
Chapter 1

Introduction

1.1 Overview

In this paper, we study the ˆ33-measure on the three-dimensional torus on T3 D

.R=2�Z/3, formally written as

d�.u/ D Z�1 exp
�
�

3

Z
T3
u3dx

�
d�.u/; (1.1.1)

and its associated stochastic quantization. Here, � is the massive Gaussian free field
on T3 and the coupling constant � 2 R n ¹0º measures the strength of the cubic
interaction. The associated energy functional for the ˆ33-measure � in (1.1.1) is given
by

E.u/ D
1

2

Z
T3
jhriuj2dx �

�

3

Z
T3
u3dx; (1.1.2)

where hri D
p
1 ��. Since u3 is not sign definite, the sign of � does not play any

role and, in particular, the problem is not defocusing even if � < 0.
Our main goal in this paper is to study the construction of theˆ33-measure and its

associated dynamics, following the program on the (non-)construction of focusing1

Gibbs measures, initiated by Lebowitz, Rose, and Speer [44]. Let us first go over the
known results. In the seminal work [44], Lebowitz, Rose, and Speer studied the one-
dimensional case and constructed the one-dimensional focusing Gibbs measures2 in
the L2-(sub)critical setting (i.e. 2 < p � 6) with an L2-cutoff:

d�.u/ D Z�11¹RT juj
2dx�Kº exp

�
1

p

Z
T
jujpdx

�
d�.u/ (1.1.3)

or with a taming by the L2-norm:

d�.u/ D Z�1 exp
�
1

p

Z
T
jujpdx � A

�Z
T
u2dx

�q�
d�.u/ (1.1.4)

1By “focusing”, we also mean the non-defocusing (non-repulsive) case, such as the cubic
interaction appearing in (1.1.1), such that the interaction potential (for example, �

3

R
T3 u

3dx

in (1.1.1)) is unbounded from above.
2As pointed out by Carlen, Fröhlich, and Lebowitz [17, p. 315], there is in fact an error in

the Gibbs measure construction in [44], which was amended by Bourgain [9] (for 2 < p < 6
with any K > 0 and p D 6 with 0 < K � 1) and the first and third authors with Sosoe [62]
(for p D 6 and K � kQk2

L2.R/
). See [62] for a further discussion.
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for some appropriate q D q.p/, where � denotes the periodic Wiener measure on T .
See [44, Remark 2.1]. Here, the parameter A > 0 denotes the so-called (generalized)
chemical potential and the expression (1.1.4) is referred to as the generalized grand-
canonical Gibbs measure. See also the work by Carlen, Fröhlich, and Lebowitz [17]
for a further discussion, where they describe the details of the construction of the
generalized grand-canonical Gibbs measure in (1.1.4) in the L2-subcritical setting
(2 < p < 6). In [44], Lebowitz, Rose, and Speer also proved non-normalizability of
the focusing Gibbs measure � in (1.1.3):

E�

�
1¹RT juj

2dx�Kº exp
�
1

p

Z
T
jujpdx

��
D1

in (i) the L2-supercritical case (p > 6) for any K > 0 and (ii) the L2-critical case
(p > 6), provided that K > kQk2

L2.R/
, where Q is the (unique3) optimizer for the

Gagliardo–Nirenberg–Sobolev inequality on R such that

kQk6
L6.R/ D 3kQ

0
k
2
L2.R/:

In a recent work [62], the first and third authors with Sosoe proved that the focusing
L2-critical Gibbs measure � in (1.1.3) (with p D 6) is indeed constructible at the
optimal mass threshold K D kQk2

L2.R/
, thus answering an open question posed by

Lebowitz, Rose, and Speer [44] and completing the program in the one-dimensional
case.

In the two-dimensional setting, Brydges and Slade [16] continued the study on the
focusing Gibbs measures and showed that with the quartic interaction (p D 4), the
focusing Gibbs measure � in (1.1.3) (even with proper renormalization on the poten-
tial energy 1

4

R
T2 juj

4dx and on the L2-cutoff) is not normalizable as a probability
measure. See also [61] for an alternative proof. In view of

1¹j�j�Kº.x/ � exp
�
�Ajxj

�
exp

�
AK

�
(1.1.5)

for anyK > 0,  > 0, andA> 0, this non-normalizability result of the focusing Gibbs
measure on T2 with the quartic interaction (p D 4) also applies to the generalized
grand-canonical Gibbs measure in (1.1.4). Furthermore, the same non-normalizability
applies for higher order interaction (for an integer p � 5).

In [12], Bourgain reported Jaffe’s construction of a ˆ32-measure endowed with a
Wick-ordered L2-cutoff:

d� D Z�11¹RT2 Wu
2Wdx�Kºe

1
3

R
T2 Wu

3Wdxd�.u/;

3Up to the symmetries.
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where W u2 W and W u3 W denote the Wick powers of u, and � denotes the massive Gaus-
sian free field on T2. See also [61]. We point out that such a Gibbs measure with a
(Wick-ordered) L2-cutoff is not suitable for stochastic quantization in the heat and
wave settings due to the lack of the L2-conservation. In [12], Bourgain instead con-
structed the following generalized grand-canonical formulation of the ˆ32-measure:

d�.u/ D Z�1e
1
3

R
T2 Wu

3Wdx�A.
R

T2 Wu
2Wdx/2d�.u/

for sufficiently large A > 0. See [35,37,53,64] for the associated (stochastic) nonlin-
ear wave dynamics.

In this paper, we consider the three-dimensional case and complete the focusing
Gibbs measure construction program initiated by Lebowitz, Rose, and Speer [44].
More precisely, we consider the following generalized grand-canonical formulation
of the ˆ33-measure (namely, with a taming by the Wick-ordered L2-norm):

d�.u/ D Z�1 exp
�
�

3

Z
T3
Wu3 W dx � A

ˇ̌̌̌Z
T3
Wu2 W dx

ˇ̌̌̌�
d�.u/ (1.1.6)

for suitableA; > 0. We now state our first main result in a somewhat formal manner.
See Theorem 1.2.1 for the precise statement.

Theorem 1.1.1. The following phase transition holds for the ˆ33-measure in (1.1.6).

(i) (weakly nonlinear regime). Let 0 < j� j � 1 and  D 3. Then, by intro-
ducing a further renormalization, the ˆ33-measure � in (1.1.6) exists as a
probability measure, provided that A D A.�/ > 0 is sufficiently large. In
this case, the resulting ˆ33-measure � and the massive Gaussian free field
� on T3 are mutually singular.

(ii) (strongly nonlinear regime). When j� j � 1, the ˆ33-measure in (1.1.6) is
not normalizable for any A > 0 and  > 0. Furthermore, the truncatedˆ33-
measures �N (see (1.2.11) below) do not have a weak limit, as measures on
C�

3
4 .T3/, even up to a subsequence.

