
Chapter 4

The perfect obstruction theory

Throughout this chapter, we fix a log smooth morphism X ! B of fs logarithmic
schemes fulfilling the assumptions stated at the beginning of Chapter 3 and n 2 N.
Crucial for the following discussion is the factorization of X ! B over the relative
Artin fan X ! B .

Denote by Mn.X=B/ (resp. Mn.X=B/) the stack of marked or weakly marked
punctured maps to X ! B (resp. X ! B), with n the number of punctured or nodal
sections, fixing and suppressing all other decorations in the notation. In Sections 4.1
and 4.2, we construct two perfect relative obstruction theories, in the sense of [13,
Definition 4.4], one for Mn.X=B/ !Mn.X=B/ and one for a related morphism
Mn.X=B/!Mev

n .X=B/; the latter space incorporates data of maps to X at a set of
special points on the domain curve, see (4.13). Working over Mev

n .X=B/ is crucial
for understanding gluing at a virtual level in Section 5.3.

We will avail ourselves of the dualizing complex of various Gorenstein mor-
phisms � . To avoid adjusting for shifts of dimension in the formulas, we denote by
!� the relative dualizing complex, usually denoted !�� , of a relatively Gorenstein
morphism � , that is, the complex with the invertible relative dualizing sheaf defined
in [36, Example III.9.7] (see also [20, p. 157]) shifted to the left by the relative dimen-
sion.

4.1 Obstruction theories for logarithmic maps from pairs

All cases of interest fit into the following general setup. For this subsection we do not
enforce the assumptions on B from the Conventions, Section 1.6.

4.1.1 Source family

Let S be a log stack over B and assume we are given a proper and representable
morphism of fine log stacks

Y ! S;

with underlying map of ordinary stacks Y ! S flat and relatively Gorenstein. The
fibers of this morphism serve as domains for a space of logarithmic maps.

In the application, Y is either the universal curve over S DMn.X=B/ or over
S DMev

n .X=B/, or a union of sections of the universal curve with induced log struc-
ture.
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4.1.2 Target family

As a target, we take a composition of morphisms of fine log stacks

V ! W ! B;

with V ! W log smooth. In applications this will be the sequence1 X ! X ! B .
We assume further given a B-morphism Y ! W defining a commutative square

Y //

��

W

��

S // BI

In our applications this is the universal family of maps to the Artin fan, either prestable
maps of curves or the corresponding maps of the union of sections, as the case may be.

4.1.3 Moduli of lifted maps

Let M be an open algebraic substack of the following algebraic stack over S . An
object over an affine S -scheme T , considered as a log scheme by pulling back the log
structure from S, consists of a commutative diagram

YT

##

//

��

V

��

T

$$

Y //

��

W

��

S // B

(4.1)

where the square formed by YT , T , S and Y is cartesian. Thus we are interested
in lifting the map Y ! W to V fiberwise relative to S . We endow M with the log
structure making the morphism M ! S strict. The pullback of Y to M defines the
universal domain � W YM ! M . We have the following 2-commutative diagram of
stacks

YM

$$

f
//

�

��

V

��

M

$$

Y //

��

W

��

S // B

(4.2)

1In this case, V !W is strict and we could indeed work with ordinary cotangent complexes
throughout, but for possible other applications we do not make this assumption.
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In the main application, with Y ! S the family of prestable curves,M is an open
substack of the stack of punctured maps of interest; thus our deformation theory fixes
both the domain of the punctured map to X and the map to the relative Artin fan X.
In the secondary application, with Y ! S the family of sections with logarithmic
structures, the stack M parametrizes liftings of the sections from X to X .

4.1.4 An obstruction theory

Functoriality of log cotangent complexes [54, Property 1.1 (iv)] yields the morphism

f ��V=W D Lf
�LV=W ! LYM =Y D �

�LM=S : (4.3)

The equality on the left holds by [54, Property 1.1 (iii)] since V ! W is log smooth,
while the equality on the right follows since

LM=S D LM=S and LYM =Y D LYM =Y

by strictness of M ! S [54, Property 1.1 (ii)] and then using compatibility of the
ordinary cotangent complexes with flat pullback by � .

