
Chapter 3

Construction of the ˆ3
3
-measure in the weakly nonlinear

regime

In this chapter, we present the construction of the ˆ33-measure in the weakly non-
linear regime (Theorem 1.2.1 (i)). Our proof is based on the variational approach
introduced by Barashkov and Gubinelli [3]. See the Boué–Dupuis variational for-
mula (Lemma 3.1.1) below. In Section 3.1, we briefly go over the setup of the vari-
ational formulation for a partition function. In Section 3.2, we first establish the
uniform exponential integrability (1.2.13) and then prove tightness of the truncated
ˆ33-measures �N in (1.2.11), which implies weak convergence of a subsequence. In
Section 3.3, we follow the approach introduced in our previous work [54] and prove
uniqueness of the limiting ˆ33-measure, thus establishing weak convergence of the
entire sequence ¹�N ºN2N . Finally, in Section 3.4, we show that the ˆ33-measure and
the base Gaussian free field � in (1.2.2) are mutually singular. While our proof of sin-
gularity of the ˆ33-measure is inspired by the discussion in [4, Section 4], we directly
prove singularity without referring to a shifted measure. In Appendix A, we show that
the ˆ33-measure is indeed absolutely continuous with respect to the shifted measure
Law.Y.1/C �Z.1/CW.1//, where Law.Y.1// D �, Z D Z.Y / is the limit of the
quadratic process ZN defined in (3.2.3), and the auxiliary quintic process W DW.Y /

is defined in (A.1.1).

3.1 Boué–Dupuis variational formula

LetW.t/ be the cylindrical Wiener process onL2.T3/ (with respect to the underlying
probability measure P ):

W.t/ D
X
n2Z3

Bn.t/en; (3.1.1)

where ¹Bnºn2Z3 is defined by Bn.t/ D h�; 1Œ0;t� � enix;t . Here, h�; �ix;t denotes the
duality pairing on T3 �R. Note that we have, for any n 2 Z3,

Var.Bn.t// D E
�
h�; 1Œ0;t� � enix;t h�; 1Œ0;t� � enix;t

�
D
1Œ0;t� � en

2
L2x;t
D t:

As a result, we see that ¹Bnºn2ƒ0 is a family of mutually independent complex-valued
Brownian motions conditioned so that B�n D Bn, n 2Z3.1 We then define a centered

1In particular, B0 is a standard real-valued Brownian motion.
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Gaussian process Y.t/ by
Y.t/ D hri�1W.t/: (3.1.2)

Then, we have Law.Y.1// D �. By setting YN D �NY , we have Law.YN .1// D
.�N /#�. In particular, we have EŒYN .1/2� D �N , where �N is as in (1.2.8).

Next, let Ha denote the space of drifts, which are the progressively measurable
processes belonging to L2.Œ0; 1�IL2.T3//, P -almost surely. For later use, we also
define H1

a to be the space of drifts, which are the progressively measurable processes
belonging to L2.Œ0; 1�IH 1.T3//, P -almost surely. Namely, we have

H1
a D hri

�1Ha: (3.1.3)

We now state the Boué–Dupuis variational formula [8, 77]; in particular, see [77,
Theorem 7]. See also [3, Theorem 2].

Lemma 3.1.1. Let Y.t/D hri�1W.t/ be as in (3.1.2). Fix N 2 N. Suppose that F W
C1.T3/!R is measurable such that EŒjF.YN .1//jp� <1 and EŒje�F.YN .1//jq� <
1 for some 1 < p; q <1 with 1

p
C

1
q
D 1. Then, we have

� log E
�
e�F.YN .1//

�
D inf
�2Ha

E

�
F.YN .1/C �N I.�/.1//C

1

2

Z 1

0

k�.t/k2
L2x
dt

�
;

(3.1.4)
where I.�/ is defined by

I.�/.t/ D

Z t

0

hri
�1�.t 0/dt 0: (3.1.5)

Lemma 3.1.1 plays a fundamental role in almost every step of the argument
presented in this chapter and Chapter 4.