Theorem 1.1.1 shows that the ˆ33-model is critical in terms of the measure con-
struction. In the case of a higher order focusing interaction on T3 (replacing W u3 W by
W up W in (1.1.6) for an integer p � 4 with � > 0 when p is even), or the ˆ34-model
on the four-dimensional torus T4, the focusing nonlinear interaction gets only worse
and thus we expect that the same approach would yield non-normalizability. Hence,
in view of the previous results [9, 16, 44, 61, 62], Theorem 1.1.1 completes the focus-
ing Gibbs measure construction program, thus answering an open question posed
by Lebowitz, Rose, and Speer (see “Extension to higher dimensions” in [44, Sec-
tion 5]). See also our companion paper [54], where we completed the program on the
(non-)construction of the focusing Hartree Gibbs measures in the three-dimensional
setting. See Remark 1.1.3 for a further discussion.
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We point out that in the weakly nonlinear regime, the ˆ33-measure � is construc-
ted only as a weak limit of the truncated ˆ33-measures. Moreover, we prove that there
exists a shifted measure with respect to which the ˆ33-measure is absolutely continu-
ous; see Appendix A. As for the non-normalizability result in Theorem 1.1.1 (ii), our
proof is based on a refined version of the machinery introduced by the authors [54]
and the first and third authors with Seong [61], which was in turn inspired by the
work of the third author and Weber [75] on the non-construction of the Gibbs meas-
ure for the focusing cubic nonlinear Schrödinger equation (NLS) on the real line,
giving an alternative proof of Rider’s result [67]. We, however, point out that there
is an additional difficulty in proving Theorem 1.1.1 (ii) due to the singularity of the
ˆ33-measure with respect to the base massive Gaussian free field �. (Note that the
focusing Gibbs measures considered in [54, 61] are equivalent to the base Gaussian
measures.) In order to overcome this difficulty, we first introduce a reference meas-
ure4 �ı and construct a � -finite version of the ˆ33-measure (expressed in terms of the
reference measure �ı ). We then show that this � -finite version of the ˆ33-measure is
not normalizable. See Chapter 4.

Remark 1.1.2. (i) As the name suggests, theˆ33-measure is of interest from the point
of view of constructive quantum field theory. In the defocusing case (� < 0) with a
quartic interaction (u4 in place of u3), the measure � in (1.1.1) corresponds to the
well-studied ˆ43-measure. The construction of the ˆ43-measure is one of the early
achievements in constructive quantum field theory. For an overview of the construct-
ive program, see the introductions in [1, 33].

(ii) In the one- and two-dimensional cases, the non-normalizability of the focus-
ing Gibbs measures emerges in the L2-critical case (p D 6 when d D 1 and p D 4
when d D 2), suggesting its close relation to the finite time blowup phenomena of the
associated focusing NLS. See [62] for a further discussion. In the three-dimensional
case, it is interesting to note that the ˆ33-model is L2-subcritical and yet we have the
non-normalizability (in the strongly nonlinear regime). Thus, the non-normalizability
of the ˆ33-measure is not related to a blowup phenomenon. Note that, unlike the
focusing ˆ61- and ˆ42-models which make sense in the complex-valued setting, the
ˆ33-model makes sense only in the real-valued setting. It seems of interest to invest-
igate a possible relation to the following Gagliardo–Nirenberg inequality:Z

R3
ju.x/j3dx . kuk

3
2

L2.R3/
kuk

3
2

PH1.R3/
:

4This reference measure is introduced as a tamed version of the ˆ3
3

-measure and is not to
be confused with the shifted measure mentioned above. See Proposition 4.1.1.
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(iii) Consider a ˆ33-measure with a Wick-ordered L2-cutoff:5

d�.u/ D Z�11¹j RT3 Wu
2Wdxj�Kº exp

�
�

3

Z
T3
Wu3 W dx

�
d�.u/: (1.1.7)

Then, an analogue of Theorem 1.1.1 holds for the ˆ33-measure in (1.1.7). In view
of (1.1.5), Theorem 1.1.1 implies normalizability of the ˆ33-measure in (1.1.7) (with
a further renormalization) in the weakly nonlinear regime (0 < j� j � 1). On the
other hand, in the strongly nonlinear regime (j� j � 1), a modification of the proof of
Theorem 1.1.12 (ii) (see also [54, 61]) yields non-normalizability of the ˆ33-measure
in (1.1.7) for any K > 0.

Remark 1.1.3. In [11], Bourgain studied the invariant Gibbs dynamics for the focus-
ing Hartree NLS on T3 (with � > 0):

i@tuC .1 ��/u � �.V � juj
2/u D 0; (1.1.8)

where V D hri�ˇ is the Bessel potential of order ˇ > 0. In [11], Bourgain first
constructed the focusing Gibbs measure with a Hartree-type interaction (for complex-
valued u), endowed with a Wick-ordered L2-cutoff:

d�.u/ D Z�11¹RT3 Wjuj
2Wdx�Kºe

�
4

R
T3 .V �Wjuj

2W/Wjuj2Wdxd�.u/

for ˇ>2 and then constructed the invariant Gibbs dynamics for the associated dynam-
ical problem.6 In [54], we continued the study of the focusing Hartree ˆ43-measure in
the generalized grand-canonical formulation (with � > 0):

d�.u/ D Z�1 exp
�
�

4

Z
T3
.V � Wu2 W/ Wu2 W dx � A

ˇ̌̌̌Z
T3
Wu2 W dx

ˇ̌̌̌�
d�.u/ (1.1.9)

and established a phase transition in two respects (i) the focusing Hartreeˆ43-measure
� in (1.1.9) is constructible for ˇ > 2, while it is not for ˇ < 2 and (ii) when ˇD 2, the
focusing Hartreeˆ43-measure is constructible for 0< �� 1, while it is not for �� 1.
See [54] for the precise statements. These results in [54] in particular show the critical
nature of the focusing Hartree ˆ43-model when ˇ D 2. In the same work, we also
constructed the invariant Gibbs dynamics for the associated (canonical) stochastic

5With a slight modification, one may also consider � in (1.1.7) with a slightly different
cutoff 1¹RT3 Wu

2Wdx�Kº, i.e. without an absolute value, and prove the same (non-)normaliza-
bility results. See [54, Remark 5.10].

6By combining the construction of the focusing Hartree Gibbs measure in the critical case
(ˇ D 2) with 0 < � � 1 in [54] and the well-posedness result in [22], this result on the focusing
Hartree NLS (1.1.8) by Bourgain [11] can be extended to the critical case ˇ D 2 (in the weakly
nonlinear regime 0 < � � 1).
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quantization equation. See also [13,14,54] for the defocusing case (� < 0). Note that
when ˇ D 0, the defocusing Hartree ˆ43-measure reduces to the usual ˆ43-measure.

In terms of scaling, the focusing Hartree ˆ43-model with ˇ D 2 corresponds to
the ˆ33-model and as such, they share some common features. For example, they are
both critical with a phase transition, depending on the size of the coupling constant � .
At the same time, however, there are some differences. While the focusing Hartree
ˆ43-measure with ˇ D 2 is absolutely continuous with respect to the base massive
Gaussian free field �, the ˆ33-measure studied in this paper is singular with respect
to the base massive Gaussian free field �. As mentioned above, this singularity of
the ˆ33-measure causes an additional difficulty in proving non-normalizability in the
strongly nonlinear regime j� j � 1.