Since Y ! S is relatively Gorenstein by assumption, so is YM ! M and we
have a natural isomorphism of exact functors � Š D ��˝ !� . Thus (4.3) is equivalent
to a morphism f ��V=W ˝ !� ! � ŠLM=S , which by adjunction is equivalent to a
morphism

ˆ W E! LM=S (4.4)

with
E D R��.f

��V=W ˝ !�/:

4.1.5 Functoriality

We will show in Proposition 4.2 that ˆ is a perfect obstruction theory for M over S .
A most transparent proof that ˆ is a perfect obstruction theory for M over S relies
on the fact that the construction of ˆ is functorial. For lack of reference we provide
a proof for this well-known property in the following lemma. If T !M is any map,
denote by

ˆT W ET ! LT=S

the morphism in (4.4) constructed from (4.1) instead of (4.2).

Lemma 4.1. The construction of ˆ in (4.4) is functorial in the following sense: Let
T !M be a morphism of stacks. Denoting T !M the associated strict morphism
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of log stacks, we obtain the commutative diagram

YT

fT

&&

Qh

//

�T

��

YM

$$

f
//

�

��

V

��

T
h // M

$$

Y //

��

W

��

S // B

with the two squares of domains (i.e., the left-most square and the parallelogram)
cartesian. Then we have a commutative square

Lh�E
Lh�ˆ //

ˇ

��

Lh�LM=S

��

ET
ˆT // LT=S ;

with left-hand vertical arrow a natural isomorphism and the right-hand vertical arrow
defined by functoriality of cotangent complexes.

Proof. Naturality of the base change map [67, Remark 07A7] applied to f ��V=W ˝
!�!LYM =Y ˝!� together with f ı QhD fT and Qh�!� D!�T [20, Theorem 3.6.1],
leads to the commutative square

Lh�E D Lh�R��.f ��V=W ˝ !�/ Lh�R��.LYM =Y ˝ !�/

ET D R�T �.f
�
T �V=W ˝ !�T / R�T �

�
L Qh�LYM =Y ˝ !�T

�
:

ˇ b (4.5)

Now LYM =Y ' ��LM=S , as remarked after (4.3), and hence the adjunction counit
R���

Š ! id applied in the construction of ˆ in (4.4) is given by the projection
formula followed by the trace morphism,

R��.�
�LM=S ˝ !�/

'
�! LM=S ˝R��.!�/

Tr!�
���! LM=S :

Thus the upper horizontal map of (4.5) composed with Lh� of this adjunction counit
isomorphism yields Lh�ˆ.

Similarly, extending the lower horizontal arrow by the map induced by functori-
ality of cotangent complexes,

L Qh�LYM =Y ! LYT =Y D �
�
TLT=S ;
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composed with the adjunction counit morphism

R�T �.�
�
TLT=S ˝ !�T /! LT=S

for �T retrieves the definition of ˆT .
Moreover, by compatibility of both the projection formula [67, Lemma 0B6B]

and the trace morphism [67, Lemma 0E6C] with base change, the following diagram
continuing (4.5) on the right is commutative:

Lh�R��.�
�LM=S ˝ !�/

' //

b

��

Lh�LM=S ˝ Lh
�R��!�

��

tr

&&

R�T �.�
�
TLh

�LM=S ˝ !�T /
' //

��

Lh�LM=S ˝R�T �!�T //

��

Lh�LM=S

��

R�T �.�
�
TLT=S ˝ !�T /

' // LT=S ˝R�T �!�T // LT=S :

The three left horizontal isomorphisms are defined by projection formulas, the diago-
nal and the two horizontal morphisms on the right induced by trace homomorphisms,
the two upper vertical arrows defined by base change, and the three lower vertical
arrows defined by functoriality of cotangent complexes. For the identification of the
upper left vertical arrow with the right vertical arrow labeled b in (4.5) note that

L Qh�LYM =Y ' L
Qh���LM=S ' �

�
TLh

�LM=S :

This establishes the claimed commutative diagram.
It remains to show that ˇ is a natural isomorphism. This follows from the general

base change statement [67, Lemma 0A1K] applied to � W YM ! M , with f ��V=W
for the object in DQCoh.OYM / and with !� as complex of �-flat quasi-coherent
sheaves.

Proposition 4.2 (ˆ is a perfect obstruction theory). The morphism ˆ W E! LM=S
constructed in (4.4) is an obstruction theory for M ! S in the sense of [13, Defini-
tion 4.4].