We state a useful lemma on the pathwise regularity estimates of W Y k.t/ W and
I.�/.1/.

Lemma 3.1.2. (i) For k D 1; 2, any finite p � 2, and " > 0, W Y kN .t/ W converges to
W Y k.t/ W in Lp.�I C�

k
2�".T3// and also almost surely in C�

k
2�".T3/. Moreover,

we have
E
�
k WY kN .t/ W k

p

C
�k
2
�"

�
. p

k
2 <1; (3.1.6)

uniformly in N 2 N and t 2 Œ0; 1�. We also have

E
�
k WY 2N .t/ W k

2
H�1

�
� t2 logN (3.1.7)

for any t 2 Œ0; 1�.
(ii) For any N 2 N, we have

E

�Z
T3
WY 3N .1/ W dx

�
D 0:
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(iii) For any � 2 Ha, we have

kI.�/.1/k2
H1
�

Z 1

0

k�.t/k2
L2
dt:

Proof. The bound (3.1.6) for " > 0 follows immediately from the Wiener chaos
estimate (Lemma 2.3.1), Lemma 2.3.2, and then carrying out summations, using
Lemma 2.2.1. See, for example, [35, 36]. As for (3.1.7), proceeding as in the proof
of [63, Lemma 2.5] with Lemma 2.3.2, we have

E
�
k WY 2N .t/ W k

2
H�1

�
D

X
n2Z3

1

hni2

Z
T3x�T3y

E
�
H2.YN .x; t/I t�N /H2.YN .y; t/I t�N /

�
en.y � x/dxdy

D

X
n2Z3

t2

hni2

X
n1;n22Z3

�2N .n1/�
2
N .n2/

hn1i2hn2i2

Z
T3x�T3y

en1Cn2�n.x � y/dxdy

D

X
n2Z3

t2

hni2

X
nDn1Cn2

�2N .n1/�
2
N .n2/

hn1i2hn2i2
; (3.1.8)

where �N .nj / is as in (1.2.6). The upper bound in (3.1.7) follows from applying
Lemma 2.2.1 to (3.1.8). As for the lower bound, we consider the contribution from
jnj � 2

3
N and 1

4
jnj � jn1j �

1
2
jnj (which implies jn2j � jnj and jnj j � N , j D 1; 2).

Then, from (3.1.8), we obtain

E
�
k WY 2N .t/ W k

2
H�1

�
&

X
n2Z3

jnj� 23N

t2

hni3
� t2 logN;

which proves the lower bound in (3.1.7). As for (ii), it follows from recalling the
definition WY 3N .1/ W D H3.YN .1/I �N / (with �N as in (1.2.8)) and the orthogonality
relation of the Hermite polynomials (Lemma 2.3.2 with k D 3 and ` D 0). Lastly,
the claim in (iii) follows from Minkowski’s integral inequality and Cauchy–Schwarz
inequality; see [38, Lemma 4.7].

Remark 3.1.3. In [38, 57], a slightly different (and weaker) variational formula was
used. See also [3, Lemma 1]. Given a drift � 2Ha, we define the measure Q� whose
Radon–Nikodym derivative with respect to P is given by the following stochastic
exponential:

dQ�

dP
D e

R 1
0 h�.t/;dW.t/i�

1
2

R 1
0 k�.t/k

2

L2x

dt
;

where h�; �i stands for the usual inner product on L2.T3/. Let Hc denote the subspace
of Ha consisting of drifts such that Q� .�/ D 1. Then, the (weaker) variational for-
mula used in [38, 57] is given by (3.1.4), where the infimum is taken over Hc � Ha
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and we replace Y and E D EP by Y� D Y � I.�/ and EQ� . Here, E D EP and
EQ� denote expectations with respect to the underlying probability measure P and
the measure Q� , respectively. In such a formulation, Y� and the measure Q� depend
on a drift � . This, however, is not suitable for our purpose, since we construct a drift �
in (3.1.4) depending on Y .