Next, we discuss the dynamical problem associated with the ˆ33-measure con-
structed in Theorem 1.1.1. In the following, we consider the canonical stochastic
quantization equation [66, 68] for the ˆ33-measure in (1.1.6) (with  D 3). More pre-
cisely, we study the following stochastic damped nonlinear wave equation (SdNLW)
with a quadratic nonlinearity, posed on T3:

@2t uC @tuC .1 ��/u � �u
2
D
p
2�; .x; t/ 2 T3

�RC; (1.1.10)

where � 2 R n ¹0º, u is an unknown function, and � denotes a (Gaussian) space-time
white noise on T3 �RC with the space-time covariance given by

E
�
�.x1; t1/�.x2; t2/

�
D ı.x1 � x2/ı.t1 � t2/:

In this introduction, we keep our discussion at a formal level and do not worry about
various renormalizations required to give a proper meaning to the equation (1.1.10).

With Eu D .u; @tu/, define the energy E.Eu/ by

E.Eu/ D E.u/C
1

2

Z
T3
.@tu/

2dx

D
1

2

Z
T3
jhriuj2dx C

1

2

Z
T3
.@tu/

2dx �
�

3

Z
T3
u3dx;

where E.u/ is as in (1.1.2). This is precisely the energy (= Hamiltonian) of the
(deterministic) nonlinear wave equation (NLW) on T3 with a quadratic nonlinearity:

@2t uC .1 ��/u � �u
2
D 0: (1.1.11)

Then, by letting v D @tu, we can write (1.1.10) as the first order system:

@t

�
u

v

�
D

� @E
@v

�
@E
@u

�
C

�
0

�v C
p
2�

�
;
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which shows that the SdNLW dynamics (1.1.10) is given as a superposition of the
deterministic NLW dynamics (1.1.11) and the Ornstein–Uhlenbeck dynamics for
v D @tu:

@tv D �v C
p
2�:

Now, consider the Gibbs measure E�, formally given by

d E�.Eu/ D Z�1e�E.Eu/d Eu D d�˝ d�0.Eu/

D Z�1 exp
�
�

3

Z
T3
u3dx

�
d.�˝ �0/.u; v/; (1.1.12)

where � is the ˆ33-measure in (1.1.1) and �0 denotes the white noise measure; see
(1.2.1). See Remark 1.2.6 for the precise definition of the Gibbs measure E�. Then,
the observation above shows that E� is expected to be invariant under the dynamics
of the quadratic SdNLW (1.1.10). Indeed, from the stochastic quantization point of
view, the equation (1.1.10) is the so-called canonical stochastic quantization equation
(namely, the Hamiltonian stochastic quantization) for the ˆ33-measure; see [68]. For
this reason, it is natural to refer to (1.1.10) as the hyperbolic ˆ33-model.

Let us now state our main dynamical result in a somewhat formal manner. See
Theorem 1.3.2 for the precise statement.

Theorem 1.1.4. Let  D 3 and 0< j� j� 1. Suppose thatADA.�/> 0 is sufficiently
large as in Theorem 1.1.1 (i). Then, the hyperbolic ˆ33-model (1.1.10) on the three-
dimensional torus T3 (with a proper renormalization) is almost surely globally well-
posed with respect to the random initial data distributed by the (renormalized) Gibbs
measure E�D �˝�0 in (1.1.12). Furthermore, the Gibbs measure E� is invariant under
the resulting dynamics.

In view of the critical nature of the ˆ33-measure, Theorem 1.1.4 is sharp in the
sense that almost sure global well-posedness does not extend to SdNLW with a
focusing nonlinearity of a higher order. The construction of the ˆ33-measure in The-
orem 1.1.1 requires us to introduce several renormalizations together with the taming
by the Wick-orderedL2-norm. This introduces modifications to the equation (1.1.10).
See Section 1.3 and Chapters 5 and 6 for the precise formulation of the problem.

Over the last five years, stochastic nonlinear wave equations (SNLW) in the sin-
gular setting have been studied extensively in various settings:7

@2t uC @tuC .1 ��/uCN .u/ D � (1.1.13)

for a power-type nonlinearity [14,23,24,35–37,52–54,59,65,73] and for trigonomet-
ric and exponential nonlinearities [57, 58, 60]. We mention the works [14, 55, 56, 64]

7Some of the works mentioned below are on SNLW without damping.
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on nonlinear wave equations with rough random initial data. In [36], by combining the
paracontrolled calculus, originally introduced in the parabolic setting [18,34,47], with
the multilinear harmonic analytic approach, more traditional in studying dispersive
equations, Gubinelli, Koch, and the first author studied the quadratic SNLW (1.1.10)
(without the damping). The paracontrolled approach in the wave setting was also
used in our previous work [54] and was further developed by Bringmann [14]. In
order to prove local well-posedness of the hyperbolic ˆ33-model (1.1.10), we also
follow the paracontrolled approach, in particular combining the analysis in [36, 54].
See Chapter 5. As for the globalization part, a naive approach would be to apply
Bourgain’s invariant measure argument [9,10]. However, due to the singularity of the
ˆ33-measure � with respect to the base massive Gaussian free field � (and the fact that
the truncatedˆ33-measure �N converges to � only weakly), there is an additional diffi-
culty to overcome for the hyperbolicˆ33-model. Hence, Bourgain’s invariant measure
argument is not directly applicable. In the context of the defocusing Hartree cubic
NLW on T3, Bringmann [14] encountered a similar difficulty and developed a new
globalization argument. While it is possible to adapt Bringmann’s analysis to our cur-
rent setting, we instead introduce a new alternative argument, which is conceptually
simple and straightforward. In particular, we extensively use the variational approach
and also use ideas from theory of optimal transport to directly estimate a probability
with respect to the limiting Gibbs measure E� (in particular, without going through
shifted measures as in [14]). See Section 1.3 and Chapter 6 for details.

Remark 1.1.5. A slight modification of our proof of Theorem 1.1.4 yields the cor-
responding results (namely, almost sure global well-posedness and invariance of the
associated Gibbs measure) for the (deterministic) quadratic NLW (1.1.11) on T3 in
the weakly nonlinear regime.

Remark 1.1.6. We point out that an analogue of Theorem 1.1.4 also holds for the
parabolic ˆ33-model, namely, the stochastic nonlinear heat equation with a quadratic
nonlinearity:

@tuC .1 ��/u � �u
2
D
p
2�; .x; t/ 2 T3

�RC: (1.1.14)

Thanks to the strong smoothing of the heat propagator, the well-posedness of (1.1.14)
follows from elementary analysis based on the first order expansion (also known as
the Da Prato–Debussche trick [20]). See for example [25]. While there is an extra term
coming from the taming by the Wick-ordered L2-norm (see, for example, (1.3.1) in
the hyperbolic case), this term does not cause any issue in the parabolic setting.

