
Chapter 5

Splitting and gluing

As discussed in the introduction, one crucial motivation for the introduction of the
notion of punctured maps is the desire to treat logarithmic Gromov–Witten invariants
by splitting the domain curves along nodal sections, in situations where such sections
occur uniformly in the moduli space.

After briefly formalizing this splitting operation, we present the second series of
main results of this paper, the reverse procedure of gluing a pair of punctured sections,
followed by its treatment in punctured Gromov–Witten theory. We end this chapter
with an application to the degeneration situation of [3].

Throughout this chapter, X ! B denotes a morphism of fs logarithmic schemes
fulfilling the assumptions stated at the beginning of Chapter 3.

5.1 Splitting punctured maps

We first discuss the operation of splitting of punctured curves along nodal sections.

Definition 5.1. A nodal section of a family of nodal curves � W C ! W is a section
s WW ! C of � that étale locally inW factors over the closed embedding defined by
the ideal .x; y/ in the domain of an étale map

Spec OW Œx; y�=.xy/! C :

The partial normalization of C=W along s is the map

� W zC ! C (5.1)

that étale locally is given by base change from the normalization of the plane nodal
curve Spec kŒx; y�=.xy/. We say s is of splitting type if the two-fold unbranched
cover ��1.im.s//! im.s/ is trivial.

A nodal section of a punctured curve .C ı=W;p/ or punctured map .C ı=W;p; f /
is a nodal section of the underlying curve C=W .

Note that a nodal section s of a nodal curve C=W with partial normalization
� W zC ! C and nodal locus Z D im.s/ exhibits C as the fibered sum

Z q��1.Z/ zC
'
�! C : (5.2)

A punctured curve can be split along a nodal section of splitting type.
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Proposition 5.2. Let � W zC ! C be the partial normalization of a punctured curve
.� W C ı ! W; p/ defined by the splitting at a nodal section s of splitting type. Let
p1; p2 W W ! zC be two sections of ��1.im.s//! im.s/ with disjoint images.

Then
. zC ı; Qp/ D

�
z� W . zC ; ��MCı/

�
�! C ı ! W; ¹ Op; p1; p2º

�
with Op WW ! zC the unique set of sections with pD � ı Op, is a (possibly disconnected)
punctured curve.

Proof. Since � W zC ı ! C ı is an isomorphism away from im.p1/ [ im.p2/, it suf-
fices to consider a neighborhood of a geometric point Np ! zC of one of im.pi /, say
i D 1. Denote by Nq D � ı Np the corresponding geometric point of C , thus a geomet-
ric point of the image of the nodal section. By the structure of log smooth curves,
MCı; Nq is generated by .��MW / Nq , sx and sy , where sx; sy 2MCı;q are induced by
the coordinates x; y in Definition 5.1. These are subject to the relation sxsy D s�
for some s� 2 .��MW / Nq . Hence .��MW / Nq and sy locally generate M

gp
Cı as a group,

with sx D s�s�1y . Pulling back to zC , along the branch x D 0, hence with y D 0 giving
im.p1/, we see that .��MCı/

gp is locally generated by .z��MW / Np and �[sy . Further,
�[sy is also a section of P , the divisorial log structure given by p1, and the image of
�[sy in xP generates xP as a monoid. Thus locally near Np,

z��MW ˚O�
zC

P � ��MCı � z�
�MW ˚O�

zC

P gp:

Further, any local section of ��MCı not contained in z��MW ˚O�
zC

P can be written

in the form saxs
b
y sW with a > 0, b � 0 and sW a local section of z��MW . Since

˛.sx/ D 0 when x D 0, we see that ˛ applied to any such element is zero. Thus
. zC ı=W; Qp/ is a punctured curve near Np.

For the application to moduli spaces of punctured maps we formalize the splitting
procedure as an operation on graphs, hence on (global) types of punctured maps.

Definition 5.3. LetG be a connected graph and E�E.G/ a subset of edges. Replac-
ing each E 2 E by a pair of legs LE , L0E leads to a graph yG with

V. yG/ D V.G/; E. yG/ D E.G/ n E; L. yG/ D L.G/ [ ¹LE ; L
0
E ºE2E:

We call the collection of connected subgraphs G1; : : : ; Gr of yG the graphs obtained
from G by splitting along E.

There is an obvious induced notion of splitting of a genus-decorated graph .G;g/,
of a (global) type � , or of a (global) decorated type � of a punctured map along a
subset of edges of the corresponding graphs.

Proposition 5.4. Let X ! B be a morphism of fs logarithmic schemes over k fulfill-
ing the assumptions stated at the beginning of Chapter 3. Let �1; : : : ; �r be obtained
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�1

E

� �2

Figure 5.1. Tropical splitting.

from splitting a global type � D .G; g;� ; Nu/ of a punctured map to X=B along a sub-
set of edges E � E.G/. Then the splitting morphism from Proposition 5.2 followed
by pre-stabilization (Proposition 2.5) defines morphisms of stacks

M.X=B; �/!
Y
i

M.X=B; �i /; M.X=B; �/!
Y
i

M.X=B; �i /;

with the products understood as fiber products over B .
Analogous results hold for decorated types and for moduli spaces of weakly

marked punctured maps.

Proof. The statement is immediate from Propositions 5.2 and 2.5.

Example 5.5. As an illustration of the splitting procedure consider the degeneration
of P1 � P1 to two copies of P2 constructed as follows. Take the polyhedral decom-
position P of R2 with two vertices at .0; 0/, .1; 1/ and four maximal cells given by
the dashed part of Figure 5.1. Embed R2 as affine hyperplane R2 � ¹1º in R3 and
take the closures of the cones over cells of P to define a fan † in R3 with support
j†j D R2 �R�0. The corresponding toric threefold X comes with a flat morphism

� W X ! A1

induced by the projection j†j !R�0 to the last coordinate. It is not hard to show that
��1.A1 n ¹0º/D .P1 �P1/� .A1 n ¹0º/, a trivial family, and ��1.0/D P2qP1 P2,
a gluing of two copies of P2 along a pair of toric divisors.

Figure 5.1 on the left shows the tropicalization of a family of curves of bide-
gree .1; 1/ giving a type � . The figure shows the intersection with the affine hyper-
plane R2 � ¹1º. Splitting along the edge E yields the two types �1, �2 whose general
members are depicted on the right. Note also that the leg in �2 obtained from splitting
� at E extends to the boundary of the cell, while this is not true for �1. This illustrates
the necessity of pre-stabilization in the splitting procedure.

The opposite process of shrinking legs to an edge of a tropical domain curve
appears in gluing, see Remark 5.12.
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5.2 Gluing punctured maps to X=B

5.2.1 Notation for splitting edges

In this section we work in categories of spaces over B or B . In particular, products
are to be understood as fiber products over B or B , as appropriate.

Let � D .G;g;� ; Nu/ be a global type of punctured tropical maps and �i D .Gi ;gi ;
� i ; Nui /, i D 1; : : : ; r , the global types obtained by splitting � at a subset E � E.G/
of edges (Definition 5.3). We choose an orientation on each edge E 2 E and refer to
the two legs obtained by splitting the edge E with vertices v, v0 by the corresponding
half-edges .E;v/, .E;v0/, withE oriented from v to v0.1 Denote by L�

S
i L.Gi / the

subset of all legs obtained from splitting edges, and by i.v/ 2 ¹1; : : : ; rº for v 2 V.G/
the index i with v 2 V.Gi /.

5.2.2 The stack zM0.X=B; �/ and its evaluation morphism

Evaluation at the nodal sections for E defines the morphism

evE WM
0.X=B; �/!

Y
E2E

X:

For eachE 2E denote by M0
E .X=B;�/ the image of the corresponding nodal section

sE W M
0.X=B; �/ ! C0ı.X=B; �/ with the restriction of the log structure on the

universal domain C0ı.X=B; �/. Denote further by zM0.X=B; �/ the fs fiber product

zM0.X=B; �/ DM0
E1
.X=B; �/ �fs

M0.X=B;�/ � � � �
fs
M0.X=B;�/ M0

Er
.X=B; �/; (5.3)

where E1; : : : ; Er 2 E.G/ are the edges in E.2 With this enlarged log structure,
the pullback zC0ı.X=B; �/! zM0.X=B; �/ of the universal domain has sections QsE ,
E 2 E, in the category of log stacks. Moreover, evE lifts to a logarithmic evaluation
morphism

evE W zM
0.X=B; �/!

Y
E2E

X; (5.4)

with E-component equal to

Qf ı QsE for Qf W zC0ı.X=B; �/! X

the universal punctured morphism.