3.2 Uniform exponential integrability and tightness

In this section, we first prove the uniform exponential integrability (1.2.13) via the
Boué–Dupuis variational formula (Lemma 3.1.1). Then, we establish tightness of the
truncated ˆ33-measures ¹�N ºN2N .

As in the case of the ˆ43-measure studied in [3] (see also [54, Section 6]), we
need to introduce a further renormalization than the standard Wick renormaliza-
tion (see (1.2.10)). As a result, the resulting ˆ33-measure is singular with respect to
the base Gaussian free field �; see Section 3.4. We point out that this extra renor-
malization appears only at the level of the measure and thus does not affect the
dynamical problem, at least locally in time.2 In the following, we use the follow-
ing shorthand notations: YN .t/ D �NY.t/, ‚.t/ D I.�/.t/, and ‚N .t/ D �N‚.t/
with YN D YN .1/ and ‚N D ‚N .1/. We also use Y D Y.1/ and ‚ D ‚.1/.

Let us first explain the second renormalization introduced in (1.2.10). Let RN be
as in (1.2.9) and set

zZN D

Z
e�RN .u/d�.u/:

By Lemma 3.1.1, we can express the partition function zZN as

� log zZN D inf
�2Ha

E

�
RN .Y C‚/C

1

2

Z 1

0

k�.t/k2
L2x
dt

�
:

By expanding the cubic Wick power, we have

�
�

3

Z
T3
W.YN C‚N /

3
W dx D �

�

3

Z
T3
WY 3N W dx � �

Z
T3
WY 2N W ‚Ndx

� �

Z
T3
YN‚

2
Ndx �

�

3

Z
T3
‚3Ndx: (3.2.1)

In view of Lemma 3.1.2, the first term on the right-hand side vanishes under an
expectation, while we can estimate the third and fourth terms on the right-hand side

2As mentioned in Chapter 1, this singularity of the ˆ3
3

-measure causes an additional diffi-
culty for the globalization problem.
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of (3.2.1) (see Lemma 3.2.2). As we see below, the second term turns out to be diver-
gent (and does not vanish under an expectation). From the Ito product formula, we
have

E

�Z
T3
WY 2N W ‚Ndx

�
D E

�Z 1

0

Z
T3
WY 2N .t/ W

P‚N .t/dxdt

�
; (3.2.2)

where we have P‚N .t/Dhri�1�N �.t/ in view of (3.1.5). Define ZN with ZN .0/D 0

by its time derivative:
PZN .t/ D .1 ��/�1 WY 2N .t/ W (3.2.3)

and set ZN D �NZN . Then, we perform a change of variables:

P‡N .t/ D P‚.t/ � � PZN .t/ (3.2.4)

and set ‡N D �N‡N . From (3.2.2), (3.2.3), and (3.2.4), we have

E

�
��

Z
T3
WY 2N W ‚Ndx C

1

2

Z 1

0

k�.t/k2
L2x
dt

�
D
1

2
E

�Z 1

0

k P‡N .t/k2
H1x
dt

�
� ˛N ; (3.2.5)

where the divergent constant ˛N is given by

˛N D
�2

2
E

�Z 1

0

k PZN .t/k
2

H1x
dt

�
!1; (3.2.6)

asN !1. The divergence in (3.2.6) can be easily seen from the spatial regularity 1�
" of PZN .t/D .1��/�1 WY 2N .t/W (with a uniform bound inN 2N). See Lemma 3.1.2.