Remark 1.1.7. In [72], the third author introduced a new approach to establish unique
ergodicity of Gibbs measures for stochastic dispersive/hyperbolic equations. This was
further developed in [74] to prove ergodicity of the hyperbolic ˆ42-model, namely
(1.1.13) on T2 with N .u/ D u3. See also [28] by the third author and Forlano on the
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asymptotic Feller property of the invariant Gibbs dynamics for the cubic SNLW on
T2 with a slightly smoothed noise. The ergodic property of the hyperbolic ˆ33-model
is a challenging problem, in particular due to its non-defocusing nature.

1.2 Construction of the ˆ3
3

-measure

In this section, we describe a renormalization procedure and also a taming by the
Wick-ordered L2-norm required to construct the ˆ33-measure in (1.1.6) and make
a precise statement (Theorem 1.2.1). For this purpose, we first fix some notations.
Given s 2 R, let �s denote a Gaussian measure with the Cameron–Martin space
H s.T3/, formally defined by

d�s D Z
�1
s e�

1
2 kuk

2
Hs du D Z�1s

Y
n2Z3

e�
1
2 hni

2s j Ou.n/j2d Ou.n/; (1.2.1)

where h�i D .1C j � j2/
1
2 . When s D 1, the Gaussian measure �s corresponds to the

massive Gaussian free field, while it corresponds to the white noise measure �0 when
s D 0. For simplicity, we set

� D �1 and E� D �˝ �0: (1.2.2)

Define the index sets ƒ and ƒ0 by

ƒ D

2[
jD0

Zj �N � ¹0º2�j and ƒ0 D ƒ [ ¹.0; 0; 0/º (1.2.3)

such that Z3Dƒ[ .�ƒ/[¹.0;0;0/º. Then, let ¹gnºn2ƒ0 and ¹hnºn2ƒ0 be sequences
of mutually independent standard complex-valued8 Gaussian random variables and
set g�n WD gn and h�n WD hn for n 2 ƒ0. Moreover, we assume that ¹gnºn2ƒ0 and
¹hnºn2ƒ0 are independent from the space-time white noise � in (1.1.10). We now
define random distributions u D u! and v D v! by the following Gaussian Fourier
series:9

u! D
X
n2Z3

gn.!/

hni
en and v! D

X
n2Z3

hn.!/en; (1.2.4)

where en D ein�x . Denoting by Law.X/ the law of a random variableX (with respect
to the underlying probability measure P ), we then have

Law.u; v/ D E� D �˝ �0

8This means that g0; h0 �NR.0; 1/ and Regn; Imgn;Rehn; Imhn �NR.0;
1
2
/ for n¤ 0.

9By convention, we endow T3 with the normalized Lebesgue measure dxT3 D .2�/�3dx.
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for .u; v/ in (1.2.4). Note that Law.u; v/ D E� is supported on

H s.T3/ WD H s.T3/ �H s�1.T3/

for s < �1
2

but not for s � �1
2

(and more generally in W s;p.T3/ �W s�1;p.T3/ for
any 1 � p � 1 and s < �1

2
).

We now consider the ˆ33-measure formally given by (1.1.1). Since u in the sup-
port of the massive Gaussian free field � is merely a distribution, the cubic potential
energy in (1.1.1) is not well defined and thus a proper renormalization is required
to give a meaning to the potential energy. In order to explain the renormalization
process, we first study the regularized model.

GivenN 2N, we denote by �N D �cube
N the frequency projector onto the (spatial)

frequencies ¹n D .n1; n2; n3/ 2 Z3 W maxjD1;2;3 jnj j � N º, defined by

�Nf D �
cube
N f D

X
n2Z3

�N .n/ Of .n/en; (1.2.5)

associated with a Fourier multiplier �N D �cube
N :

�N .n/ D �
cube
N .n/ D 1Q

�
N�1n

�
; (1.2.6)

where Q denotes the cube of side length 2 in R3 centered at the origin:

Q D
®
� D .�1; �2; �3/ 2 R3 W max

jD1;2;3
j�j j � 1

¯
: (1.2.7)

It turns out that, due to the critical nature of the ˆ33-measure, a choice of frequency
projectors makes a difference. See Remark 1.2.2 and Section 1.4 below for discus-
sions on different frequency projectors. In comparing different frequency projectors,
we refer to �N D �cube

N in (1.2.5) as the cube frequency projector in the following.
Let u be as in (1.2.4) and set uN D �Nu. For each fixed x 2 T3, uN .x/ is a

mean-zero real-valued Gaussian random variable with variance

�N D E
�
u2N .x/

�
D

X
n2Z3

�2N .n/

hni2
� N !1; (1.2.8)

as N !1. Note that �N is independent of x 2 T3 due to the stationarity of �. We
define the Wick powers W u2N W and W u3N W by setting

Wu2N W D H2.uN I �N / D u
2
N � �N and Wu3N W D H3.uN I �N / D u

3
N � 3�NuN ;

whereHk.x;�/ denotes the Hermite polynomial of degree k with variance parameter
� defined by the generating function:

etx�
1
2�t

2

D

1X
kD0

tk

kŠ
Hk.xI �/:
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This suggests us to consider the following renormalized potential energy:

RN .u/ D �
�

3

Z
T3
Wu3N W dx C A

ˇ̌̌̌Z
T3
Wu2N W dx

ˇ̌̌̌
: (1.2.9)

As in the case of the ˆ43-measure in [3], the renormalized potential energy RN .u/
in (1.2.9) is divergent (as N !1) and thus we need to introduce a further renormal-
ization. This leads to the following renormalized potential energy:

R˘N .u/ D RN .u/C ˛N ; (1.2.10)

where ˛N is a diverging constant (as N !1) defined in (3.2.6) below. Finally, we
define the truncated (renormalized) ˆ33-measure �N by

d�N .u/ D Z
�1
N e�R

˘
N
.u/d�.u/; (1.2.11)

where the partition function ZN is given by

ZN D

Z
e�R

˘
N
.u/d�.u/: (1.2.12)

Then, we have the following construction and non-normalizability of theˆ33-measure.
Due to the singularity of the ˆ33-measure with respect to the base Gaussian measure
E�, we need to state our non-normalizability result in a careful manner. Compare this
with [54, Theorem 1.15] and [61, Theorem 1.3]. See the beginning of Chapter 4 for a
further discussion.

Theorem 1.2.1. There exist �1 � �0 > 0 such that the following statements hold.

(i) (weakly nonlinear regime). Let 0 < j� j < �0. Then, by choosing  D 3 and
A D A.�/ > 0 sufficiently large, we have the uniform exponential integ-
rability of the density:

sup
N2N

ZN D sup
N2N

e�R˘N .u/
L1.�/

<1 (1.2.13)

and the truncatedˆ33-measure �N in (1.2.11) converges weakly to a unique
limit �, formally given by10

d�.u/ D Z�1 exp
�
�

3

Z
T3
Wu3 W dx � A

ˇ̌̌̌Z
T3
Wu2 W dx

ˇ̌̌̌3
�1

�
d�.u/:

(1.2.14)
In this case, the resulting ˆ33-measure � and the base massive Gaussian
free field � are mutually singular.