1We use this notation as it is easy to parse, but note that .E; v/ is ambiguous if E is a loop.
It will always be clear from the context how to fix this ambiguity with a heavier notation.

2Note that we have suppressed the dependence of the stack on E from the notation.
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5.2.3 The stacks zM0.X=B; �i /, evaluation and splitting morphisms

Similarly, for each of the global types �i D .Gi ; gi ; � i ; Nui / obtained by splitting
and L 2 L.Gi /, denote by M0

L.X=B; �i / the image of the punctured section sL W
M0.X=B; �i / ! C0ı.X=B; �i / defined by L, again endowed with the pullback of
the log structure on C0ı.X=B; �i /. With L1; : : : ; Ls the legs of Gi obtained from
splitting, define the stack

zM0.X=B; �i / D
�
M0
L1
.X=B; �i / �

f
M0.X=B;�i /

� � � �
f
M0.X=B;�i /

M0
Ls
.X=B; �i /

�sat
;

where sat denotes saturation, bearing in mind that the log structures on the stacks
M0
Lj
.X=B; �i / are not saturated.

This stack differs from M0.X=B; �i / by adding the pullback of the log struc-
ture of each puncture obtained from splitting, so that the pullback zC0

ı
.X=B; �i /!

zM0.X=B; �i / of the universal curve now has punctured sections in the category of
log stacks. We define the evaluation morphism

evL W

rY
iD1

zM0.X=B; �i /!
Y
E2E

X �X; (5.5)

by taking as E-component the evaluation at the corresponding two sections sE;v ,
sE;v0 , observing the chosen orientation of E.

Lemma 5.6. The splitting morphism M.X=B; �/ !
Q
i M.X=B; �i / in Proposi-

tion 5.4 lifts to a morphism

zM.X=B; �/!

rY
iD1

zM.X=B; �i /: (5.6)

Analogous statements hold for weak markings and for the moduli spaces of stable
maps to X rather than X.

Proof. We only treat the case of marked moduli spaces of punctured maps to X, the
other cases being completely analogous.

It suffices to produce a morphism

ME .X=B; �/!ML.X=B; �i /

lifting M.X=B; �/ ! M.X=B; �i / whenever L D .E; v/ 2 L.Gi / is one of the
two legs obtained from splitting E. Indeed, this then provides a morphism of fibered
products, which lifts to the saturation by functoriality of saturation.

To construct this lifting let Cı !M WDM.X=B; �/ be the universal curve, and
zCı ! Cı the splitting of all nodes labeled by an element of E, strict as a morphism
of log stacks. The graph Gi given by �i selects a connected component zCıi � zC

ı,
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and the nodal section sE lifts to a punctured section Qsi W M ! zCıi . Let similarly
CıL!Mi WDM.X=B;�i / and sL WMi !CL the corresponding universal curve and
punctured section over Mi . Then ME .X=B;�/DM�zCı

i

zCıi since zCıi !Cı is strict,

and similarly ML.X=B; �i / D Mi �CıL
CıL. Now there is a canonical morphism

zCıi ! CıL lifting M.X=B; �/ ! M.X=B; �i /—the prestabilization morphism as
a punctured map. Pulling back we obtain the desired morphism ME .X=B; �/ !

ML.X=B; �i /.

We next show that enlarging the log structures for the punctures may change the
structure of the underlying stacks, but only by nilpotents in the structure sheaf.

For S � E.G/ [ L.G/ we unify the notation, denoting by zM0.X=B; �/ !

M0.X=B; �/ the corresponding fiber product over both nodal and punctured sections.
In this generality we have:

Proposition 5.7. Let � D .G; g; � ; Nu/ be a global type of punctured maps, S �
E.G/ [ L.G/ and zM0.X=B; �/ the corresponding stack of weakly � -marked punc-
tured maps to X=B with sections. Then the canonical map

zM0.X=B; �/!M0.X=B; �/

induces an isomorphism on the reductions of their underlying stacks. If moreover
S � E.G/, the canonical map is an isomorphism on underlying stacks.

Analogous results hold for the marked and decorated versions.

Proof. Going inductively, it suffices to treat the case that S has only one element. The
case S D ¹Eº is an edge leads to the problem of going over from a monoid Q to the
saturation of a monoid of the form Q ˚N N2 with 1 2 N mapping to .1; 1/ 2 N2.
Since the morphism N ! N2 is saturated and integral, Q ˚N N2 is saturated and
integral as well by [52, Propositions I.4.8.5, I.4.6.3]. In particular, the fs fiber product
in (5.3) agrees with the ordinary fiber product, and only changes the log structure.

For S D ¹Lº a leg, we need to take the saturation of the strict subspace given
by a punctured section. Let .C ı=W; p; f / be a punctured map to X=B with W D
Spec.Q! A/. Let W ! Spec kŒQı� be a chart for the log structure induced by the
punctured section corresponding to the leg L, with Qı � Q ˚ Z. Then necessarily
the induced map Qı ! A takes Qı n .Q˚ 0/ to zero.

The saturation of Spec.Qı!A/ equalsW 0D Spec.Q0!A0/withQ0 the satura-
tion ofQı andA0DA˝kŒQı� kŒQ0�. Necessarily, ifm2Q0 nQı thenm2Q˚Z<0,
and so its image zm 2 A0 is nilpotent (following the notation of Section 1.6). It is then
immediate that A ! A0red is surjective. This map factors through Ared ! A0red, so
the latter is surjective. Thus W 0red is a closed subscheme of Wred. On the other hand,
by [52, Proposition III.2.1.5] saturation is always a surjective morphism, and hence
W 0red ! Wred is an isomorphism.
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By Proposition 5.7 the Chow theories of the moduli stacks of punctured maps do
not change by enlarging the log structures. We can thus freely use the enlarged log
structures in discussing gluing.

We are now in position to state the central technical gluing result. It explains how
a � -marked punctured map is equivalent to giving a collection of �i -marked punctured
maps obeying a logarithmic matching condition.

Theorem 5.8. Let X ! B be a morphism of fs logarithmic schemes over k fulfilling
the assumptions stated at the beginning of Chapter 3, and assume X is simple. Let
�1; : : : ; �r be the global types of punctured maps (Definition 2.44) obtained by split-
ting a global type � D .G; g; � ; Nu/ along a subset of edges E. Then the commutative
diagram

zM0.X=B; �/
ıM //

evE

��

Qr
iD1
zM0.X=B; �i /

evL

��Q
E2E X

� //
Q
E2E X �X

with� the product of diagonal embeddings and the other arrows defined in (5.4), (5.5),
and (5.6), is cartesian in the category of fs log stacks. We remind the reader that
all products in this square are taken over B .

An analogous statement holds for � replaced by a decorated global type � D
.�;A/.

Remark 5.9. We note that it is important that we use the weakly marked moduli
spaces here. Indeed, there exist simple examples of (strongly) marked punctured
maps which may be glued to obtain a punctured map which is only weakly marked.
This arises as saturation issues in the above fiber product description may introduce
nilpotents. For an explicit example, see [26, Example 4.5]. We also note that this is
essentially the same saturation issue as in Remark 3.5, and the examples are closely
related.

The proof of the theorem, given further below, is based on the following gluing
result for punctures with a section.

Lemma 5.10. Let W be an fs log scheme and U ıi a puncturing along ¹0º � W
of strict open neighborhoods U1; U2 � A1 � W of ¹0º � W , i D 1; 2. Here A1 is
endowed with its toric log structure. Furthermore, let si W W ! U ıi be sections with
schematic image ¹0º �W of the composition U ıi ! Ui ! W of the puncturing map
and the projection.

Then there exists an enlarged puncturing yU ıi ! U ıi ! Ui through which the
sections si factor, and a unique log smooth curve � W U ! W with maps

�1 W yU
ı
1 ! U; �2 W yU

ı
2 ! U
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overW inducing an isomorphism of underlying schemes U 1q¹0º�W U 2 ' U , strict
away from ¹0º �W , and such that �1 ı Os1 D �2 ı Os2, with Osi the lifts of si .

Remark 5.11. The lifting of si to yU ıi is unique. The enlarged puncturing yU ıi is not
unique, but may be chosen uniquely if we require that yU ıi ! U ıi � U is prestable.
We obtain a pushout diagram up to unique punctured enlargement:

U ı1
yU ı1

oo

�1

��

W

s1
>>

Os1

66

s2
  

Os2

((

U

U ı2
yU ı2

oo

�2

??

Proof of Lemma 5.10. The statement is about the unique definition of the log struc-
ture on U near the nodal locus ¹0º �W � U . Since this is a local question we can
restrict attention to a neighborhood of a geometric point Nq D .0; Nw/ of ¹0º �W . By
the definition of puncturing, the linear coordinate of A1 defines elements �x 2MU ı

1
; Nq ,

�y 2MU ı
2
; Nq .

