Chapter 2

Notations and basic lemmas

In describing regularities of functions and distributions, we use € > 0 to denote a
small constant. We usually suppress the dependence on such ¢ > 0 in an estimate. For
a,b > 0, weuse a < b to mean that there exists C > O such thata < Cbh.Bya ~ b,
we mean thata < b and b < a.

In dealing with space-time functions, we use the following shorthand notation
LILY =L9([0, T]; L™ (T3)), etc.

2.1 Sobolev and Besov spaces

Lets € Rand 1 < p < co. We define the L2-based Sobolev space H*(T¢) by the
norm:

1/ lles = [ F )| -
We also define the L?-based Sobolev space W*?(T %) by the norm:
| fllws.e = |F 7 1) F @] -

When p = 2, we have H*(T%) = W52(T¥9).
Let ¢ : R — [0, 1] be a smooth bump function supported on [—%, %] and ¢ = 1
on [—%, %]. For £ € RY, we set 0o(§) = ¢(|€]) and

;i (§) = ¢(f7|) —¢(2|f—_|1) 2.1.1)

for j € N. Then, for j € Z>¢ := N U {0}, we define the Littlewood—Paley projector
P; as the Fourier multiplier operator with a symbol ¢;. Note that we have

o0
Y e =1
j=0
foreach & € R4 Thus, we have
o0
f=>_Pif
j=0

Let us now recall the definition and basic properties of paraproducts introduced
by Bony [7]. See [2, 34] for further details. Given two functions f and g on T3 of
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regularities s and s,, we write the product fg as

fe=/Qs+/@g+fO¢g
= Y PifPg+ Y PifPg+ > PifPyg. (2.1.2)

Jj<k—2 lj—k|<2 k<j—2

The first term f' < g (and the third term f ) g) is called the paraproduct of g by f
(the paraproduct of f by g, respectively) and it is always well defined as a distribution
of regularity min(sy, s; + s2). On the other hand, the resonant product f'© g is well
defined in general only if s 4 s > 0. See Lemma 2.1.2 below. In the following, we
also use the notation f& g := fO g + f© g. In studying a nonlinear problem,
main difficulty usually arises in making sense of a product. Since paraproducts are
always well defined, such a problem comes from a resonant product. In particular,
when the sum of regularities is negative, we need to impose an extra structure to
make sense of a (seemingly) ill-defined resonant product. See Chapter 5 for a further
discussion on the paracontrolled approach in this direction.

Next, we recall the basic properties of the Besov spaces B , (T4) defined by the
norm:

lullgs, = 127 1Pjullg oz

We denote the Holder—Besov space by €5(T¢) = Bgo,oo(Td ). Note that (i) the
parameter s measures differentiability and p measures integrability, (ii) H*(T¢) =
B, (T4), and (iii) for s > 0 and not an integer, € (T ¢) coincides with the classical
Holder spaces C*(T4); see [31].

We recall the basic estimates in Besov spaces. See [2, 38] for example.

Lemma 2.1.1. The following estimates hold.

(i) (interpolation) Let s, 51,52 € R and p, p1, p> € (1, 00) such that s = 0s; +

1 _ 0  1-0
(1 —0)s, and 5 = pr T 5, Jorsome( < 0 < 1. Then, we have

0 1-6
leellws.r < lullgysion lullys.ps - (2.1.3)

(ii) (immediate embeddings) Let s1, s, € R and p1, p2,4q1,492 € [1, 00]. Then, we
have

||7fl||15;;§_q1 S ||“||1_l;;§'q2 forsy < s2, p1 < pa, and q1 > qa,
hellgyy , S lullgs2 - forsy <s2, (2.1.4)
lullgg, . S lulleon S Jullzg -

