
Chapter 2

Notations and basic lemmas

In describing regularities of functions and distributions, we use " > 0 to denote a
small constant. We usually suppress the dependence on such " > 0 in an estimate. For
a; b > 0, we use a . b to mean that there exists C > 0 such that a � Cb. By a � b,
we mean that a . b and b . a.

In dealing with space-time functions, we use the following shorthand notation
L
q
TL

r
x = Lq.Œ0; T �ILr.T3//, etc.

2.1 Sobolev and Besov spaces

Let s 2 R and 1 � p � 1. We define the L2-based Sobolev space H s.Td / by the
norm:

kf kH s D
hnis Of .n/

`2n
:

We also define the Lp-based Sobolev space W s;p.Td / by the norm:

kf kW s;p D
F �1Œhnis Of .n/�


Lp
:

When p D 2, we have H s.Td / D W s;2.Td /.
Let � W R! Œ0; 1� be a smooth bump function supported on Œ�8
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on Œ�5
4
; 5
4
�. For � 2 Rd , we set '0.�/ D �.j�j/ and
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�
(2.1.1)

for j 2 N. Then, for j 2 Z�0 WD N [ ¹0º, we define the Littlewood–Paley projector
Pj as the Fourier multiplier operator with a symbol 'j . Note that we have

1X
jD0

'j .�/ D 1

for each � 2 Rd . Thus, we have

f D

1X
jD0

Pjf:

Let us now recall the definition and basic properties of paraproducts introduced
by Bony [7]. See [2, 34] for further details. Given two functions f and g on T3 of



Notations and basic lemmas 24

regularities s1 and s2, we write the product fg as

fg D f <g C f =g C f >g

WD

X
j<k�2

Pjf Pkg C
X
jj�kj�2

Pjf Pkg C
X
k<j�2

Pjf Pkg: (2.1.2)

The first term f < g (and the third term f > g) is called the paraproduct of g by f
(the paraproduct of f by g, respectively) and it is always well defined as a distribution
of regularity min.s2; s1 C s2/. On the other hand, the resonant product f =g is well
defined in general only if s1 C s2 > 0. See Lemma 2.1.2 below. In the following, we
also use the notation f > g WD f > g C f = g. In studying a nonlinear problem,
main difficulty usually arises in making sense of a product. Since paraproducts are
always well defined, such a problem comes from a resonant product. In particular,
when the sum of regularities is negative, we need to impose an extra structure to
make sense of a (seemingly) ill-defined resonant product. See Chapter 5 for a further
discussion on the paracontrolled approach in this direction.

Next, we recall the basic properties of the Besov spaces Bsp;q.T
d / defined by the

norm:
kukBsp;q D

2sj kPjukLpx `qj .Z�0/:
We denote the Hölder–Besov space by C s.Td / D Bs1;1.T

d /. Note that (i) the
parameter s measures differentiability and p measures integrability, (ii) H s.Td / D

Bs2;2.T
d /, and (iii) for s > 0 and not an integer, C s.Td / coincides with the classical

Hölder spaces C s.Td /; see [31].
We recall the basic estimates in Besov spaces. See [2, 38] for example.

Lemma 2.1.1. The following estimates hold.
(i) (interpolation) Let s; s1; s2 2 R and p; p1; p2 2 .1;1/ such that s D �s1 C

.1 � �/s2 and 1
p
D

�
p1
C

1��
p2

for some 0 < � < 1. Then, we have

kukW s;p . kuk�W s1;p1kuk
1��
W s2;p2 : (2.1.3)

(ii) (immediate embeddings) Let s1; s2 2 R and p1; p2; q1; q2 2 Œ1;1�. Then, we
have

kuk
B
s1
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. kuk
B
s2
p2;q2

for s1 � s2; p1 � p2; and q1 � q2;

kuk
B
s1
p1;q1

. kuk
B
s2
p1;1

for s1 < s2;

kukB0p1;1
. kukLp1 . kukB0

p1;1
:

(2.1.4)

(iii) (Besov embedding) Let 1� p2 � p1 �1, q 2 Œ1;1�, and s2 � s1C d. 1p2 �
1
p1
/. Then, we have

kuk
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:
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(iv) (duality) Let s 2 R and p;p0; q; q0 2 Œ1;1� such that 1
p
C

1
p0
D

1
q
C

1
q0
D 1.