Now assume that U D .U ;MU /! W is a log smooth curve with the required
properties for some yU ıi . Since yU ıi , U ıi are both puncturings of Ui we may identify
xM

gp
yU ı
i

D xM
gp
U ı
i

D xM
gp
Ui

. Then

x�[i W
xM

gp
U; Nq !

xM
gp
yU ı
i
; Nq
D xM

gp
U ı
i
; Nq
D xM

gp
W; Nw ˚ Z

is an isomorphism with xMW; Nw ˚N �x�[i .
xMU; Nq/. Thus there exist z�x; z�y 2MU; Nq with

�x D �
[
1.z�x/; �y D �

[
2.z�y/:

An important property of log smooth structures at nodes is that logarithmic lifts of
given local coordinates at the two branches of the node become unique if one requires
their product to lie in �[.MW; Nw/ [51, Section 3.8]. With this condition imposed on
z�x , z�y , we now obtain a unique element �q 2MW; Nw with

z�x � z�y D �
[.�q/: (5.7)

Under the assumption of the existence of factorizations Os1, Os2 of the sections s1, s2,
we can compute �q from �x and �y as follows: With �1 ı Os1 D �2 ı Os2 we obtain

�q D .�1 ı Os1/
[.�[.�q// D .�1 ı Os1/

[.z�x/ � .�2 ı Os2/
[.z�y/ D s

[
1.�x/ � s

[
2.�y/:

Note also that MU; Nq is generated by .��MW / Nq and z�x , z�y , with single relation (5.7).
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Conversely, we can define the structure of a log smooth curve at Nq ! U with the
requested properties simply by defining

�q D s
[
1.�x/ � s

[
2.�y/; (5.8)

and
MU; Nq WD .�

�MW / Nq ˚N N2;

with the generator 1 2 N in the fibered sum mapping to �[.�q/ 2 .��MW /q and to
.1; 1/ 2 N2, respectively. The structure morphism

MU; Nq ! OU; Nq

is defined by the structure morphism of W on the first summand, and by mapping
.a; b/ 2 N2 to xayb when writing U � W �Z Spec ZŒx; y�=.xy/. Since the projec-
tion U ıi n .¹0º �W /! W is strict, this log structure near Nq patches uniquely to the
given log structure onU ıi n .¹0º �W / to define the desired log smooth curveU !W .

The morphisms �i W yU ıi ! U are then given by

.�[1/ Nq WMU; Nq !M
gp
U ı
1
; Nq
; .1; 0/ 7! �x; .0; 1/ 7! ��1x �[.�q/;

.�[2/ Nq WMU; Nq !M
gp
U ı
2
; Nq
; .1; 0/ 7! ��1y �[.�q/; .0; 1/ 7! �y :

(5.9)

These definitions are forced upon us by the structure homomorphisms on U ıi and by
the defining relation (5.8) for MU; Nq . If ��1x �[.�q/ 62MU ı

1
;q , we may have to enlarge

the puncturing of U ı1 for this map to define yU ı1 ! U , and similarly for yU ı2 ; if we
choose the enlargement to be generated by ��1x �[.�q/ it is uniquely defined. Note
that by (5.8), the image of �q under the structure morphism is xy D 0, and hence this
enlargement of puncturing is possible. Note also that s1 factors uniquely over this
extension of puncturing since by (5.8),

.s[1/
gp���1x �[.�q/

�
D s[2.�y/;

and similarly for s2. Finally, to check the equality �1 ı s1 D �2 ı s2 we compute

.s[1 ı �
[
1/.1; 0/ D s

[
1.�x/ D s

[
2.�y/

�1�q D s
[
2.�
�1
y �[.�q// D .s

[
2 ı �

[
2/.1; 0/;

and similarly for .1; 0/ replaced by .0; 1/. This shows the claimed properties for
U ! W and �1, �2. Uniqueness follows from the discussion at the beginning of the
proof.

Remark 5.12. It is worthwhile to understand the gluing construction of a pair of
punctured points to a node on the level of ghost sheaves and in terms of the dual
tropical picture. The relevant monoids are

Q D xMW; Nw ; Qi D xMU ı
i
; Nq � Q˚ Z;
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and their duals

! D Hom.Q;R�0/; �i D Hom.Qi ;R�0/ � ! �R�0:

We choose the embedding Qi � Q ˚ Z such that x�[ identifies Q with Q ˚ ¹0º,
while the puncturing log structure is generated by .0; 1/ 2 Q ˚ Z. The sections si
define left-inverses

Ns[i W Qi ! Q

to x�[. Now the point of the gluing construction is that there are exactly two automor-
phisms � of Qgp ˚ Z making the following diagram of monoids commutative:

Q
id //

x�[
��

Q

x�[
��

Q1

��

Q2

��

Qgp ˚ Z
�
//

Ns[
1
!!

Qgp ˚ Z

Ns[
2

}}

Qgp

Indeed, by commutativity of the square, �.m; 0/ D .m; 0/ for all m 2 Qgp. Define
�i D Ns

[
i .0; 1/, i D 1; 2, and �q by �.0; 1/ D .�q; d /. Then d D ˙1 since �.0; 1/

together with Qgp ˚ ¹0º generates Qgp ˚ Z. This sign determines the two possibili-
ties. Commutativity of the triangle now shows

�1 D Ns
[
1.0; 1/ D Ns

[
2.�q;˙1/ D �q ˙ �2:

The situation obtained by splitting a node into two punctures produces the negative
sign. With this choice we obtain an isomorphism of the submonoid Q12 � Qgp ˚ Z
generated by Q ˚N and ��1.Q ˚N/ with Q ˚N N2, with 1 2 N mapping to �q
and .1; 1/, respectively. The defining equation �q D �1 C �2 retrieves (5.8) in the
proof of Lemma 5.10 on the level of ghost sheaves. The change of puncturing of U ı1
becomes necessary if Q12 6� Q1, and similarly if �.Q12/ 6� Q2 for U ı2 . Figure 5.2
provides an illustration.

For the tropical interpretation, illustrated in Figure 5.3, we have two factorizations

!
†.si /
���! �i

†.�/
���! !;

of id! . Here the second map is the projection to the first component when writing
�i � ! �R�0. Thus †.si /.h/ D .h; `i .h// for some piecewise linear map

`i W ! ! R�0:
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Q1

Q12

ker Ns[1 ker Ns[1

��1.0; 1/

�q Q � ¹0º

��1.Q2/

Q12

�q
.0; 1/

�.Q12/

�q

ker Ns[2

.0; 1/

Q2

�

Q � ¹0º Q � ¹0º

Figure 5.2. The monoids Q1; Q2; Q12 � Q ˚ Z and their comparison under � W Q ˚ Z!
Q ˚ Z. The hatched area depicts Q12, the solid shading Q1, Q2 or ��1.Q2/. Note that
�.Q12/ D Q12 because both cones are spanned by Q � ¹0º, .0; 1/ and �q � .0; 1/. In the
sketched situation, the puncturing for U ı

2
has to be enlarged, the one for U ı

1
does not.

! � ¹0º

�1

†.s1/.!/

!E

¹0º �R�0 ¹0º �R

!E

†.s1/.!/

�t

! � ¹0º
�t .�2/

! � ¹0º

.�t /�1.!E/

†.s2/.!/

�2

¹0º �R�0

Figure 5.3. The dual tropical picture of Figure 5.2. The hatched area covers !E , the solid
shading �1, �2 and �t .�2/. The dashed line indicates the image of ! under †.s1/ or †.s2/.

Thinking of h as parametrizing a punctured tropical curve, `i .h/ specifies a point
on the puncturing interval or ray emanating from the unique vertex vi . The tropical
glued curve then produces the metric graph with two vertices v1, v2 by joining the two
intervals at the specified points, hence producing an edge E of length `1.h/C `2.h/.
The tropical glued curve over ! thus has edge function ` W ! ! R�0 simply defined
by

` D `1 C `2: (5.10)

The process of producing the glued cone !E � ! �R�0 over ! is dual to the state-
ment Q12 D .Q˚N/C ��1.Q˚N/:

!E D Hom.Q12;R�0/ D .! �R�0/ \ �
t .! �R�0/:

The change of puncturing is necessary if `.h/ is smaller than either of the length
functions obtained by tropicalizing the puncturing, or if either one of Q12 \ Q1,
�.Q12/ \Q2 is not saturated.
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We now turn to the proof of the gluing theorem for punctured maps to X=B .

Proof of Theorem 5.8. Write �i D .Gi ;gi ; �i ; Nui /. We check the universal property of
cartesian diagrams.