Proof. We check the obstruction-theoretic criterion [13, Theorem 4.5.3], applied in
the setting relative to S , similarly to ordinary logarithmic maps carried out in [30,
Proposition 5.1].

Assume given a morphism h W T !M , a square-zero extension T ! xT with ideal
sheaf J and a morphism xT !S , with log structures turning all three morphisms strict.
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This situation leads to the following commutative diagram:

YT

fT

&&Qh //

yy �T

��

YM
f

//

yy
�

��

V

zz
Y xT

//

��

Y

��

// W

��

T
h //

xx

M

yy
xT // S // B:

All sides of the cube on the left are cartesian, but not in general the bottom and top
faces.

The obstruction class !.h/ 2 Ext1.Lh�LM=S ;J/ for extending h to an S -mor-
phism xT !M is the composition

Lh�LM=S ! LT =xT ! ���1LT = xT D JŒ1�;

the first arrow defined by functoriality of cotangent complexes, see [38, Proposi-
tion 2.2.4] with X0 D T , X D xT , Y0 D Y DM and Z0 D Z D S . Because T ! xT
and M ! S are strict we can replace the ordinary cotangent complex with the log
cotangent complex in this construction [54, Property 1.1 (ii)].

Now ˆ�!.h/ is the composition of this morphism with Lh�ˆ W Lh�E !
Lh�LM=S . By functoriality of our obstruction theory (Lemma 4.1), this composition
also has the factorization

ET D R�T �.f
�
T �V=W ˝ !�T /

ˆT
��! LT=S ! ���1LT= xT D JŒ1�;

which by adjunction is equivalent to the composition

f �T �V=W ˝ !�T ! LYT =Y ˝ !�T ! ���1�
Š
TLT= xT D �

�
TJŒ1�˝ !�T :

Up to tensoring with !�T this is the obstruction class for extending fT W YT ! V

to Y xT , as a morphism over W . By our assumption on the objects of M , this exten-
sion exists if and only if T ! M extends to xT . This shows the part of the criterion
concerning the obstruction.

A similar argument shows that once !.h/ D 0, the space of extensions form a
torsor under Ext0.Lh�LM=S ;J/, showing the second part of the criterion.

4.1.6 The dualizing complex of the embedding of markings

After this recapitulation of obstruction theories for logarithmic maps with proper and
relatively Gorenstein domains, we are now in position to bring in point conditions.
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Abstractly we consider a composition of proper, representable morphisms of fine log
stacks

Z
�
�! Y ! S; (4.6)

with maps of algebraic stacks underlying Z ! S and Y ! S flat and relatively
Gorenstein as before. Note that while �may not be flat and hence cannot be considered
relatively Gorenstein following the usual convention, one can still define a relative
dualizing sheaf

!� D !Z=S ˝ �
�!_Y=S (4.7)

fulfilling relative duality, hence defining a right-adjoint functor �Š to R��. This works
as in the case of smooth morphisms discussed e.g. in [37, Section 3.4].

4.1.7 Obstruction for markings

We now have another algebraic stack N , an open substack of the stack over S with
objects given by diagrams as in (4.1) with Y replaced by Z. We assume the open
substack N is chosen large enough so that composition with � W Z ! Y defines a
morphism of stacks

" WM ! N: (4.8)

As in (4.4) we now obtain two obstruction theories, one for M ! S , the other for
N ! S ,

ˆ W E! LM=S ; ‰ W F ! LN=S : (4.9)

In our application, Y ! S is some universal curve andZ! Y a strict closed embed-
ding with morphism to S scheme-theoretically étale. In this case, ‰ is simply the
obstruction theory for a number of points in V=W , i.e., a trivial obstruction theory in
the sense that there are no obstructions. In particular, étale locally F can be taken as
the direct sum of the pullback of �V=W by scheme-theoretic maps from N to V .

Proposition 4.3 (Compatibility of obstruction theories). The two obstruction theo-
ries ˆ and ‰ in (4.9) fit into a commutative square

L"�F L"�LN=S

E LM=S ;

L"�‰

ˆ

with the right-hand vertical morphism given by functoriality of the cotangent com-
plex.
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Proof. Consider the following commutative diagram with the left four squares carte-
sian.

