.
In the logarithmic enhancement question for transverse stable logarithmic maps of [3,
Theorem 4.13], this reducibility is reflected in various choices of roots of unity.

Example 3.32 (Example 2.58 revisited, see Figure 3.1). Let � be the global type with
G having just one vertex of genus 0, no edges, and four legs, all image cones equal
to 0 2 †.X/ D ¹0;R�0º and global contact orders �1;�1; 2; 2. This global type
is not realizable because there can be no positive length legs for the two punctures,
but there are several minimal realizable global types marked by � . Here are two of
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Ep4

Ep1

Ep2

Ep3

†.X/

v1

†.X/

Ep4

Ep3

�

Ep1

Ep2 v1

†.X/

v3

v2

Ep4

Ep1

v1

Ep2
Eq2 Eq1 Ep3

Figure 3.1. The top combinatorial map is not tropically realizable sinceEp1 ,Ep2 have nowhere
to stretch. The first realizable type has no nodes, with `1 D `2 D 0, but with v1 positioned at
� > 0. The second has v1 positioned at � D 0 but then `1; `2 > 0.

them. The first, �1, has the same .G; g/ as � , but all image cones are R�0. In the
notation of Example 2.58, the tropical punctured map realizing this type has � > 0 and
`1 D `2 D 0. The other minimal realizable type, �2, has G with three vertices v1, v2,
v3 with � .v1/ D ¹0º, � .v2/ D � .v3/ D R�0 and two edges, connecting v1 to v2 and
v3, respectively, and one positive and one negative leg attached to each of v2 and v3.
This global type is realizable by tropical punctured maps with � D 0 and `1; `2 > 0.
Note that by Proposition 3.30, dim M.X=B; �1/ D 0 but dim M.X=B; �2/ D �1,
showing non-pure-dimensionality of M.X=B; �/.

3.5.6 Comparing marked and weakly marked stacks

We end this section by showing that the marked and weakly marked moduli spaces
have the same reduction.

Proposition 3.33. Let � D .G; g; � ; u/ be a global type of punctured maps and
assume X is simple. Then the canonical morphism

M.X=B; �/!M0.X=B; �/

is a closed embedding defined by a nilpotent ideal. Analogous statements hold for
moduli spaces of punctured maps to X=B and for decorated global types.

Proof. By the idealized description in Theorem 3.25 of the moduli spaces in question,
the statement amounts to showing that the � -marked ideal from Definition 3.20 is
contained in the radical of the weakly � -marked ideal defined in Remark 3.22.
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Let .C=W; p; f / be a punctured map weakly marked by � and Nw of W a geo-
metric point. We adopt the notation from Definition 3.20 and in particular write
� W � Nw ! � for the contraction morphism given by the marking and

��� Nw W Q� Nw ! Q�� Nw

for the localization morphism of basic monoids. We have to show that for each
q 2 Q� Nw with ��� Nw .q/ ¤ 0 a multiple kq lies in the monoid ideal generated by
the elements listed in Definition 3.20 (i) and (ii). The description of the dual basic
monoids in Proposition 2.32 provides the following commutative diagram with hori-
zontal arrows surjective up to saturation, with as usual Pv denoting the monoid dual
to the cone � .v/: Y

v2V.G Nw/

Pv �
Y

E2E.G Nw/

N //

��

Q� Nw

��� Nw

��Y
v2V.G/

Pv �
Y

E2E.G/

N // Q�� Nw

The left vertical homomorphism is as follows:�
.pv/v2V.G Nw/; .`E /E2E.G Nw/

�
7!

�� X
�.v0/Dv

�v0.pv0/
�
v
; .`��1.E//E

�
:

As the top arrow is surjective up to saturation, there exists k � 0 such that kq 2
Q� Nw lifts to an element .pv; `E / in the left upper corner. Since ��� Nw .q/ ¤ 0, the
image of this lift in the lower left corner is non-zero. We conclude that there exists
(1) v 2 V.G Nw/ with �v.pv/ ¤ 0 or (2) E 2 E.G Nw/ n E� with `E ¤ 0. In the first
case kq lies in the ideal generated by 'v.Pv n ��1v .0//, part of Definition 3.20 (i),
while in the second case kq lies in the ideal generated by the nodal generator qE
from Definition 3.20 (ii).