Step 1: An object of the fibered product. Consider an fs log scheme W with two
morphisms

W !
Y
E2E

X; W !

rY
iD1

zM0.X=B; �i / (5.11)

together with an isomorphism of the compositions to
Q
E X �X. Spelled out this

means that (1) for each i D 1; : : : ; r we have given a weakly �i -marked, pre-stable
punctured map

.�i W C
ı
i ! W;pi ; fi W C ıi ! X/

over W and for each leg .E; v/ 2 L.Gi / a section sE;v W W ! C ıi with image the
puncture labeled by the leg in Gi generated by E; and (2) the sections fullfill the
logarithmic matching property

fi.v/ ı sE;v D fi.v0/ ı sE;v0 ; (5.12)

for each edge E 2 E with adjacent vertices v, v0. Write pE;v for the strict closed
subspace of C ıi defined by .E; v/ 2 L.Gi /.

Step 2. The glued curve. Denote by C the family of nodal curves over W obtained
by gluing

`
i C i schematically along pairs of punctures. Let E 2 E be an edge with

vertices v, v0, and qE the nodal section of C ! W given by the image of the pair
of punctures pE;v , pE;v0 . Applying Lemma 5.10 étale locally near the image of qE
provides a local extension of the log structure defined by the C ıi away from qE to a
log smooth curve over W . Thus there is a punctured curve

.� W C ı ! W;p/

with underlying scheme C that replaces each pair of punctures pE;v , pE;v0 in
`
i C
ı
i ,

for an edge E 2 E with vertices v, v0, by a node qE . The lemma also provides a
morphism of punctured curves yC ıi ! C ıi with unique liftings OsE;v of each section
sE;v to yC ı

i.v/
, and morphisms

�i W yC
ı
i ! C ı

with �i.v/ ı OsE;v D �i.v0/ ı OsE;v0 , and yC ıi equal to C ıi possibly up to enlargement of
the puncturing. For each edge E 2 E we can thus define the nodal section

sE WD �i.v/ ı OsE;v D �i.v0/ ı OsE;v0 W W ! C ı:
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Step 3. Gluing the tropical map. Denote by . yC ıi ; Opi ; Ofi / with Ofi D fi ı . yC ıi ! C ıi /

the punctured stable map with the enlarged punctured structure. It follows from the
tropical description of the gluing construction in Remark 5.12 that the tropicalizations

†. Ofi / W †. yC
ı
i /! †.X/

of Ofi glue to a map of generalized cone complexes

†.C ı/! †.X/

which commutes with the map to †.B/. In fact, restricting to a geometric point Nw of
W and adopting the notation from Remark 5.12, at an edge E 2 E with vertices v1,
v2, the cone !E �! �R�0 of†.C ı

Nw/ is defined by the length function `E D `1C `2.
Denote further � D . xM_

X; Ny
/R for

Ny D fi.v1/.sE;v1. Nw// D fi.v2/.sE;v2. Nw//:

Assuming E oriented from v1 to v2, the contact orders obtained from splitting � at E
are related by

uE;v1 D uE D �uE;v2 2 �
gp
Z :

Now the map !E ! � 2 †.X/ can be defined by

!E 3 .h; �/ 7! V1.h/C � � uE;v1 D V2.h/C .`E .h/ � �/ � uE;v2 ; (5.13)

where V� W ! ! � is the map for the vertex v� given by †.fi.v�//, � D 1; 2. The
image of this map lies in � since the line segment ¹hº � Œ0; `1.h/� is contained in
�1 � ! � R�0 and V1.h/ C � � uE;v1 D †.fi.v1//.h; �/, and similarly for the line
segment ¹hº � Œ`1.h/; `.h/� and †.fi.v2//. The equality in (5.13) holds because

V1.h/C `1.h/ � uE;v1 D †.fi.v1/ ı sE;v1/.h/

D †.fi.v2/ ı sE;v2/.h/ D V2.h/C `2.h/ � uE;v2 :

Note this last argument uses the assumption that NuE is monodromy-free to assure that
uE;v1 D �uE;v2 . This finishes the construction of the map †.C ı/! †.X/.

Step 4. Gluing the punctured map. In view of [3, Proposition 2.10]3, we thus obtain a
morphism C ı!AX over AB . By the same token, the composition C ı!AX!AB

agrees with C ı ! B ! AB . We thus obtain an induced morphism

f W C ı ! X D B �AB AX ;

3While [3, Proposition 2.10] assumes a more restricted context, the proof only uses that the
Artin fan of the codomain is Zariski (Definition A.7). This is true here by simplicity of X and
our standing assumptions on B .
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commuting with the maps to B . By functoriality of this construction and the tropical
description of the gluing process, it holds f ı �i D Ofi for all i .

The data .C ı ! W; f; p/ and the collection of nodal sections sE now define the
desired morphism

W ! zM0.X=B; �/:

Indeed, splitting the domain C ı at the nodes for edges E 2 E and pre-stabilizing
obviously retrieves the collection of pre-stable maps .C ıi ! W;pi ; fi / with compat-
ible evaluation maps to X and sections sE;v that we started with. This finishes the
existence part in checking cartesianity.

Uniqueness follows from the uniqueness statement in Lemma 5.10.

5.2.4 Relative and absolute maps

We end this section by remarking that in many situations, working with all fiber prod-
ucts over B may be burdensome, as each product in the diagram of Theorem 5.8 is
over B . In the standard degeneration situation considered in Section 5.4 below, we
might be working over a standard log point b0, and saturation issues even over b0 can
complicate the fiber product. Thus the following is generally useful.

Proposition 5.13. Let B be an affine log scheme equipped with a global chart P !
MB inducing an isomorphism P Š �.B; xMB/. Let � be a global type of punc-
tured tropical map for X=B (Definition 2.44 (1)), with underlying graph connected.4

Then there are isomorphisms M.X=B; �/ ŠM.X= Spec k; �/ and M.X=B; �/ Š

M.X=Spec k; �/.

Proof. We show the first isomorphism, the second being similar. There is a canonical
forgetful morphism M.X=B; �/!M.X= Spec k; �/, and we need to show it is an
isomorphism. For this purpose, it is enough to demonstrate that given a punctured
map f W C ı=W ! X, there is a unique morphism h W W ! B which fits into a
commutative diagram

C ı

�

��

f
// X

g

��

W
h
// B

First, to define the underlying h W W ! B it is sufficient to define h#
W �.B;OB/!

�.W;OW /Š �.W;��OC /, the latter isomorphism from the fact that � is flat, proper
with connected and reduced fibers and [67, Lemma 0E0S]. We take this map to coin-
cide with .g ı f /# W �.B;OB/! �.C;OC /.

4Connectedness is generally assumed in this paper, although usually not necessary, but here
the result is not true without it.
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We next enhance h to a log morphism, first by describing the map at the level
of ghost sheaves, or equivalently, at the tropical level. Fix Nw a geometric point of
W , and let � 0 D .G0; g0; � 0; u0/ be the type of C Nw ! X, so that in particular there
is a contraction morphism � 0 ! � . Since � 0 and � have the same set of legs with
the same contact orders, the fact that � is defined over B implies that the composed
map†.g ı f / W †.C Nw/! †.B/D P_R contracts all legs. However, g ı f is a punc-
tured map with underlying schematic map constant, and thus by Proposition 2.27, the
restriction of †.g ı f / to any fiber of †.�/ is a balanced tropical map. Since all
legs are contracted, the image of this tropical map is compact. Hence, there must be
a hyperplane H in the vector space P �R containing the image of a vertex of this map
and with the entire image contained in a half-space bounded byH . By balancing, this
is impossible unless the tropical map is constant. Hence the desired diagram exists at
the tropical level. This shows that the map P D �.B; xMB/! �.C ı

Nw ;
xMCı
Nw
/ factors

uniquely over xMW; Nw . In particular, we obtain a map Nh[ W �.B; xMB/! �.W; xMW /.
Finally, there is a unique lifting of Nh[ to h[ W �.B;MB/! �.W;MW /. Indeed,

let s 2 �.B;MB/ be a section which maps to Ns 2 �.B; xMB/. Then because the
desired diagram exists at the level of ghost sheaves, . Nf [ ı Ng[/.Ns/ D x�[.Nt / for some
Nt 2 �.W; xMW /. Thus étale locally onW , we may choose a lift t 2MW of Nt , and write
.f [ ı g[/.s/ D  � �[.t/ for some  2 �.O�C /. However, again by properness of �
and connectivity and reducedness of the fibers of � ,  D �#. 0/ for some invertible
function  0 on W , and we may define h[.s/ D  0 � t . Because this choice of h[.s/
is determined uniquely by .g ı f /[, this local description patches to give a section
h[.s/ 2 �.W;MW /, making the diagram commute.