Z

�

��

ZN

��

oo

g

&&

p

��

ZM
z"

oo

�M

��

h //

pM

��

))

V

��

Y

��

YN

��

oo YMoo

�

��

//

f

55

W

��

S Noo M
"

oo // B

The left column is the given morphism (4.6) of domains, the lower horizontal row
contains the restriction morphism " from (4.8) and the morphisms to B and S , while
f W YM ! V and g W ZN ! V are the respective universal morphisms defined on the
universal domains YM !M and ZN ! N .

The obstruction theory ˆ in (4.9) was defined by applying R��.� ˝ !�/ to

f ��V=W ! LYM =Y D �
�LM=S

followed by the adjunction counitR��� Š! id, using � ŠD��˝!� . For‰ one anal-
ogously takesRp�.� ˝!p/ of g��V=W !LZN =Z Dp

�LN=S followed byRp�pŠ!
id. By functoriality of obstruction theories (Lemma 4.1), the pullback L"�‰ is simi-
larly obtained by RpM �.� ˝ !pM / of

h��V=W ! Lz"�LZN =Z D Lz"
�p�LN=S D p

�
ML"

�LN=S ; (4.10)

followed by RpM �p
Š
M ! id.

From h D f ı �M D g ı z" we can extend (4.10) to the commutative diagram

z"�g��V=W // Lz"�LZN =W

��

// Lz"�LZN =Z D p
�
ML"

�LN=S

��

h��V=W // LZM =W
//

��

LZM =Z D p
�
MLM=S

'
��

��Mf
��V=W // L��MLYM =W

// L��MLYM =Y D p
�
MLM=S

The last row in this diagram isL��M of the morphism f ��V=W ! ��LM=S that gives
rise to the obstruction theoryˆ forM . The essential part of this diagram is the square

h��V=W // p�ML"
�LN=S

��

��Mf
��V=W // p�MLM=S

(4.11)
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Next observe that !pM D �
�
M!� ˝ !�M , hD f ı �M , and �ŠM D �

�
M ˝ !�M show that

RpM �.h
��V=W ˝ !pM / D R��R�M ��

Š
M .f

��V=W ˝ !�/:

Thus RpM �.� ˝ !pM / applied to (4.11) yields the upper left square of the following
commutative diagram:

L"�F D RpM �.h
��V=W ˝ !pM /

// RpM �p
Š
ML"

�LN=S

a
��

// L"�LN=S

��

R��R�M ��
Š
M .f

��V=W ˝ !�/

��

b
// RpM �p

Š
MLM=S

��

// LM=S

��

E D R��.f ��V=W ˝ !�/ // R���
ŠLM=S // LM=S :

(4.12)
The upper right square is from functoriality of adjunction RpM �p

Š
M ! id applied

to the arrow marked a, the lower left one similarly from R�M ��
Š
M ! id applied to

the arrow marked b. The lower right square is from the natural isomorphism of the
adjunction counit RpM �p

Š
M ! id with the composition

R��R�M ��
Š
M�

Š
! R���

Š
! id;

see [36, Proposition VII.3.4 (b)], [20, Lemma 3.4.3].
The outer square of (4.12) provides the claimed commutative diagram.

4.2 Obstruction theories for punctured maps with point conditions

We are now in position to define obstruction theories for moduli spaces of punctured
maps with prescribed point conditions. Recall the log smooth morphism X ! B

and its factorization over the relative Artin fan X ! B from the beginning of this
chapter. We want to work relative to a stack S of stable punctured maps to X=B .
Adopting the notation used elsewhere in the paper, we now write M instead of S for
the algebraic stack of domains together with the tuple of points at which to impose
point conditions. For example, M could be M.X=B; �/ from Definition 3.8. Then
Y ! S DM is the universal curve,Z! Y the strict closed embedding of a union of
sections, one for each point condition to be imposed, assumed ordered, and we have
a universal diagram

Y X

M B:
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As our target we now take the composition

X ! X ! B:

Note that X! B is log étale and X !X is strict and log smooth. Hence X !X is
smooth as a morphism of stacks and we have a sequence of canonical isomorphisms

LX=B D �X=B D �X=X D �X=X D LX=X :

For easier reference later on we also write M instead of M for the algebraic stack of
punctured maps to X to be considered.