Then, we have ˇ̌̌̌Z
Td
uvdx

ˇ̌̌̌
� kukBsp;qkvkB�sp0;q0

; (2.1.5)

where
R

Td uvdx denotes the duality pairing between Bsp;q.T
d / and B�sp0;q0.T

d /.
(v) (fractional Leibniz rule) Let p; p1; p2; p3; p4 2 Œ1;1� such that 1
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. Then, for every s > 0, we have

kuvkBsp;q . kukBsp1;qkvkLp2 C kukLp3kvkBsp4;q : (2.1.6)

The interpolation (2.1.3) follows from the Littlewood–Paley characterization of
Sobolev norms via the square function and Hölder’s inequality.

Lemma 2.1.2 (Paraproduct and resonant product estimates). Let s1; s2 2 R and
1 � p; p1; p2; q � 1 such that 1

p
D

1
p1
C

1
p2

. Then, we have

kf <gk
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s2
p;q

. kf kLp1kgkBs2p2;q
: (2.1.7)

When s1 < 0, we have

kf <gk
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: (2.1.8)

When s1 C s2 > 0, we have

kf =gk
B
s1Cs2
p;q

. kf k
B
s1
p1;q
kgk

B
s2
p2;q

: (2.1.9)

The product estimates (2.1.7), (2.1.8), and (2.1.9) follow easily from the defini-
tion (2.1.2) of the paraproduct and the resonant product. See [2, 48] for details of the
proofs in the non-periodic case (which can be easily extended to the current periodic
setting).

We also recall the following product estimate from [6, 35].

Lemma 2.1.3. Let s > 0.
(i) Let 1 < pj ; qj ; r � 1, j D 1; 2 such that 1

r
D

1
pj
C

1
qj

. Then, we have

khri
s.fg/kLr .T3/ . khrisf kLp1 .T3/kgkLq1 .T3/ C kf kLp2 .T3/khrisgkLq2 .T3/:

(ii) Let 1 < p �1 and 1 < q; r <1 such that s � 3. 1
p
C

1
q
�
1
r
/ and q; r 0 � p0.

Then, we have

khri
�s.fg/kLr .T3/ . khri�sf kLp.T3/khrisgkLq.T3/:
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2.2 On discrete convolutions

Next, we recall the following basic lemma on a discrete convolution.

Lemma 2.2.1. Let d � 1 and ˛; ˇ 2 R satisfy

˛ C ˇ > d and ˛ < d:

Then, we have X
nDn1Cn2

1

hn1i˛hn2iˇ
. hni�˛C�

for any n 2 Zd , where � D max.d � ˇ; 0/ when ˇ ¤ d and � D " when ˇ D d for
any " > 0.

Lemma 2.2.1 follows from elementary computations. See, for example, [29, Lem-
ma 4.2] and [49, Lemma 4.1].

2.3 Tools from stochastic analysis

We conclude this chapter by recalling useful lemmas from stochastic analysis. See
[51, 69] for basic definitions. Let .H; B; �/ be an abstract Wiener space. Namely, �
is a Gaussian measure on a separable Banach space B with H � B as its Cameron–
Martin space. Given a complete orthonormal system ¹ej ºj2N � B

� of H� D H , we
define a polynomial chaos of order k to be an element of the form

Q1
jD1Hkj .hx;ej i/,

where x 2 B , kj ¤ 0 for only finitely many j ’s, k D
P1
jD1 kj , Hkj is the Hermite

polynomial of degree kj , and h�; �i D Bh�; �iB� denotes the B-B� duality pairing. We
then denote the closure of polynomial chaoses of order k under L2.B;�/ by Hk . The
elements in Hk are called homogeneous Wiener chaoses of order k. We also set

H�k D

kM
jD0

Hj

for k 2 N.
As a consequence of the hypercontractivity of the Ornstein–Uhlenbeck semigroup

due to Nelson [50], we have the following Wiener chaos estimate [70, Theorem I.22].
See also [71, Proposition 2.4].

Lemma 2.3.1. Let k 2 N. Then, we have

kXkLp.�/ � .p � 1/
k
2 kXkL2.�/

for any finite p � 2 and any X 2 H�k .
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Lastly, we recall the following orthogonality relation for the Hermite polynomi-
als. See [51, Lemma 1.1.1].

Lemma 2.3.2. Let f and g be jointly Gaussian random variables with mean zero
and variances �f and �g . Then, we have

E
�
Hk.f I �f /H`.gI �g/

�
D ık`kŠ

®
EŒfg�

¯k
;

where Hk.x; �/ denotes the Hermite polynomial of degree k with variance para-
meter � .