10By hiding ˛N in (1.2.11) into the partition functionZN , we could also say that the limiting
ˆ3
3

-measure � is formally given by (1.1.6) (with  D 3).



Introduction 12

(ii) (strongly nonlinear regime). Let j� j > �1 and  � 3. Then, theˆ33-measure
is not normalizable in the following sense.
Fix ı > 0. Given N 2 N, let �N;ı be the following tamed version of the
truncated ˆ33-measure:

d�N;ı.u/ D Z
�1
N;ı exp

�
�ık�Nuk

20

B
� 3
4

3;1

�R˘N .u/
�
d�.u/: (1.2.15)

Then, ¹�N;ıºN2N converges weakly to some limiting probability measure
�ı and the following � -finite version of the ˆ33-measure:

d x�ı D exp
�
ıkuk20

B
� 3
4

3;1

�
d�ı

D lim
N!1

Z�1N;ı exp
�
ıkuk20

B
� 3
4

3;1

�
exp

�
�ık�Nuk

20

B
� 3
4

3;1

�R˘N .u/
�
d�.u/

is a well-defined measure on C�100.T3/. Furthermore, this � -finite version
x�ı of the ˆ33-measure is not normalizable:Z

1d x�ı D1:

Under the same assumption, the sequence ¹�N ºN2N of the truncated ˆ33-
measures in (1.2.11) does not converge to any weak limit, even up to a

subsequence, as measures on the Besov space B
� 34
3;1.T

3/ � C�
3
4 .T3/.

In the weakly nonlinear regime, we also prove that theˆ33-measure � is absolutely
continuous with respect to the shifted measure Law.Y.1/C �Z.1/CW.1//, where
Law.Y.1//D�, ZDZ.Y / is the limit of the quadratic process ZN defined in (3.2.3),
and the auxiliary quintic process W D W.Y / is defined in (A.1.1). While we do not
use this property in this paper, we present the proof in Appendix A for completeness.

As in case of the ˆ43-measure in [3], we can prove uniform exponential integ-
rability of the truncated density e�R

˘
N
.u/ in Lp.�/ only for p D 1 due to the second

renormalization introduced in (1.2.10). See also [13,54] for a similar phenomenon in
the case of the defocusing Hartree ˆ43-measure. We point out that the renormalized
potential energyR˘N .u/ in (1.2.10) does not converge to any limit and neither does the
density e�R

˘
N
.u/, which is essentially the source of the singularity of the ˆ33-measure

with respect to the massive Gaussian free field �.
As in [54], following the variational approach introduced by Barashkov and Gu-

binelli [3], we use the Boué–Dupuis variational formula (Lemma 3.1.1) to prove
Theorem 1.2.1. In fact, we make use of the Boué–Dupuis variational formula in
almost every single step of the proof. In proving Theorem 1.2.1 (i), we first use the
variational formula to establish the uniform exponential integrability (1.2.13) of the
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truncated density e�R
˘
N
.u/, from which tightness of the truncated ˆ33-measure �N

in (1.2.11) follows. See Section 3.2. Due to the singularity of the ˆ33-measure, we
need to apply a change of variables (see (3.2.4)) in the variational formulation and
thus we need to treat the taming part more carefully than that for the focusing Hartree
ˆ43-measure studied in [54]. See Lemma 3.2.3 below. This lemma also reflects the
critical nature of the ˆ33-measure.

In Section 3.3, we prove uniqueness of the limitingˆ33-measure. Our main strategy
is to follow the approach introduced in our previous work [54] and compare two
(arbitrary) subsequences �Nk1 and �Nk2 , using the variational formula. We point out,
however, that, due to the critical nature of the ˆ33-measure, our uniqueness argument
becomes more involved than that in [54, Section 6.3] for the subcritical defocusing
Hartree ˆ43-measure. In particular, we need to make use of a certain orthogonality
property to eliminate a problematic term. See Remark 3.3.2. See also Section 1.4.

In proving the singularity of the ˆ33-measure, we once again follow the direct
approach introduced in [54], making use of the variational formula. We point out that
the proof of the singularity of the ˆ43-measure by Barashkov and Gubinelli [4] goes
through the shifted measure. On the other hand, as in [54], our proof is based on a
direct argument without referring to shifted measures. See Section 3.4.

Let us now turn to the strongly nonlinear regime considered in Theorem 1.2.1 (ii).
As mentioned above, due to the singularity of the ˆ33-measure, our formulation of
the non-normalizability result in Theorem 1.2.1 (ii) is rather subtle. In the situation
where the truncated density e�R

˘
N
.u/ converges to the limiting density (as in [54,61]),

it would suffice to prove
sup
N2N

E�
�
e�R

˘
N
.u/
�
D1; (1.2.16)

since (1.2.16) would imply that there is no normalization constant which would make
the limit of the measure e�R

˘
N
.u/d�.u/ into a probability measure. In the current

problem, however, the potential energy R˘N .u/ in (1.2.10) (and the corresponding
density e�R

˘
N
.u/) does not converge to any limit. Thus, even if we prove a statement

of the form (1.2.16), we may still choose a sequence of constants yZN such that the
measures yZ�1N e�R

˘
N
.u/d� have a weak limit. A similar phenomenon happens for the

ˆ43-measure, where one needs to introduce the second order renormalization; see [3].
The non-convergence of the truncated ˆ33-measures claimed in Theorem 1.2.1 (ii)
tells us that this can not happen for the ˆ33-measure. See also Remark 1.2.3 below.

Our strategy is to first construct a � -finite version of the ˆ33-measure and then
prove its non-normalizability. As stated in Theorem 1.2.1 (ii), we first introduce a
tamed version �N;ı of the truncated ˆ33-measure, by introducing an appropriate tam-
ing function F ; see (4.1.6) below. The first step is to show that this tamed truncated
ˆ33-measure �N;ı converges weakly to some limit �ı (Proposition 4.1.1). We then
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define a � -finite version x�ı of the ˆ33-measure by setting

d x�ı D e
ıF .u/d�ı

and prove that x�ı is not normalizable (Proposition 4.1.2). Here, the � -finite version
x�ı of the ˆ33-measure clearly depends on the choice of a taming function F . Our
choice is quite natural since the � -finite version x�ı of the ˆ33-measure is absolutely
continuous with respect to the shifted measure Law.Y.1/C �Z.1/CW.1//, just like
the (normalizable) ˆ33-measure in the weakly nonlinear regime discussed above. See
Remark A.3.1.