For the moduli space N of point conditions we take the space of factorizations
of the composition Z ! Y ! X via X ! X. Note that since X ! X is strict, it is
enough to provide the lift for X ! X, that is, ignoring the log structure. Thinking of
these factorizations as providing evaluation maps M! X at the marked points given
by the sections Z of Y ! S , we denote the stack of such factorizations by Mev. This
stack is algebraic by the fiber product description

Mev
DM �X�B ����BX .X �B � � � �B X/: (4.13)

Here the map M ! X �B � � � �B X is defined by composing the sections M !

M! Z with the composition Z ! Y ! X in the given order of the sections.
With this notation, the composition M ! N ! S considered in the proof of

Proposition 4.3 reads
M

"
�!Mev

!M: (4.14)

In Section 4.1 we recalled the construction of obstruction theories for M=M and for
Mev=M, which in the situation at hand are perfect of amplitude contained in Œ�1; 0�,
and showed their compatibility (Proposition 4.3). As in [50, Construction 3.13], this
situation provides perfect obstruction theories for M=Mev by completing the com-
patibility diagram in Proposition 4.3 to a morphism of distinguished triangles:

L"�F //

��

E //

��

G //

��

L"�F Œ1�

��

L"�LMev=M
// LM=M

// LM=Mev // L"�LMev=MŒ1�

(4.15)

Remark 4.4. Note that while the isomorphism class of G is unique, the dashed arrow
is not, so this recipe potentially provides several different obstruction theories for
M=Mev. On the other hand, any two dashed arrows differ by an element of the image
of

Hom.G;LM=M/! Hom.G;LM=Mev/:
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Thus the space of obstruction theories G ! LM=Mev constructed as dashed arrow
in (4.15) is parametrized by an affine space. This shows that the virtual classes con-
structed from any two such obstruction theories agree.2

For the sake of being explicit and for later use we now work out G. For simplicity
of notation write � W C !M for the pullback YM of the universal curve Y !M to
M, and, in disagreement with our usual conventions, write � W Z ! C for the strict
closed substack of special points rather than ZM. We assume that Z D Z0 q Z00

with Z0 disjoint from the critical locus of C ! M and Z00 the images of a set of
nodal sections, as reviewed in Definition 5.1 below. Denote by � W zC ! C the partial
normalization of zC along the nodal sections exhibiting C as the fibered sum

C D Z00 q zZ
00 zC

with zZ00 D ��1.Z00/! Z00 the two-fold unbranched cover induced by �. Write z� D
� ı � W zC !M, Qf D f ı � W zC !X and zZD ��1.Z/, with the log structures making
zC ! C and zZ ! zC strict.3

For simplicity of the following statement we now assume the two-fold covering
zZ00 ! Z00 is trivial, that is, that there is an isomorphism

zZ00 ' Z00 qZ00

over Z00. This is sufficient for all applications we can currently think of. The general
case can be treated by going over to an orientation covering or by twisting with an
orientation sheaf.

Proposition 4.5. For the tangent-obstruction bundle in (4.15) it holds

G ' R��.f
��X=B ˝ ��.!z�. zZ///

' Rz��. Qf
��X=B ˝ !z�. zZ//

' .Rz�� Qf
�‚X=B.� zZ//

_:

Moreover, G is perfect of amplitude Œ�1; 0�.

Proof. The second isomorphism follows by the projection formula, the third isomor-
phism by relative duality.

For the first isomorphism we first claim there exists the following exact sequence
of complexes, all concentrated in degree �1:

0! !� ! ��.!z�. zZ//! ��OZ Œ1�! 0: (4.16)

2We learnt this argument from Tom Graber.
3The log structures on zC and zZ are irrelevant for the following discussion and are merely

chosen for the sake of uncluttering the notation.
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On the complement of the nodal locus Z00, this sequence is defined by

0! !� ! !�.Z
0/! !� ˝OC ��OZ0.Z

0/! 0

by means of the canonical isomorphism

!� ˝OC ��OZ0.Z
0/ D ��

�
��!� ˝OZ0

!�
�
' ��OZ0 Œ1�

coming from the definition of !� D ��!_� ' OZ0.Z
0/ in (4.7). Explicitly, the homo-

morphism !�.Z
0/! ��OZ0 Œ1� takes the residue along Z0.