In view of the discussion above, we define R˘N as in (1.2.10), which removes
the divergent constant ˛N in (3.2.5). Then, from (1.2.12) and the Boué–Dupuis vari-
ational formula (Lemma 3.1.1), we have

� logZN D inf
�2Ha

E

�
R˘N .Y C‚/C

1

2

Z 1

0

k�.t/k2
L2x
dt

�
(3.2.7)

for any N 2 N. By setting

WN .�/ D E

�
R˘N .Y C‚/C

1

2

Z 1

0

k�.t/k2
L2x
dt

�
; (3.2.8)

it follows from (1.2.9) with  D 3, (1.2.10), (3.2.1), (3.2.5), and Lemma 3.1.2 (ii) that

WN .�/ D E

�
��

Z
T3
YN‚

2
Ndx �

�

3

Z
T3
‚3Ndx

C A

ˇ̌̌̌Z
T3

�
WY 2N W C 2YN‚N C‚

2
N

�
dx

ˇ̌̌̌3
C
1

2

Z 1

0

k P‡N .t/k2
H1x
dt

�
:

(3.2.9)
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We also set

‡N D ‡N .1/ D �N‡
N .1/ and ZN D ZN .1/ D �NZN .1/: (3.2.10)

In view of the change of variables (3.2.4), we have

‚N D ‡N C ��NZN DW ‡N C � zZN ; i.e. zZN WD �NZN : (3.2.11)

Namely, the original drift � in (3.2.7) depends on Y . By the definition (3.2.3) and
(3.2.10), ZN is determined by YN . Hence, in the following, we view P‡N as a drift
and study the minimization problem (3.2.7) by first studying each term in (3.2.9)
(where we now view WN as a function of P‡N ) and then taking an infimum in P‡N 2
H1
a, where H1

a is as in (3.1.3). Our main goal is to show that WN . P‡
N / in (3.2.9) is

bounded away from �1, uniformly in N 2 N and P‡N 2 H1
a.

Remark 3.2.1. In this paper, we work with the cube frequency projector �N D
�cube
N defined in (1.2.5), satisfying �2N D �N . In view of (3.2.10) and (3.2.11), we

have zZN D ZN . Nonetheless, we introduce the notation zZN in (3.2.11) to indicate
the modifications necessary to consider the case of the smooth frequency projector
� smooth
N defined in (1.4.2), which does not satisfy .� smooth

N /2 D � smooth
N . This comment

applies to the remaining part of the paper.

We first state two lemmas whose proofs are presented at the end of this section.
While the first lemma is elementary, the second lemma (Lemma 3.2.3) requires much
more careful analysis, reflecting the critical nature of the ˆ33-measure.

Lemma 3.2.2. LetA>0 and 0< j� j<1. Then, there exist small "> 0 and a constant
c > 0 such that, for any ı > 0, there exists Cı > 0 such thatˇ̌̌̌Z

T3
YN‚

2
Ndx

ˇ̌̌̌
. 1C CıkYN k

c

C
� 1
2
�"
C ık‡N k

6
L2
C ık‡N k

2
H1
C kZN k

c
C1�"

;

(3.2.12)ˇ̌̌̌Z
T3
‚3Ndx

ˇ̌̌̌
. 1C k‡N k

6
L2
C k‡N k

2
H1
C kZN k

3
C1�"

; (3.2.13)

and

A

ˇ̌̌̌Z
T3

�
WY 2N W C 2YN‚N C‚

2
N

�
dx

ˇ̌̌̌3
�
A

2

ˇ̌̌̌Z
T3

�
2YN‡N C ‡

2
N

�
dx

ˇ̌̌̌3
� ık‡N k

6
L2

� Cı;�

²ˇ̌̌̌Z
T3
WY 2N W dx

ˇ̌̌̌3
C kYN k

6

C
� 1
2
�"
C kZN k

6
C1�"

³
; (3.2.14)

uniformly in N 2 N, where ‚N D ‡N C � zZN as in (3.2.11).
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The next lemma allows us to control the term k‡N k6L2 appearing in Lemma 3.2.2.