Once we construct the � -finite version x�ı of the ˆ33-measure, our argument fol-
lows closely the strategy introduced in [54, 61] for establishing non-normalizability,
using the Boué–Dupuis variational formula. For this approach, we need to construct
a drift achieving the desired divergence, where (the antiderivative of) the drift is
designed to look like “�Y.1/ + a perturbation”, where Law.Y.1// D �; see (4.3.14)
below. Here, the perturbation term is bounded in L2.T3/ but has a large L3-norm,
thus having a highly concentrated profile, such as a soliton or a finite time blowup
profile. As compared to our previous works [54, 61], there is an additional difficulty
in proving the non-normalizability claim in Theorem 1.2.1 (ii) due to the singular-
ity of the ˆ33-measure, which forces us to use a change of variables (see (3.2.4))
in the variational formulation. See Remark 4.3.1. The non-convergence of the trun-
cated ˆ33-measures �N stated in Theorem 1.2.1 (ii) follows as a corollary to the non-
normalizability of the � -finite version x�ı of the ˆ33-measure; see Proposition 4.1.4
and Section 4.4. If the ˆ33-measure existed as a probability measure in the strongly
nonlinear regime, then we would expect its support to be contained in C�

1
2�".T3/

for any " > 0, just as in the weakly nonlinear regime (and the ˆ43-measure). For

this reason, the Besov space B
� 34
3;1.T

3/ � C�
3
4 .T3/ is a quite natural space to con-

sider. The restriction  � 3 in Theorem 1.2.1 (ii) comes from the construction of the
tamed version �ı of the ˆ33-measure; see (4.2.3) below. For  < 3, the taming by the
Wick-ordered L2-norm in (1.1.6) becomes weaker and thus we expect an analogous
non-normalizability result to hold.

Remark 1.2.2. We prove Theorem 1.2.1 for the cube frequency projector �N D�cube
N

defined in (1.2.5). If we instead consider the ball frequency projector �ball
N defined

in (1.4.1) below, then our argument for the non-convergence claim in the strongly
nonlinear regime (Proposition 4.1.4) breaks down, while the other claims in The-
orem 1.2.1 remain true for the ball frequency projector �ball

N . If we consider the
smooth frequency projector � smooth

N defined in (1.4.2) below, then our argument for
the uniqueness of the limiting ˆ33-measure in the weakly nonlinear regime (Proposi-
tion 3.3.1) breaks down. In particular, the latter issue is closely related to the critical
nature of the ˆ33-model and, while we believe that uniqueness of the limiting ˆ33-
measure holds even in the case of the smooth frequency projector � smooth

N , it seems
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non-trivial to prove this claim by a modification of our argument. We point out that
the same issue also appears in showing uniqueness of the limit �ı of the tamed version
�N;ı of the truncated ˆ33-measure in (1.2.15) in the strongly nonlinear regime (Pro-
position 4.1.1) and in the dynamical part (Proposition 6.3.3). See Section 1.4 for a
further discussion. See also Remarks 3.3.2 and 4.4.2.

Remark 1.2.3. In the strongly nonlinear regime, Theorem 1.2.1 (ii) tells us that the
truncated ˆ33-measures �N do not converge weakly to any limit as measures on

B
� 34
3;1.T

3/ � C�
3
4 .T3/:

It is, however, possible that the truncated ˆ33-measures converges weakly to some
limit (say, the Dirac delta measure ı0 on the trivial function) as measures on some
space with a very weak topology, say C�100.T3/. Theorem 1.2.1 (ii) shows that if
such weak convergence takes place, it must do so in a very pathological manner.

Remark 1.2.4. The second renormalization in (1.2.10) (i.e. the cancellation of the
diverging constant ˛N ) appears only at the level of the measure. The associated equa-
tion (see (1.3.6) below) does not see this additional renormalization.

Remark 1.2.5. It is of interest to investigate a threshold value �� > 0 such that the
construction of the ˆ33-measure (Theorem 1.2.1 (i)) holds for 0 < j� j < ��, while the
non-normalizability of theˆ33-measure (Theorem 1.2.1 (ii)) holds for j� j>��. If such
a threshold value �� could be determined, it would also be of interest to determine
whether the ˆ33-measure is normalizable at the threshold j� j D ��. Such a problem,
however, requires optimizing all the estimates in the proof of Theorem 1.2.1 and is
out of reach at this point. See a recent work [62] by Sosoe and the first and third
authors for such analysis in the one-dimensional case.

Remark 1.2.6. Consider the truncated Gibbs measure E�N D �N ˝�0 for the hyper-
bolic ˆ33-model (1.1.10) with the density:

d E�N .u; v/ D Z
�1
N e�R

˘
N
.u/d E�.u; v/; (1.2.17)

where R˘N .u/ and E� are as in (1.2.10) and (1.2.2), respectively. Since the potential
energy R˘N .u/ is independent of the second component v, Theorem 1.2.1 directly
applies to the truncated Gibbs measure E�N . In particular, in the weakly nonlinear
regime (0 < j� j < �0), the truncated Gibbs measure E�N converges weakly to the
limiting Gibbs measure

E� D �˝ �0; (1.2.18)

where � is the limiting ˆ33-measure constructed in Theorem 1.2.1 (i). Moreover, the
limiting Gibbs measure E� and the base Gaussian measure E� D �˝ �0 are mutually
singular.
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1.3 Hyperbolic ˆ3
3

-model

In this section, we provide a precise meaning to the hyperbolic ˆ33-model (1.1.10)
and make Theorem 1.1.4 more precise. By considering the Langevin equation for
the Gibbs measure E� D �˝ �0 constructed in Remark 1.2.6, we formally obtain the
following quadratic SdNLW (= the hyperbolic ˆ33-model):

@2t uC @tuC .1 ��/u � � Wu
2
W CM. Wu2 W /u D

p
2�; (1.3.1)

where M is defined by

M.w/ D 6A

ˇ̌̌̌Z
T3
wdx

ˇ̌̌̌ Z
T3
wdx: (1.3.2)

Here, the term M. Wu2 W /u in (1.3.1) comes from the taming by the Wick-ordered
L2-norm appearing in (1.2.14). The term Wu2 W denotes the Wick renormalization11 of
u2, formally given by Wu2 W D u2 �1. Namely, the equation (1.3.1) is just a formal
expression at this point. In the following, we provide the meaning of the process u
in (1.3.1) by a limiting procedure. In Chapter 5, we use the paracontrolled calcu-
lus to give a more precise meaning to (1.3.1) by rewriting it into a system for three
unknowns. See (5.2.27) below.

Given N 2 N, we consider the following quadratic SdNLW with a truncated
noise:

@2t uN C @tuN C .1 ��/uN � � Wu
2
N W CM. Wu

2
N W /uN D

p
2�N �; (1.3.3)

where �N is as in (1.2.5) and the renormalized nonlinearity is defined by

Wu2N W D u
2
N � �N (1.3.4)

with �N as in (1.2.8). See also (5.2.9). In Chapter 5, we study SdNLW (1.3.3) with
the truncated noise and prove the following local well-posedness statement for the
hyperbolic ˆ33-model.

Theorem 1.3.1. Given s > 1
2

, let .u0; u1/ 2 H s.T3/. Let .�!0 ; �
!
1 / be a pair of the

Gaussian random distributions with Law.�!0 ; �
!
1 /D E�D �˝�0. Then, the solution

.uN ; @tuN / to the quadratic SdNLW (1.3.3) with the truncated noise and the initial
data

.uN ; @tuN /jtD0 D .u0; u1/C �N .�
!
0 ; �

!
1 / (1.3.5)

converges to a stochastic process .u; @tu/ 2 C.Œ0; T �IH�
1
2�".T3// almost surely,

where T D T .!/ is an almost surely positive stopping time.