We have thus defined a functor M.X= Spec k; �/ !M.X=B; �/ at the level
of objects. By the uniqueness of the construction of the morphism W ! B given
f W C ı=W ! X above, a morphism in the category M.X= Spec k; �/ defines a
morphism in the category M.X=B; �/, hence completely defining the functor. This
defines the desired morphism M.X= Spec k; �/!M.X=B; �/ which is inverse to
the forgetful morphism M.X=B; �/!M.X=Spec k; �/.

We note that the two moduli problems, with isomorphic moduli spacesM.X=B;�/
and M.X=Spec k; �/, have different obstruction theories.

5.3 Evaluation stacks and gluing at the virtual level
While Theorem 5.8 transparently describes the process of gluing a collection of punc-
tured maps at pairs of punctures with matching contact orders, it lacks two crucial
properties needed for applications in punctured Gromov–Witten theory. First, since
the diagonal map � WX !X �X is not proper except in trivial cases and neither is
the splitting map ıM, it is impossible to push forward cycles via ıM for the purpose
of splitting computations according to the splitting of � along the chosen set of edges
E� E.G/. And second, the obvious commutative square lifting the splitting map ıM
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to a map M0.X=B; �/ !
Q
i M
0.X=B; �i / is far from being cartesian even on the

underlying stacks of (pre-) stable maps since it imposes matching at the nodes only
on X rather than on X . (We remind the reader that the products such as

Q
i are all

over the base log scheme B in this discussion.) Hence this approach has no hope to
be compatible with the virtual formalism.

Both problems are solved by enriching the stacks M.X=B; �/ and M.X=B; �i /

of punctured maps to the relative Artin stack X=B and their various cousins
M0.X=B; �/, zM0.X=B; �/ etc., by providing a lift of the underlying evaluations to
X . Note that such enriched stacks of maps to X have already been considered at the
beginning of Section 4.2 in the context of obstruction theories with imposed point
conditions.

For this discussion we mostly work with the stacks M.X=B; �/ of marked maps
(Definition 3.8), except in the analogue Corollary 5.15 of Theorem 5.8, which requires
stacks zM0.X=B;�/with weak markings and sections (Section 5.2.2). All other results
also hold in the weakly marked and decorated contexts.

We continue to assume thatX!B is a morphism of fs logarithmic schemes over
k fulfilling the assumptions stated at the beginning of Chapter 3.

Definition 5.14. Let � D .G; g; � ; Nu/ be a global type of punctured maps to X and
S � E.G/ [ L.G/ a subset of edges and legs. The evaluation stack of M.X=B; �/

with respect to S is the fiber product

Mev.X=B; �/ DM.X=B; �/ �Q
S2S X

Y
S2S

X

of
Q
S2SX !

Q
S2S X with the evaluation map

evS WM.X=B; �/!
Y
S2S

X; .C ı=W;p; f / 7! .f ı sS /S2S;

evaluating at the punctured and nodal sections sS W W ! C ı for S 2 S.
Analogous definitions apply in the weakly marked and decorated contexts as in

Definition 3.8, or for the stacks zM0.X=B; �/ of Section 5.2.2.

Note that Mev.X=B; �/ of course depends on the logarithmic scheme X , but we
suppress this in the notation as X always denotes its relative Artin fan. We also sup-
press S in the notation of the evaluation stacks and rather specify this subset whenever
not clear from the context.

As indicated in the definition, we endow Mev.X=B; �/ with the log structure
making the projection to M.X=B; �/ strict, to obtain the sequence of morphisms of
log stacks

M.X=B; �/
"
�!Mev.X=B; �/!M.X=B; �/

as in (4.14). Recall that the obstruction theory for this sequence of morphisms has
been worked out in Section 4.2. It was noted that, as the morphisms are strict, this
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coincides with the obstruction theory for the underlying stacks. We further saw that
the obstruction theory of M.X=B; �/ over M.X=B; �/ is the composition of an
obstruction theory for " with the trivial obstruction theory in pure degree 0 of the
smooth morphism Mev.X=B; �/ ! M.X=B; �/ of relative dimension .dimX �

dimB/ � jSj.
We now adopt the setup of Section 5.2 and split � at a subset E � E.G/ of edges

with E � S to obtain global types �i D .Gi ; gi ; � i ; Nui /. For the following corollary
of Theorem 5.8 for evaluation stacks, we write zMev.X=B; �/ for the evaluation stack
of zM.X=B; �/ with evaluations at all nodes specified by E, thus by Proposition 5.7
having the same underlying stack as Mev.X=B; �/, but with the enlarged log struc-
ture admitting a logarithmic evaluation map analogous to (5.4). Similarly, we obtain
evaluation stack analogues of the evaluation morphism for the �i (5.5), still denoted
evL, and the splitting morphism (5.6), now denoted ıev.

Corollary 5.15. In the situation of Theorem 5.8, the commutative diagram

zM0ev.X=B; �/
ıev
//

evE

��

Qr
iD1
zM0ev.X=B; �i /

evL

��Q
E2EX

� //
Q
E2EX �X

with arrows defined by the above adaptations to the evaluation stacks for S�E.G/[
L.G/ with E � S, is cartesian in the category of fs log stacks.

In particular, the splitting morphism ıev is finite and representable.

Proof. The stated commutative square is the front face of the commutative box

zM0ev.X=B; �/
ıev

//

evE

��

))

Qr
iD1
zM0ev.X=B; �i /

evL

��

ss

zM0.X=B; �/ //

��

Qr
iD1
zM0.X=B; �i /

��Q
E2E X //

Q
E2E X �XQ

E2E X
� //

44 Q
E2E X �X

kk

with back face the cartesian square from Theorem 5.8 and the sides cartesian squares
defining the evaluation stacks. Hence the stated diagram is cartesian.

The claimed properties of the splitting morphism ıev follow since an fs fiber prod-
uct is the saturation and integralization of the ordinary fiber product.

Remark 5.16. For systematic reasons we work in the category of log schemes overB
in this section, and thus all products in the statement of Corollary 5.15 are fiber prod-
ucts over B . For explicit computations this leads to fibered sums of lattices, which
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sometimes require an extra treatment of multiplicities due to saturation issues. This
additional step can be avoided by observing that the statement of Corollary 5.15 holds
unchanged when interpreting the products as absolute products rather than as prod-
ucts over B , but still with X the relative Artin fan of X=B .

This statement is not a formal consequence of general properties of fiber prod-
ucts, but is due to the connectedness of the graph G given by � , as in the argument
in the proof of Proposition 5.13. To explain this let

Q
B denote the relative fiber

product and
Q

the absolute one. To check the universal property of the commuta-
tive square in Corollary 5.15 with absolute products, let be given a morphism W !Q
i
zM0ev.X=B; �i /, i D 1; : : : ; r , such that the composition with evL factors over �.

For each leg L D .E; v/ 2 L.Gi / we obtain an evaluation map fi ı pL W W ! X,
and by composing with X ! B a map bL W W ! B . This map is independent of the
choice of L 2 L.Gi / since the i -th component of W !

Q
i
zM0ev.X=B; �i / defines

a punctured map over B , but a priori may vary with i . Now the factorization of evL
over � implies that if the i -th and j -th vertex of G are connnected by an edge then
the maps W ! B obtained for i and j coincide. Since G is connected we con-
clude that all these maps agree. Hence the mapW !

Q
i
zM0ev.X=B; �i / factors over

.
Q
B/i
zM0ev.X=B; �i /, and in turn the composition with evL factors over .

Q
B/EX .

We are then in position to apply Corollary 5.15 in the stated form to obtain the unique
lift to zM0ev.X=B; �/.

By the corollary, we obtain a proper push-forward homomorphism in Chow the-
ory for algebraic stacks, as defined by Kresch [45], for the evaluation stacks:

ıev
� W A�.M

ev.X=B; �//! A�

�Y
i

Mev.X=B; �i /
�
; ˛ 7! ı�.˛/: (5.14)

Note that we can work with markings or weak markings here because the correspond-
ing stacks have the same reductions (Proposition 3.33).

It remains to relate ıev with the splitting morphism for moduli spaces of punctured
maps to X rather than X and to show compatibility with the obstruction theory. Note
that these results use the unenhanced, basic log structures on the moduli stacks.