Lemma 3.2.3. There exists a non-negative random variable B.!/ with EŒBp� �
Cp <1 for any finite p � 1 such that

k‡N k
6
L2

.
ˇ̌̌̌Z

T3

�
2YN‡N C ‡

2
N

�
dx

ˇ̌̌̌3
C k‡N k

2
H1
C B.!/; (3.2.15)

uniformly in N 2 N.

By assuming Lemmas 3.2.2 and 3.2.3, we now prove the uniform exponential
integrability (1.2.13) and tightness of the truncated ˆ33-measures �N .

Uniform exponential integrability. In view of (3.2.9) and Lemma 3.2.3, define the
positive part UN of WN by

UN . P‡
N / D E

�
A

2

ˇ̌̌̌Z
T3

�
2YN‡N C ‡

2
N

�
dx

ˇ̌̌̌3
C
1

2

Z 1

0

k P‡N .t/k2
H1x
dt

�
: (3.2.16)

As a corollary to Lemma 3.1.2 (i) with (3.2.3), we have, for any finite p � 1,

E
�
kZN k

p

C1�"

�
�

Z 1

0

E
�
k WY 2N .t/ W k

p

C�1�"

�
dt . p <1; (3.2.17)

uniformly in N 2 N. Then, by applying Lemmas 3.2.2 and 3.2.3 to (3.2.9) together
with Lemma 3.1.2 and (3.2.17), we obtain

WN . P‡
N / � �C0 C E

��
A

2
� cj� j

�ˇ̌̌̌Z
T3

�
2YN‡N C ‡

2
N

�
dx

ˇ̌̌̌3
C

�
1

2
� cj� j

�Z 1

0

k P‡N .t/k2
H1x
dt

�
� �C 00 C

1

10
UN . P‡

N /; (3.2.18)

for any 0 < j� j < �0, provided A D A.�0/ > 0 is sufficiently large. Noting that the
estimate (3.2.18) is uniform in N 2 N and P‡N 2 H1

a, we conclude that

inf
N2N

inf
P‡N2H1a

WN . P‡
N / � inf

N2N
inf
P‡N2H1a

²
�C 00 C

1

10
UN . P‡

N /

³
� �C 00 > �1:

(3.2.19)
Therefore, the uniform exponential integrability (1.2.13) follows from (3.2.7), (3.2.8),
and (3.2.19).

Tightness. Next, we prove tightness of the truncated ˆ33-measures ¹�N ºN2N . Al-
though it follows from a slight modification of the argument in our previous work [54,
Section 6.2], we present a proof here for readers’ convenience.
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As a preliminary step, we first prove that ZN in (1.2.12) is uniformly bounded
away from 0:

inf
N2N

ZN > 0: (3.2.20)

In view of (3.2.7) and (3.2.8), it suffices to establish an upper bound on WN in (3.2.9).
By Lemma 2.1.1 and (3.2.11), we haveˇ̌̌̌Z

T3
2YN‚Ndx

ˇ̌̌̌3
. kYN k3

C
� 1
2
�"
k‚N k

3

H
1
2
C2"

. 1C kYN k
c

C
� 1
2
�"
C kZN k

c
C1�"

C k‡N k
c
H1
:

Thus, we have

A

ˇ̌̌̌Z
T3

�
WY 2N W C 2YN‚N C‚

2
N

�
dx

ˇ̌̌̌3
. 1C k WY 2N W k

3
C�1�"

C kYN k
c

C
� 1
2
�"
C kZN k

c
C1�"

C k‡N k
c
H1
: (3.2.21)

Then, from (3.2.9), Lemma 3.2.2, and (3.2.21) with Lemma 3.1.2 and (3.2.17), we
obtain

inf
P‡N2H1a

WN . 1C inf
P‡N2H1a

E

��Z 1

0

k P‡N .t/k2
H1x
dt

�c�
. 1

by taking P‡N � 0, for example. This proves (3.2.20).
We now prove tightness of the truncated ˆ33-measures. Fix small " > 0 and let