(iii) (Besov embedding) Let 1 < p, < p; <00, g € [1,00], and 55 > s1 + a’(p—l2 —

pl—l). Then, we have

el gy, < Nl
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(iv) (duality) Let s € R and p, p'.q.q' € [1,00] such that 3 + 2, = 2 + & = 1.
Then, we have
V wvdx| < Jullgs, [vllas . @.15)
Td ’ p.q

where [14 uvdx denotes the duality pairing between B, (Td) and B (Td)
(v) (fractional Leibniz rule) Let p, p1, p2, P3, Pa € [l, o0] such that E + Z =
1)1—3 + i = %. Then, for every s > 0, we have

luvllgs, < llullsy, ,llvliees + lulzeslvllgg, - (2.1.6)

The interpolation (2.1.3) follows from the Littlewood—Paley characterization of
Sobolev norms via the square function and Holder’s inequality.

Lemma 2.1.2 (Paraproduct and resonant product estimates). Let s1, 52 € R and
1 < p, p1, p2,q < 00 such that% = p—ll + é. Then, we have

I/ @slgp, <1 fllriliglps - 2.1.7)
When s1 < 0, we have
1/ @&l S 17z Iglgss - 2.18)
When s1 + s, > 0, we have
1@l S 171 Iglgs - .19

The product estimates (2.1.7), (2.1.8), and (2.1.9) follow easily from the defini-
tion (2.1.2) of the paraproduct and the resonant product. See [2,48] for details of the
proofs in the non-periodic case (which can be easily extended to the current periodic
setting).

We also recall the following product estimate from [6,35].

Lemma 2.1.3. Lets > 0.
(i) Let1 < pj,qj,r <00, j = 1,2 such that% = plj + qu. Then, we have

KV (L ersy S VY flleersllglea sy + 1 1Le2 s (V) gllLaz (r3)-

(i) Let 1 < p<ooand1 <q,r<oosuchthatsz3(%+é—%)andq,r’ip’.
Then, we have

VY D errsy S V)Y fllee@s)I{V) gllLacrs).-
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2.2 On discrete convolutions

Next, we recall the following basic lemma on a discrete convolution.

Lemma 2.2.1. Letd > 1 and a, B € R satisfy
a+pB>d and a<d.

Then, we have

1
S n —a+A
2 T <
forany n € 7.4, where A = max(d — B.0) when B # d and A = € when p = d for
any ¢ > 0.

Lemma 2.2.1 follows from elementary computations. See, for example, [29, Lem-
ma 4.2] and [49, Lemma 4.1].

2.3 Tools from stochastic analysis

We conclude this chapter by recalling useful lemmas from stochastic analysis. See
[51, 69] for basic definitions. Let (H, B, i) be an abstract Wiener space. Namely, u
is a Gaussian measure on a separable Banach space B with H C B as its Cameron—
Martin space. Given a complete orthonormal system {e; }jen C B* of H* = H, we
define a polynomial chaos of order & to be an element of the form ]_[7‘;1 Hy, ({x,e;)),
where x € B, k; # 0 for only finitely many j’s, k = Z;’;l kj, Hg; is the Hermite
polynomial of degree k;, and (-,-) = p(-,-)p+ denotes the B-B* duality pairing. We
then denote the closure of polynomial chaoses of order k under L2(B, i) by Hy. The
elements in # are called homogeneous Wiener chaoses of order k. We also set

k
Hek = @ H;
j=0

for k € N.

As a consequence of the hypercontractivity of the Ornstein—Uhlenbeck semigroup
due to Nelson [50], we have the following Wiener chaos estimate [70, Theorem 1.22].
See also [71, Proposition 2.4].

Lemma 2.3.1. Let k € N. Then, we have
K
[XllLr@) < (p— D21 X2

for any finite p > 2 and any X € H.
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Lastly, we recall the following orthogonality relation for the Hermite polynomi-
als. See [51, Lemma 1.1.1].

Lemma 2.3.2. Let f and g be jointly Gaussian random variables with mean zero
and variances oy and og. Then, we have

E[Hy (f;07)He(g:;04)] = Skek {E[ f2]},

where Hy(x, o) denotes the Hermite polynomial of degree k with variance para-
meter o.