Proposition 5.17. Let X ! B be a morphism of fs logarithmic schemes over k ful-
filling the assumptions stated at the beginning of Chapter 3. Let �1; : : : ; �r be the
global types of punctured maps (Definition 2.44) obtained by splitting a global type
� D .G; g; � ; Nu/ along a subset of edges E. Then there is a cartesian diagram

M.X=B; �/
ı //

"

��

Qr
iD1M.X=B; �i /

y"D
Q
i "i

��

Mev.X=B; �/
ıev
//
Qr
iD1 Mev.X=B; �i /

(5.15)
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with horizontal arrows the splitting maps from Proposition 5.4, finite and repre-
sentable by Corollary 5.15, and the vertical arrows the canonical strict morphisms.
Here we assume the set of edges and legs S � E.G/[L.G/ used in the definition of
the evaluation stacks (Definition 5.14) contains the set E � E.G/ of splitting edges.

Analogous statements hold for decorated and for weakly marked versions of the
moduli stacks (Definition 3.8).

Proof. We argue by spelling out the definitions of the various stacks. Indeed, a pair
of morphisms from an fs log scheme W to

Qr
iD1M.X=B; �i / and to Mev.X=B; �/

together with an isomorphism of their images in
Qr
iD1 Mev.X=B; �i / is equivalent

to (1) an ordinary stable map .C=W ; p; f / to X marked by the genus-decorated
graph .G;g/ given by � , and (2) a punctured map .C ı=W;p; fX/ to X producing the
morphismW !

Qr
iD1Mev.X=B; �i / by splitting at the nodes labeled by E�E.G/.

Note that (1) is obtained by the schematic matching condition at the paired marked
points provided by the evaluation stacks. Since X ! X is strict, f and fX together
are the same as a log morphism f W C ı! X . Moreover, a marking by � is equivalent
to markings by �i of the punctured maps .C ıi =W; pi ; fi / obtained by splitting. The
correspondence is also easily seen to be functorial. Thus the fiber categories over W
of the cartesian product and of M.X=B; �/ are equivalent.

5.3.1 Notation for obstruction theories

To bring in the perfect obstruction theories discussed in Chapter 4, we now in addition
to �; �i ;E; S as in Proposition 5.17 assume X ! B to be log smooth. To analyze the
obstruction theories in (5.15), we introduce the following short-hand notation:5

Mgl WDM.X=B; �/; Mi WDM.X=B; �i /; Mspl WD

rY
iD1

Mi

Mgl WDM.X=B; �/; Mi WDM.X=B; �i /; Mspl WD

rY
iD1

Mi

Mev
gl WDMev.X=B; �/; Mev

i WDMev.X=B; �i /; Mev
spl WD

rY
iD1

Mev
i

(5.16)

Denote further by xC ıi !Mi and by C ı!Mgl the universal curves over Mi and Mgl,
respectively, by C ıi !Mspl the pullback of xC ıi under the projection from the product
Mspl!Mi , and write �spl WC

ı
splD

`
i C
ı
i !Mspl. We also have universal morphisms

f W C ı ! X , fspl W C
ı
spl ! X , and the subspaces of special points to be considered

5For the sake of being specific we work with the marked versions here. Analogous results
also hold for the weakly marked cases.
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� W Z! C ı, �spl W Zspl! C ıspl with projections p D � ı � and pspl D �spl ı �spl to Mgl

and Mspl, respectively. Here Z is the union of the images of the punctured and nodal
sections labeled by S�E.G/[L.G/, whileZspl is the union of punctured and nodal
sections given by Si � E.Gi / [ L.Gi /, i D 1; : : : ; r , obtained from S by splitting,
both endowed with the induced log structures making �, �spl strict.

5.3.2 The fundamental diagram

We consider the following commutative diagram:

zC ı

�
��

z�

��

//

Qf

$$
C ıspl D

`
i C
ı
i

�spl
��

fspl
// X

C ı

�
��

f

77

Mgl
ı //

"
��

Mspl D
Q
i Mi

y"D
Q
i "i

��

Mev
gl

ıev
//Mev

spl D
Q
i Mev

i :

(5.17)

The lower square is the cartesian square from Proposition 5.17 with strict vertical
arrows.

The strict map � W zC ı ! C ı is the map induced by splitting the nodal sections
of C ı ! Mgl given by E � S according to Proposition 5.4. The underlying mor-
phism � of ordinary stacks is therefore the corresponding partial normalization from
Definition 5.1.

The upper square thus identifies the pullback of C ıspl with the pre-stabilization of
zC ı (Definition 2.6). This part of the diagram is a pullback of nodal curves, cartesian
only in the category of stacks, because of the pre-stabilization.

The morphism Qf is as defined by the diagram. There is also the closed substack
zZ D ��1.Z/! zC ı of special points on zC ı with projection Qp W zZ !Mgl, endowed
with the log structure making zZ ! zC ı strict.

5.3.3 An obstruction theory for " and y"

The discussion in Section 4.2 provides obstruction theories G ! LMgl=M
ev
gl

for " W
Mgl !Mev

gl and Gspl ! LMspl=M
ev
spl

for y" WMspl !Mev
spl with

G D Rz��
�
Qf ��X=B ˝ !z�. zZ/

�
; Gspl D R�spl�

�
f �spl�X=B ˝ !�spl.Zspl/

�
: (5.18)
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Recall that this obstruction theory is obtained by taking the cone of a morphism of
perfect obstruction theories provided by Proposition 4.3:

Ly"�Fspl Espl

Ly"�LMev
spl=Mspl LMspl=Mspl

Ly"�‰ ˆ

5.3.4 A justice of obstructions6

We now have four deformation/obstruction situations with corresponding perfect ob-
struction theories. Given T !Mgl a morphism from an affine scheme and fT WC ıT !
X , hT W ZT ! X , QfT W zC ıT ! X , QhT W zZT ! X the respective base-changes to T of
the universal morphisms from the universal curve and universal sections, pulled back
to Mgl in the last two instances, these are as follows. All deformation situations are
relative Mgl, with the last two pulled back from a deformation situation relative Mspl.

(Mgl=Mgl) Deforming fT W C ıT ! X :

E D R��.f ��X=B ˝ !�/! LMgl=Mgl :

(Mev
gl=Mgl) Deforming hT W ZT ! X :

L"�F D p�.h��X=B/! L"�LMev
gl =Mgl :

(Mspl=Mspl) Deforming QfT W zC ıT ! X :

Lı�Espl D Rz��. Qf
��X=B ˝ !z�/! Lı�LMspl=Mspl :

(Mev
spl=Mspl) Deforming QhT W zZT ! X :

Lı�Ly"�Fspl D Qp�. Qh
��X=B/! Lı�Ly"�LMev

spl=Mspl :

Lemma 5.18. There is a morphism of distinguished triangles

Lı�Ly"�Fspl Lı�Espl G Lı�Ly"�FsplŒ1�

L"�F E G L"�F Œ1�

with G D Lı�Gspl D Rz��. Qf
��X=B ˝ !z�. zZ//.

6Our Babel of coauthors proposes this collective noun for a system of compatible obstruc-
tions.
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Proof. The lower row in the claimed diagram was produced in (4.17) in the proof
of Proposition 4.5 by applying R�� to (4.16) tensored with f ��X=B . We claim
that (4.16) appears as the lower row in the following commutative diagram with exact
rows:

0 // ��!z� //

��

��.!z�. zZ// // ��z��O zZ Œ1�
//

��

0

0 // !� // ��.!z�. zZ// // ��OZ Œ1� // 0:

(5.19)

Away from the nodal locus Z00 � Z the upper and lower rows are identical, and
this identification defines the diagram there. Étale locally near a node, the arrow
��.!z�. zZ//! ��OZ Œ1� takes the difference of the residues of a differential with at
most simple poles along the two components of zZ00 ' Z00 q Z00 defined by the two
branches at the node. This map factors as �� of the residue map

�W!z�. zZ
00/!z��O zZ00 Œ1�

and the Œ1�-twist of the difference map

��z��O zZ00 D ��OZ00 ˚ ��OZ00 ! ��OZ00 ; .a; b/ 7! a � b:

The kernel of ��� selects differentials without poles, that is, ��!z� . This extends the
construction of Diagram (5.19) over the nodal locus.

To produce the morphism of triangles in the statement it remains to show that
tensoring the upper row of (5.19) with f ��X=B and applying R�� leads to the upper
row of the claimed diagram. From Proposition 4.5 we already know that the middle
term leads to G:

G
(5.18)
D Rz��

�
Qf ��X=B ˝ !z�. zZ/

�
D R��

�
f ��X=B ˝ ��.!z�. zZ//

�
:

The other two terms are readily obtained by the projection formula for � using z� D
� ı �, Qf D f ı �, Qh D Qf ız�, Qp D z� ız�:

Lı�Espl D Rz��
�
Qf ��X=B ˝ !z�

�
D R��.f

��X=B ˝ ��!z�/

Lı�Ly"�Fspl D Qp�. Qh
��X=B/ D Rz��

�
Qf ��X=B ˝z��O zZ

�
D R��.f

��X=B ˝ ��z��O zZ/:

Theorem 5.19. Let X ! B be a log smooth morphism of fs logarithmic schemes
over k fulfilling the assumptions stated at the beginning of Chapter 3, and � , �i , E, S
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as in Proposition 5.17. Then with the notation of (5.16), we have

(1) The obstruction theory G ! LMgl=M
ev
gl

for

Mgl DMgl.X=B; �/!Mev
gl DMev.X=B; �/

coincides with the pullback of one of the obstruction theories Gspl !