BR � H
� 12�".T3/ be the closed ball of radius R > 0 centered at the origin. Then,

by Rellich’s compactness lemma, we see that BR is compact in H�
1
2�2".T3/. In the

following, we show that given any small ı > 0, there exists R D R.ı/� 1 such that

sup
N2N

�N .B
c
R/ < ı: (3.2.22)

Given M � 1, let F be a bounded smooth non-negative function such that

F.u/ D

8<:M; if kuk
H
� 1
2
�"
�

R
2
;

0; if kuk
H
� 1
2
�"
> R:

(3.2.23)

Then, from (3.2.20), we have

�N .B
c
R/ � Z

�1
N

Z
e�F.u/�R

˘
N
.u/d�

.
Z
e�F.u/�R

˘
N
.u/d� DW yZN ; (3.2.24)
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uniformly in N � 1. Under the change of variables (3.2.4) (see also (3.2.5)), define
yR˘N .Y C ‡

N C �ZN / by

yR˘N .Y C ‡
N
C �ZN / D �

�

3

Z
T3
WY 3N W dx � �

Z
T3
YN‚

2
Ndx �

�

3

Z
T3
‚3Ndx

C A

ˇ̌̌̌Z
T3

�
WY 2N W C 2YN‚N C‚

2
N

�
dx

ˇ̌̌̌3
; (3.2.25)

where ‚N D ‡N C � zZN with zZN D �NZN as in (3.2.11). Then, by (3.2.24) and
the Boué–Dupuis variational formula (Lemma 3.1.1), we have

� log yZN D inf
P‡N2H1a

E

�
F.Y C ‡N C �ZN /

C yR˘N .Y C ‡
N
C �ZN /C

1

2

Z 1

0

k P‡N .t/k2
H1x
dt

�
:

(3.2.26)

Since Y C �ZN 2 H�2, it follows from Lemma 3.1.2, (3.2.17), Chebyshev’s
inequality, and choosing R� 1 that

P

�
kY C ‡N C �ZN k

H
� 1
2
�"
>
R

2

�
� P

�
kY C �ZN k

H
� 1
2
�"
>
R

4

�
C P

�
k‡N kH1 >

R

4

�
�
1

2
C
16

R2
E
�
k‡N k2

H1x

�
; (3.2.27)

uniformly inN 2N and R� 1. Then, from (3.2.23), (3.2.27), and Lemma 3.1.2, we
obtain

E
�
F.Y C ‡N C �ZN /

�
�ME

h
1®
kYC‡NC�ZN k

H
� 1
2
�"
�R2

¯i
�
M

2
�
16M

R2
E
�
k‡N k2

H1x

�
�
M

2
�
1

4
E

�Z 1

0

k P‡N .t/k2
H1x
dt

�
; (3.2.28)

where we setM D 1
64
R2 in the last step. Hence, from (3.2.26), (3.2.28), and repeating

the computation leading to (3.2.19) (by possibly making �0 smaller), we obtain

� log yZN �
M

2
C inf
P‡N2H1a

E

�
yR˘N .Y C ‡

N
C �ZN /C

1

4

Z 1

0

k P‡N .t/k2
H1x
dt

�
�
M

4
; (3.2.29)
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uniformly N 2 N andM D 1
64
R2� 1. Therefore, given any small ı > 0, by choos-

ing R D R.ı/ � 1 and setting M D 1
64
R2 � 1, the desired bound (3.2.22) fol-

lows from (3.2.24) and (3.2.29). This proves tightness of the truncated ˆ33-measures
¹�N ºN2N .

We conclude this section by presenting the proofs of Lemmas 3.2.2 and 3.2.3.