Near the nodal locus, (4.16) is defined by

0! !�
��

�! ��.!z�. zZ//! ��OZ00 Œ1�! 0:

To obtain this sequence, recall that étale locally !� D�C=MŒ1� with�C=M the sheaf
of relative logarithmic differentials for C=M, while !z� D � zC=MŒ1� with � zC=M the

sheaf of relative ordinary differentials for zC=M. In fiberwise coordinates z, w for the
two branches of C along Z00 on an étale neighborhood, �C=M is locally generated
by z�1dz D �w�1dw, hence pulls back to ordinary differentials with simple poles
along ��1.Z00/ � zZ. The map to OZ takes the difference of the residues of such
rational differential forms on zC along the two preimages of the nodal locus. Note that
this map depends on an order of the two branches along each connected component of
Z00, hence relies on the assumption zZ00DZ00qZ00. This establishes sequence (4.16).

Next note that !pM
' OZ since pM W Z ! M is étale. Using the projection

formula we can thus rewrite

L"�F D RpM�.h
��X=B ˝ !pM

/ D R�����
�f ��X=B D R��.f

��X=B ˝ ��OZ/:

Finally, apply R�� to (4.16) tensored with f ��X=B to produce the upper triangle
of (4.15) with the claimed middle term G D R��.f ��X=B ˝ ��.!z�. zZ///:

E G L"�F Œ1�

R��.f
��X=B ˝ !�/ // R��.f

��X=B ˝ ��.!z�. zZ/// // pM�.h
��X=B/Œ1�

(4.17)
Taking cohomologies, this diagram also shows the statement about the amplitude
of G.

4.3 Punctured Gromov–Witten invariants

Using properness of M.X=B; ˇ/ over B (Corollary 3.19) and the obstruction theory,
we can now define punctured Gromov–Witten invariants. To be explicit, we assume
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the ground field k to be a subfield of C and take H2.X/ to be singular homology
of the base change to C. Since M.X=B; ˇ/ is typically non-equidimensional due
to the puncturing ideal, the general definition demands a stratum-by-stratum treat-
ment. Sometimes one can show independence of certain choices, e.g. in the setting
of [33], but presently our understanding of the intersection theory of M.X=B/ and
in logarithmic geometry is too limited to make general statements. Some steps in this
direction have been taken in [10, 71].

Let X ! B be projective and log smooth, with Zariski logarithmic structure on
X . Let � D .G; g; � ; Nu;A/ be a decorated global type (Definition 2.44). Denote by
g the total genus and k D jL.G/j. We assume xMgp

X ˝Z Q to be generated by global
sections to apply Corollary 3.19, or otherwise M.X=B;�/! B to be proper. Denote
by ZL D X� .L/ � X the evaluation stratum for L 2 L.G/.

Considering for simplicity evaluations at all punctures rather than at a subset of
punctures, we then have an evaluation map

ev WM.X=B;�/!
Y

L2L.G/

ZL;

and, by Section 4.2 and notably (4.15), a perfect relative obstruction theory G for

" WM.X=B;�/!Mev.X=B;�/:

The relative virtual dimension is given by the Riemann–Roch formula applied to the
virtual bundle in Proposition 4.5 as

d.g; k; A; n/ D c1.‚X=B/ � AC n � .1 � g � k/: (4.18)

HereAD jAj and gD jgj are the total curve class and total genus of �, kD jL.G/j the
number of point conditions imposed and n D dimX � dimB the relative dimension
of X over B . Denote by "ŠG the associated virtual pullback from [50], an operational
Chow class for ".

Definition 4.6. The punctured Gromov–Witten correspondence defined by the global
decorated type � is the homomorphism

.ev � p/�"ŠG W A�.M
ev.X=B;�//! A�Cd.g;k;A;n/
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of rational Chow groups.

Here
Q
L denotes the cartesian product of spaces over B . As usual, pairing with

cohomology classes in
Q
L ZL �Mg;k and taking degrees then produces Gromov–

Witten invariants. Note also that Proposition 3.30 defines pure-dimensional cycles in
Mev.X=B; �/ as the images of the fundamental classes of M.X=B; �0/ for �0 ! �

a contraction morphism from a realizable global type.