LMspl=M
ev
spl

(Remark 4.4) for

Mspl D
Y
i

M.X=B; �i /!Mev
spl D

Y
i

Mev.X=B; �i /

described in Section 5.3.3.

(2) If y"Š and "Š denote Manolache’s virtual pullback defined using the two given
obstruction theories for the vertical arrows in diagram (5.15), then for ˛ 2
A�.M

ev.X=B; �//, we have the identity

y"Šıev
� .˛/ D ı�"

Š.˛/:

Proof. (1) The morphism between the obstruction theories in question appear as the
joint middle square in the following diagram of two adjacent cubes:

Lı�Espl //

��

''

G

%%

// Lı�Ly"�FsplŒ1�

��

**

Lı�LMspl=Mspl
//

��

Lı�LMspl=M
ev
spl

��

// Lı�Ly"�LMev
spl=Mspl Œ1�

��

E //

''

G

%%

// L"�F Œ1�

**

LMgl=Mgl
// LMgl=M

ev
gl

// L"�LMev
gl =Mgl Œ1�

The back face is the morphism of triangles from Lemma 5.18. The bottom face is
commutative by the construction of the obstruction theory with point conditions G!
LMgl=M

ev
gl

in (4.15) based on Proposition 4.3. Similarly, the top face is commutative as
the pullback by ı of the corresponding diagram for Gspl! LMspl=M

ev
spl

. The front face
of the diagram is the morphism of distinguished triangles of cotangent complexes
for the compositions Mgl !Mev

gl !Mgl and Mspl !Mev
spl !Mspl, and hence is

commutative as well.
For commutativity of the left face we argue in two steps. First apply functoriality

of obstruction theories, Lemma 4.1, to compare the pulled-back obstruction theory
.Mspl=Mspl/ for fspl with the obstruction theory for Qf , both relative Mspl, to obtain
the commutative square

Lı�Espl Lı�LMspl=Mspl

zE LMgl=Mgl :

(5.20)
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Here zEDRz��. Qf ��X=B˝!z�/ and we replaced the lower right-hand corner LMgl=Mspl

by LMgl=Mgl using functoriality of the cotangent complex. Note also that the proof of
Lemma 4.1 did not use the general assumption in Section 4.1 that M is an open sub-
stack of the stack of diagrams described in (4.1), so does apply to the non-universal
family over Mgl given by Qf .

We are then in the situation of Section 4.1.7 with Y ! S the universal curve over
Mgl, Z the partial normalization of this curve, and M D N D Mgl. Thus Proposi-
tion 4.3 provides the commutative square

zE LMgl=Mgl

E LMgl=Mgl :

(5.21)

Again, this result did not use universality of the family of maps over Mgl given by Qf .
Composing the two squares (5.20) and (5.21) proves commutativity of the left face of
our big diagram of adjacent cubes.

An analogous argument for the nodal locus Z and its pullback zZ � zC ı instead
of C ı and zC ı also shows commutativity of the right face.

Thus the whole diagram is commutative except possibly the middle, separating
square that describes the morphism of interest from the pullback of the obstruction
theory for .Mspl=M

ev
spl/ to .Mgl=M

ev
gl /.

However, chasing the diagram, we see that the two morphisms from G to the front
right corner L"�LMev

gl =Mgl Œ1�, one via the top dashed arrow, the other via the bottom
dashed arrow, agree. Their difference factors over a homomorphism

G ! LMgl=Mgl :

The set of such homomorphisms acts transitively on the set of dashed arrows on the
bottom face defining the obstruction theory for .Mgl=M

ev
gl / as discussed in Remark 4.4

Thus there is a choice of dashed bottom arrow making the separating middle square
of the diagram commutative, as claimed.

(2) This follows from the morphism ıev being finite and representable, hence
projective, and the push-pull formula of [50, Theorem 4.1 (iii)].

5.3.5 Gluing by the numbers

We now achieve a numerical gluing formula for Gromov–Witten invariants for classes
in Mev.X=B; �/ whose push-forward to

Q
Mev.X=B; �i / decomposes as a sum of

products of classes. This is for example the case for point classes in Mev.X=B; �/,
or if all gluing strata are toric [71].
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Corollary 5.20. In the situation of Theorem 5.19 let ˛2A�.M.X=B;�// and assume
that there exists ˛i;� 2 A�.M.X=B; �i //, i D 1; : : : ; r , � D 1; : : : ; m, with

ıev
� .˛/ D

mX
�D1

˛1;� � � � � � ˛r;�:

Then writing "i WM.X=B; �i /!Mev.X=B; �i / for the canonical map, the following
equality of associated virtual classes holds in A�.

Q
i M.X=B; �i //:

ı�"
Š.˛/ D

mX
�D1

"Š1.˛1;�/ � � � � � "
Š
r.˛r;�/:

Proof. The claimed formula follows readily from Theorem 5.19 (2) by observing that

y"Š.˛1;� � � � � � ˛r;�/ D "
Š
1.˛1;�/ � � � � � "

Š
r.˛r;�/:

5.3.6 Compatibility with contractions of types

We end this section by noting that the relative obstruction theories are also compatible
with contraction morphisms relating different global types (Definition 2.44 (1)).

Proposition 5.21. Let X ! B be as in Theorem 5.19 and assume � 0 ! � is a con-
traction morphism of global types. Then the commutative diagram

M.X=B; � 0/ //

"0

��

M.X=B; �/

"

��

M.X=B; � 0/ //M.X=B; �/

is cartesian, and the relative obstruction theory for " pulls back to the relative obstruc-
tion theory for "0. Taking curve classes into consideration, if � D .�;A/, the commu-
tative diagram `

�0D.� 0;A0/M.X=B;�
0/ //

"0

��

M.X=B;�/

"

��

M.X=B; � 0/ //M.X=B; �/

(5.22)

is cartesian, and the same statement on relative obstruction theories holds. Here, the
disjoint union is over all decorations �0 of � 0 such that the contraction morphism
� 0 ! � induces a contraction morphism �0 ! �.

Analogous results hold for weakly marked versions of the stacks (Definition 3.8),
and for evaluation stacks on the bottom (Definition 5.14).
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Proof. That the diagrams are Cartesian follows from the definition of markings and
decorated markings of punctured maps (Definition 3.8).

The statement about obstruction theories then follows from the functoriality state-
ment Lemma 4.1 and the construction in Section 4.2 of the relative obstruction theory
for M.X=B; �/!M.X=B; �/.

Remark 5.22. The formalism for gluing presented here was found after many futile
attempts leading to practically useless gluing procedures. With hindsight compatibil-
ity with the virtual formalism provides the strongest guiding principle that rules out
many alternative approaches. From this point of view one discovers the imperative
that one work with obstruction theories relative to a class of unobstructed base stacks
that induce the gluing.

A first attempt would work with moduli stacks M.X=B/ of punctured maps to the
relative Artin fan X!B . This approach does indeed work, but it is often problematic
for practical applications because the gluing map M.X=B; �/!

Q
i M.X=B; �i /

is neither representable nor proper, hence does not allow pushing forward of cycles.
The key insight is to use evaluation stacks to add just enough information to

get rid of the stacky nature of the gluing in M.X=B/, thus leading to a finite and
representable splitting map ıev. In addition, ıev fits into the expected gluing diagram
stated in Corollary 5.15 thus providing a practical path to explicit computations.

5.4 Gluing in the degeneration setup

We now apply our gluing theorems to the degeneration situation previously studied
in [3]. In this case B is a smooth affine curve over Spec k with log structure trivial
except at a marked point b0 2 B , and AX is assumed Zariski. Base change to b0
produces a log smooth space X0 over the standard log point Spec.N ! k/. Let ˇ D
.g; Nu;A/ be a class of punctured maps toX . Note that†.X0/D†.X/, so we can view
ˇ also as a class of punctured maps to X0. The fiber of the tropicalization †.X0/!
†.b0/D R�0 of the projection X0! b0 over 1 2 R�0 defines a polyhedral complex
�.X0/D�.X/. Restricting to this fiber turns our cone complexes into the polyhedral
complexes of traditional tropical geometry.