11In order to give a proper meaning to Wu2 W, we need to assume a structure on u. We postpone
this discussion to Chapter 5.
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The limit .u; @tu/ formally satisfies the equation (1.3.1). Here, we took the ini-
tial data of the form (1.3.5) for simplicity of the presentation. A slight modification
of the proof yields an analogue of Theorem 1.3.1 with deterministic initial data
.uN ; @tuN /jtD0 D .u0; u1/. In this case, we need to choose a diverging constant
�N , depending on t . See [35, 36] for such an argument.

We follow the paracontrolled approach in [36], where the quadratic SNLW on
T3 was studied. However, the additional term M in (1.3.1) and (1.3.3) contains an
ill-defined product Wu2 W (or Wu2N W in the limiting sense). In order to treat this term,
the analysis in [36] is not sufficient and thus we also need to adapt the paracontrolled
analysis in our previous work [54] and rewrite the equation into a system for three
unknowns. (Note that in [36], the resulting system was for two unknowns.) We also
point out that, unlike [36] (see also [47] in the context of the parabolic ˆ43-model),
the equation for a less regular, paracontrolled component in our system (see (5.2.27)
below) is nonlinear in the unknowns. We then construct a continuous map from the
space of enhanced data sets to solutions. While the proof of Theorem 1.3.1 follows
from a slight modification of the arguments in [36,54], we present details in Chapter 5
for readers’ convenience.

In order to establish our main goal in the dynamical part of the program (The-
orem 1.1.4), we need to study the hyperbolic ˆ33-model with the Gibbs measure
initial data. Since the Gibbs measure E� D � ˝ �0 in (1.2.18) and the Gaussian field
E� D �˝ �0 are mutually singular as shown in Theorem 1.2.1, it may seem that the
local well-posedness in Theorem 1.3.1 with the Gaussian initial data (plus smoother
deterministic initial data) is irrelevant. However, as we see in Chapter 6, the analysis
for proving Theorem 1.3.1 provides us with a good intuition of the well-posedness
problem for the hyperbolic ˆ33-model with the Gibbs measure initial data. Further-
more, one of advantages of considering the Gaussian initial data (as in (1.3.5)) is that
it provides a clear reason why �N appears in the renormalization in (1.3.4), since �N
is nothing but the variance of the first order approximation (= the stochastic convolu-
tion defined in (5.2.3)) to the solution to (1.3.3); see (5.2.9). This is the main reason
for considering the local-in-time problem with the Gaussian initial data.

Next, we turn our attention to the globalization problem. For this purpose, we
need to consider a different approximating equation. Given N 2 N, we consider the
truncated hyperbolic ˆ33-model:

@2t uN C @tuN C .1 ��/uN

� ��N
�
W.�NuN /

2
W
�
CM

�
W.�NuN /

2
W
�
�NuN D

p
2�; (1.3.6)

where W.�NuN /2 W D .�NuN /
2 � �N . A slight modification of the proof of The-

orem 1.3.1 yields uniform (in N ) local well-posedness of the truncated equation
(1.3.6) (with the same limiting process .u; @tu/ as in Theorem 1.3.1) for the ini-
tial data of the form (1.3.5). By exploiting (formal) invariance of the truncated Gibbs



Introduction 18

measure E�N in (1.2.17),12 we see that the truncated hyperbolic ˆ33-model (1.3.6) is
almost surely globally well-posed with respect to the truncated Gibbs measure E�N
and, moreover, E�N is invariant under the resulting dynamics; see Lemma 6.2.3.

We now state almost sure global well-posedness of the hyperbolic ˆ33-model.

Theorem 1.3.2. Let 0 < j� j < �0 and A D A.�/ > 0 is sufficiently large as in The-
orem 1.2.1 (i). Then, there exists a non-trivial stochastic process .u; @tu/ 2 C.RCI
H�

1
2�".T3// for any " > 0 such that, given any T > 0, the solution .uN ; @tuN / to

the truncated hyperbolic ˆ33-model (1.3.6) with the random initial data distributed
by the truncated Gibbs measure E�N D �N ˝ �0 in (1.2.17) converges to .u; @tu/
in C.Œ0; T �IH�

1
2�".T3//. Furthermore, we have Law..u.t/; @tu.t/// D E� for any

t 2 RC.

The main difficulty in proving Theorem 1.3.2 comes from the mutual singular-
ity of the Gibbs measure E� and the base Gaussian measure E� (and the fact that
the truncated Gibbs measure E�N converges to E� only weakly) such that Bourgain’s
invariant measure argument [9, 10] is not directly applicable. In the context of the
defocusing Hartree NLW on T3, Bringmann [14] encountered the same issue, and
introduced a new globalization argument, where a large time stability theory (in the
paracontrolled setting) plays a crucial role. Bourgain’s invariant measure argument
is often described (see [14]) as “the probabilistic version of a deterministic global
theory using a (sub-critical) conservation law”. In [14], Bringmann considers the
quantity E�M ..uN ; @tuN /.t/ 2 A/, where .uN ; @tuN / is the solution to the truncated
equation with a cutoff parameter N . While such an expression is not conserved for
M ¤ N , it should be close to being constant in time when M; N � 1. For this
reason, he describes his new globalization argument as “the probabilistic version of
a deterministic global theory using almost conservation laws”. We also point out that
Bringmann’s analysis relies on the fact that the (truncated) Gibbs measure is abso-
lutely continuous with respect to a shifted measure [13,54] (as in Appendix A below).

While it is possible to follow Bringmann’s approach, we instead introduce a
new simple alternative argument to prove almost sure global well-posedness. Our
approach consists of the following four steps:

Step 1. We first establish a uniform (in N ) exponential integrability of the truncated
enhanced data set (see (6.1.10) below) with respect to the truncated measure (Pro-
position 6.2.4). We directly achieve this by combining the variational approach with
space-time estimates without any reference to (the truncated version of) the shifted
measure constructed in Appendix A.

12This is essentially Bourgain’s invariant measure argument [9] applied to the truncated
hyperbolic ˆ3

3
-model (1.3.6), whose nonlinear part is finite dimensional.
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Step 2. Next, by a slight modification of the local well-posedness argument, we prove
a stability result (Proposition 6.3.1). This is done by a simple contraction argument,
with an exponentially decaying weight in time.

Step 3. Then, using the invariance of the truncated Gibbs measure, we establish a
uniform (in N ) control on the solution to the truncated system (see (6.3.2) below)
with a large probability. The argument relies on a discrete Gronwall argument but is
very straightforward.

Step 4. In the last step, we study the convergence property of the distributions of
the truncated enhanced data sets, emanating from the truncated Gibbs measures. In
particular, we study the Wasserstein-1 distance of such a distribution with the limiting
distribution, using ideas from theory of optimal transport (the Kantorovich duality).
See Proposition 6.3.3 below.