Proof of Lemma 3.2.2. From (2.1.5), (2.1.6), (2.1.4), and (2.1.3) in Lemma 2.1.1 fol-
lowed by Young’s inequality, we haveˇ̌̌̌Z
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which yields (3.2.12). As for the second estimate (3.2.13), it follows from Sobolev’s
inequality, the interpolation (2.1.3), and Young’s inequality thatˇ̌̌̌Z
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while Hölder’s inequality with (2.1.4) showsˇ̌̌̌Z
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Note that, given any  > 0, there exists a constant C D C.J / > 0 such thatˇ̌̌̌
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See [54, Section 5]. Then, from (3.2.32) and Cauchy’s inequality, we have
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This proves (3.2.14). This completes the proof of Lemma 3.2.2.
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Next, we present the proof of Lemma 3.2.3.

Proof of Lemma 3.2.3. If we have
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which shows (3.2.15). Hence, we assume that
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in the following.
Given j 2N, define the sharp frequency projections…j with a Fourier multiplier

1¹jnj�2º when j D 1 and 1¹2j�1<jnj�2j º when j � 2. We also set
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By definition, wj D…jwj is orthogonal to…jYN (and also to YN ) in L2.T3/. Thus,
we have

k‡N k
2
L2
D

1X
jD1

�
�2j k…jYN k

2
L2
C kwj k

2
L2

�
; (3.2.38)
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Hence, from (3.2.35), (3.2.38), and (3.2.39), we have
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Fix j0 D j0.!/ 2 N (to be chosen later). By Cauchy–Schwarz’s inequality and
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On the other hand, it follows from Cauchy–Schwarz’s inequality, (3.2.40), and
Cauchy’s inequality thatˇ̌̌̌

ˇ j0X
jD1

�j k…jYN k
2
L2

ˇ̌̌̌
ˇ �

 
1X
jD1

�2j k…jYN k
2
L2

! 1
2
 
j0X
jD1

k…jYN k
2
L2

! 1
2

� C

ˇ̌̌̌
ˇ 1X
jD1

�j k…jYN k
2
L2

ˇ̌̌̌
ˇ
1
2
 
j0X
jD1

k…jYN k
2
L2

! 1
2

�
1

2

ˇ̌̌̌
ˇ 1X
jD1

�j k…jYN k
2
L2

ˇ̌̌̌
ˇC C 0k…�j0YN k2L2 : (3.2.42)

Hence, from (3.2.41) and (3.2.42), we obtainˇ̌̌̌
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Since YN is spatially homogeneous, we have
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Recalling (3.1.2), we can bound the second term by
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Let ZN;j0 D hri
�1…>j0YN . Proceeding as in the proof of [63, Lemma 2.5] with

Lemma 2.3.2, we have
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Now, define a non-negative random variable B1.!/ by
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By Minkowski’s integral inequality, the Wiener chaos estimate (Lemma 2.3.1), and
(3.2.46), we have
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for any finite p � 2 (and hence for any finite p � 1). Hence, from (3.2.44), (3.2.45),
and (3.2.47), we obtain
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Next, define a non-negative random variable B2.!/ by

B2.!/ D

1X
jD1

ˇ̌̌̌Z
T3
W.…jYN /

2
W dx

ˇ̌̌̌
:

Then, a similar computation shows
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and EŒBp2 � � Cp <1 for any finite p � 1.
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Therefore, putting (3.2.35), (3.2.39), (3.2.43), (3.2.49), and (3.2.50) together,

choosing 2j0 � 1C k‡N k
2
3

H1
, and applying Cauchy’s inequality, we obtain
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3
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where the implicit constant is independent of N 2 N. This proves (3.2.15) in the
case (3.2.35) holds. This concludes the proof of Lemma 3.2.3.

Remark 3.2.4. From the proof of Lemma 3.2.3 (see (3.2.33) and (3.2.51)) with
Lemma 3.2.3, we also have

E

�ˇ̌̌̌Z
T3
YN‡Ndx

ˇ̌̌̌3�
. E

�
k‡N k

6
L2
C k‡N k

2
H1

�
C 1
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where UN is as in (3.2.16).