The main result of [3] gives the following decomposition of the virtual fundamen-
tal class of M.X0=b0;ˇ/ in terms of rigid tropical maps to�.X0/. We emphasize that
this result uses the marked rather than weakly marked versions of the moduli stacks.

Theorem 5.23. Let ˇ be a class of stable logarithmic maps to X0=b0. Then we have
the following equality of Chow classes on M.X0=b0; ˇ/:

ŒM.X0=b0; ˇ/�
virt
D

X
�D.�;A/

m�

jAut.�/j
j��ŒM.X0=b0;�/�

virt:
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The sum runs over representatives of isomorphism classes of realizable global types �
of punctured maps to X0 over b0 of total class .g; Nu;A/ and with basic monoidQ� '
N. The multiplicitym� is the index of the image of the homomorphism N!Q� given
by the map M.X0=b0; ˇ/! b0. The morphism j� WM.X0=b0; �/!M.X0=b0; ˇ/

is induced by the contraction morphism � ! ˇ. Finally, Aut.�/ denotes the group of
automorphisms of the decorated type �, i.e., automorphisms of the underlying graph
G preserving g, � , u and A.

5.4.1 Degenerate types

Theorem 5.25 below is an analogous result in the punctured case, which also provides
a stratified version in the case without punctures. Before stating this result we need
some preparations concerning types in degeneration situations. Since one works with
log spaces over b0 and †.b0/ D R�0, all tropical objects come with a map to R�0.
We denote all these maps by p in the following. Assuming X0 ! b0 is the fiber
over the unique marked point b0 ! B in a log smooth curve B over the trivial log
point, the tropicalization of a punctured map over the generic point � 2 B maps to
0 2 †.B/ D †.b0/ under p. Degenerations of families of punctured maps over � to
b0 then provide a contraction morphism of the associated types (Definition 2.44 (1)).
This motivates the following definition.

Definition 5.24. Let � D .G; g;� ;u/ be a realizable global type (Definition 2.44 (2))
of punctured maps to X0=b0 (Definition 3.28) and Q� the associated basic monoid.

(1) We call � generic if .Q_� /R and � .x/ for each x 2 V.G/ [ E.G/ [ L.G/
map to ¹0º � R�0 under p.

(2) A degeneration of a realizable global type � is a contraction morphism � 0! �

between realizable global types with p W Q_� 0 ! N non-constant. The codi-
mension of � 0 ! � is defined as rkQgp

� 0 � rkQgp
� . In the case of codimension

one we define the multiplicity m� 0 as the index of pgp.Q�� 0/ in Z. Finally,
Aut.� 0=�/ denotes the group of automorphisms of � 0 commuting with � 0! � .

Analogous notions are used in the decorated case (Definition 3.8).

5.4.2 Degenerate types decompose

Let now � D .G; g; � ; u;A/ be a generic realizable decorated global type for X=B .
By the assumption p.� .x// D 0 we can view � also as a decorated global type for
Xb=b for b ¤ b0. The analogue to the main results of [3] is:

Theorem 5.25. In the above situation, additionally assuming X is simple, the fol-
lowing holds.

(1) For any point jb W ¹bº ,! B , one has j Š
b
ŒM.X=B;�/�virt D ŒM.Xb=b;�/�

virt.
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(2) The following equation holds:

ŒM.X0=b0;�/�
virt
D

X
�0D.� 0;A0/

m� 0

jAut.�0=�/j
j�0�ŒM.X0=b0;�

0/�virt (5.23)

The sum runs over representatives of isomorphism classes of degenerations
�0 D .� 0;A0/! � of realizable global types of punctured maps to X=B of
codimension one, with m� 0 its multiplicity.

Proof. By Proposition 3.29, � can be viewed both as a type realizable over B and
as a type realizable over b 2 B for b 6D b0. Thus M.X=B; �/ is non-empty and
M.Xb=b;�/DM.X=B;�/�B b is non-empty for b2B n ¹b0º. By Proposition 3.30,
M.X=B;�/ is pure-dimensional. Further, by the same proposition, every irreducible
component of M.X=B;�/ contains a point whose corresponding punctured map has
tropical type �, as all other strata are of lower dimension. By genericity of the type �,
the stratum of M.X=B;�/ of points with type � maps to the open stratum of B . Thus
the restriction of M.X=B;�/!B to each irreducible component is dominant. There
are no embedded components by the local description in Remark 3.27. We conclude
that the structure map M.X=B;�/! B is flat.

(1) then follows immediately from general properties of virtual pull-backs.
For (2), as in the proof of [3, Theorem 3.11], we begin by showing the corre-

sponding decomposition as Chow classes

ŒM.X0=b0; �/� D
X
� 0!�

m� 0

jAut.� 0=�/j
�� 0�ŒM.X0=b0; �

0/�: (5.24)

Here � is the underlying global type of �, and � 0 ! � runs over all contraction
morphisms as in the statement of the theorem (without the decoration). Finally, �� 0 W
M.X0=b0; �

0/!M.X0=b0; �/ is the natural morphism. However, using the smooth
local description of M.X=B; �/ given in Remark 3.27 and the fact that jAut.� 0=�/j
is the degree of the finite map �� 0 onto its image, we easily obtain the result using
standard toric geometry. We leave the details to the reader.

We now make use of the diagram (5.22) for a given choice of contraction � 0! � ,
and we see by the push-pull result of [50, Theorem 4.1] that

"Š�� 0�ŒM.X0=b0; �
0/� D

X
�0D.� 0;A0/

j� 0�."
0/ŠŒM.X0=b0;�

0/�

D

X
�0D.� 0;A0/

j� 0�ŒM.X0=b0;�
0/�virt; (5.25)

where the sum is over all choices of decorations �0 of � 0 giving a contraction mor-
phism �0 ! � compatible with � 0 ! � . On the other hand, Aut.� 0=�/ acts on the set
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of all such decorations, with the orbit of a decoration �0 having stabilizer Aut.�0=�/.
Thus we may rewrite the last summation of (5.25) asX

�0D.� 0;A0/

j� 0�ŒM.X0=b0;�
0/�virt jAut.� 0=�/j
jAut.�0=�/j

;

where now the sum is over a set of representatives of isomorphism classes of type �0

with a contraction morphism �0 ! �. Combining this with the relation (5.24) then
gives the desired result.

5.4.3 Splitting and factoring decomposed degenerate types

As a corollary of Theorem 5.19 we now obtain a formula for the computation of each
summand ŒM.X0=b0; �0/�virt in (5.23) in terms of punctured Gromov–Witten theory
of the strata. For the statement note that if �v is a global type with only one vertex,
with associated stratum � 2 †.X/, then a �v-marked punctured map .C ı=W; p; f /
to X has a factorization

f W C ı
f�
��! X� ! X;

where the stratum X� is now endowed with the log structure making the embedding
X� ! X strict. The composition with this strict closed embedding in fact induces an
isomorphism

M.X0=b0; �v/
'
�!M.X�=b0; �v/:

Similarly, we obtain

M.X0=b0; �v/ 'M.X�=b0; �v/ and Mev.X0=b0; �v/ 'Mev.X�=b0; �v/:

Note also that X� ! X� is strict and smooth despite X� being only idealized log
smooth over b0 (see Proposition 2.48). Thus the obstruction theory developed in Sec-
tion 4.2 still applies with target X� ! X� ! b0 and yields the same result as with
X0 ! X0 ! b0. Theorem 5.19 applied to our degeneration situation can therefore
be stated as follows.

Corollary 5.26. Let .G;g;� ;u;A/ be a decorated type of punctured maps with basic
monoidQ� 'N and �D .G;g;� ; Nu;A/ the associated decorated global type. Denote
by �v , v 2 V.G/, the decorated global types obtained by splitting � at all edges, that
is, for E D E.G/. Then the diagram

M.X0=b0;�/
ı //

"

��

Q
v2V.G/M.X� .v/=b0;�v/

y"D
Q
v2V.G/ "v

��

Mev.X0=b0;�/
ıev
//
Q
v2V.G/ Mev.X� .v/=b0;�v/
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with horizontal arrows the splitting maps from Proposition 5.4 finite and represent-
able, is cartesian, and it holds

ı�ŒM.X0=b0;�/�
virt
D y"Šıev

� ŒM
ev.X0=b0;�/�:

As in Corollary 5.20, a numerical formula in terms of punctured Gromov–Witten
invariants of the strataX� ofX can be derived assuming ıev

� ŒM
ev.X0=b0;�/� decom-

poses into a sum of products. This is the case for example if all gluing strata X� .E/,
E 2 E.G/, are toric, as proved in [71] based on Corollary 5.15.