Once we establish these four steps, Theorem 1.3.2 follows in a straightforward
manner. We believe that our new globalization argument is very simple, at least at a
conceptual level, and is easy to implement. See Chapter 6 for further details.

Remark 1.3.3. (i) In this paper, we treated the hyperbolic ˆ33-model. In the three-
dimensional case, it is possible to consider the defocusing quartic interaction poten-
tial, namely theˆ43-measure. This leads to the following hyperbolicˆ43-model on T3:

@2t uC @tuC .1 ��/uC u
3
D
p
2�: (1.3.7)

Over the last ten years, the parabolic ˆ43-model:

@tuC .1 ��/uC u
3
D
p
2�; (1.3.8)

has been studied extensively by many authors. See [1, 18, 32, 34, 39, 43, 47, 49] and
references therein. Up to date, the well-posedness issue of the hyperbolic ˆ43-model
(1.3.7) remains as an important open problem.13 In [65], using Bringmann’s ana-
lysis [14], Y. Wang, Zine, and the first author recently proved local well-posedness
of the cubic stochastic NLW14 on T3 with an almost space-time white noise forcing
(i.e. replacing � by hri�˛� for any ˛ > 0 in (1.3.7)).

(ii) In the parabolic setting (1.1.14), there is no issue is applying Bourgain’s
invariant measure argument in the usual manner since it is possible to prove local
well-posedness with deterministic initial data at the regularity of the ˆ33-measure.
See [40] in the case of the parabolic ˆ43-model (1.3.8).

13In a recent paper [15], Bringmann, Deng, Nahmod, and Yue resolved this open problem in
the case of the Gibbsian initial data with no stochastic forcing.

14In [65], the authors considered the undamped SNLW but the same analysis applies to the
damped SNLW.
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1.4 On frequency projectors

We conclude this introduction by discussing different frequency projectors. Given
N 2N, define the ball frequency projector �ball

N onto the frequencies ¹n2Z3 W jnj�N º
by setting

�ball
N f D

X
n2Z3

�ball
N .n/ Of .n/en; (1.4.1)

associated with a Fourier multiplier

�ball
N .n/ D 1B

�
N�1n

�
;

where B denotes the unit ball in R3 centered at the origin:

B D
®
� D .�1; �2; �3/ 2 R3 W j�j � 1

¯
:

We also define the smooth frequency projector � smooth
N onto the frequencies ¹n 2 Z3 W

jnj � N º by setting

� smooth
N f D

X
n2Z3

�smooth
N .n/ Of .n/en; (1.4.2)

associated with a Fourier multiplier

�smooth
N .n/ D �

�
N�1n

�
for some fixed even function � 2 C1c .R

3I Œ0; 1�/ with supp � � ¹� 2 R3 W j�j � 1º
and � � 1 on ¹� 2 R3 W j�j � 1

2
º.

In Sections 1.2 and 1.3, we stated the (non-)construction of theˆ33-measure (The-
orem 1.2.1) and the dynamical results for the hyperbolic ˆ33-model (Theorems 1.3.1
and 1.3.2), using the cube frequency projector �N D �cube

N defined in (1.2.5). In com-
parison with the ball frequency projector �ball

N and the smooth frequency projector
� smooth
N , there are two important properties that the cube frequency projector �cube

N

possesses simultaneously.

(i) As a composition of (modulated) Hilbert transforms in different coordinate
directions, the cube frequency projector �cube

N is uniformly (in N ) bounded
in Lp.T3/ for any 1 < p <1.

(ii) The cube frequency projector is indeed a projection, in particular satisfying
.Id��cube

N /�cube
N D 0.

We make use of both of these properties in a crucial manner. Note that while the ball
frequency projector �ball

N satisfies the property (ii), it is bounded in Lp.T3/ only for
p D 2 [27] and thus the property (i) is not satisfied. On the other hand, by Young’s
inequality, the smooth frequency projector � smooth

N is bounded on Lp.T3/ for any
1 � p � 1 but it does not satisfy the property (ii).
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Roughly speaking, Theorem 1.2.1 on the (non-)construction of the ˆ33-measure
consists of the following five results:

(1) the uniform exponential integrability (1.2.13) and tightness of the truncated
ˆ33-measures �N in the weakly nonlinear regime,

(2) uniqueness of the limiting ˆ33-measure in the weakly nonlinear regime,

(3) mutual singularity of the ˆ33-measure and the base Gaussian free field in the
weakly nonlinear regime,

(4) non-normalizability of the ˆ33-measure in the strongly nonlinear regime,

(5) non-convergence of the truncated ˆ33-measures �N in the strongly nonlinear
regime.

Starting with the truncated ˆ33-measures �N in (1.2.11) defined in terms of the cube
frequency projector �cube

N in (1.2.5), we establish (1)–(5) in Chapters 3 and 4. In
proving (5), the property (i) above plays an important role and thus our argument
does not apply to the ball frequency projector �ball

N . See Remark 4.4.2.
In establishing (2), uniqueness of the limiting ˆ33-measure (Proposition 3.3.1),

we crucially make use of the property (ii) to show that a certain problematic term
vanishes; see I2 in (3.3.12). It turns out that this problematic term reflects the critical
nature of the problem, where there is no room to spare, not even logarithmically. In
the case of the cube frequency projector �cube

N , the property (ii) allows us to conclude
that this term in fact vanishes. In the case of the smooth projector � smooth

N , the prop-
erty (ii) does not hold and thus we need to show by hand that this problematic term
tends to 0. As mentioned above, however, there is no room to spare and it seems rather
non-trivial to prove such a convergence result by a modification of our argument. See
Remark 3.3.2. In establishing (4) and (5), we first construct a reference measure �ı as
a limit of the tamed version �N;ı of the truncated ˆ33-measure in (1.2.15) (Proposi-
tion 4.1.1). With the smooth projector � smooth

N , the same issue also appears in showing
uniqueness of the limit �ı .

While we believe that Theorem 1.2.1 holds for both the ball frequency projector
�ball
N (in particular (5) above) and the smooth frequency projector � smooth

N (in particular
(2) above), we do not pursue these issues further in this paper in order to keep the
paper length under control.

Let us now turn to the dynamical part. As for the smooth frequency projector
� smooth
N , there is no modification needed for the local well-posedness part. However,

as mentioned above, there is no uniqueness of the limiting ˆ33-measure in this case.
Furthermore, we point out that the proof of Proposition 6.3.3 also breaks down for the
smooth frequency projector � smooth

N since part of the argument relies on the proof of
Proposition 3.3.1; see (6.3.64). On the other hand, as for the ball frequency projector
�ball
N , both Theorems 1.3.1 and 1.3.2 hold as they are stated. However, the proof of

the local well-posedness part needs to be modified in view of the unboundedness of
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the ball frequency projector �ball
N in the Strichartz spaces (see (5.5.1)). Note that this

issue can be easily remedied by using the Fourier restriction norm method via the
(L2-based) X s;b-spaces as in [14, 64, 65].