3.3 Uniqueness of the limiting ˆ3
3

-measure

The tightness of the truncated Gibbs measures ¹�N ºN2N , proven in the previous sec-
tion, together with Prokhorov’s theorem implies existence of a weakly convergent
subsequence. In this section, we prove uniqueness of the limitingˆ33-measure, which
allows us to conclude the weak convergence of the entire sequence ¹�N ºN2N . While
we follow the uniqueness argument in our previous work [54, Section 6.3], there are
extra terms to control due to the focusing nature of the problem under consideration.

Proposition 3.3.1. Let ¹�N1
k
º1
kD1

and ¹�N2
k
º1
kD1

be two weakly convergent subsequen-

ces of the truncated ˆ33-measures ¹�N ºN2N defined in (1.2.11), converging weakly
to �.1/ and �.2/ as k !1, respectively. Then, we have �.1/ D �.2/.

Proof. We break the proof into two steps.

Step 1. We first show that

lim
k!1

ZN1
k
D lim
k!1

ZN2
k
; (3.3.1)

where ZN is as in (1.2.12). By taking a further subsequence, we may assume that
N 1
k
�N 2

k
, k 2N. Recall the change of variables (3.2.4) and let yR˘N .Y C‡

N C �ZN /
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be as in (3.2.25). Then, by the Boué–Dupuis variational formula (Lemma 3.1.1), we
have
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(3.3.2)

for j D 1; 2 and k 2 N. We point out that Y and ZN do not depend on the drift P‡N

in (3.3.2).
Given ı > 0, let ‡N

2
k be an almost optimizer for (3.3.2) with j D 2:
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, it follows from (3.3.3) and (3.3.4)
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Construction of the ˆ3
3

-measure in the weakly nonlinear regime 44

We now estimate the right-hand side of (3.3.5). The main point is that in the
difference
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we only have differences in Y -terms and Z-terms, which allows us to gain a negative
power of N 2

k
. The contribution from the first term on the right-hand side in (3.3.6) is

given by
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from Lemmas 3.1.2 and 3.2.3, we have
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Now, proceeding as in (3.2.30) together with Hölder’s inequality in ! and Young’s
inequality, we bound the first term in (3.3.8) by
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where the implicit constant is independent of Nk , k 2 N. Here, the second inequality
follows from a modification of the proof of Lemma 3.1.2 (i) and noting that the Four-
ier transform of YN1

k
� YN2

k
is supported on the frequencies ¹jnj&N 2

k
º, which allows

us to gain a small negative power of N 2
k

. Note that the implicit constants in (3.3.9)
depend on A > 0 and � . However, the sizes of A and j� j do not play any role in the
subsequent analysis and thus we suppress the dependence on A and � in the follow-
ing. The same comment applies to Sections 3.3 and 3.4.

The second and third terms in (3.3.8) and the second term on the right-hand side
of (3.3.6) can be handled in a similar manner (with (3.2.17) to control the zZ
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-terms).
As a result, we can bound the first two terms on the right-hand side of (3.3.6) by
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for some small a > 0, where C.YN1
k
; YN2

k
;ZN1

k
;ZN2

k
/ denotes certain high moments

of various stochastic terms involving Y
N
j

k

and Z
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j
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, j D 1; 2, which are bounded by

some constant, independent of N j

k
, j D 1; 2, in view of Lemma 3.1.2 and (3.2.17).

It remains to treat the difference coming from the last term in (3.3.6). By Young’s
and Hölder’s inequalities, we have
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We divide I into two groups:
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By the definition (1.2.5) of the cube frequency projector �N D �cube
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and thus I2 D 0.
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By Lemma 2.1.1, Hölder’s inequality in !, and Young’s inequality, followed by
Lemma 3.2.3 with (3.2.16), we can estimate I1 in (3.3.12) by
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where we used Lemma 3.1.2 and (3.2.17) in bounding the terms involving Y
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From (3.2.18), (3.2.8), (3.2.9), (3.2.25), and replacing‡N
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k by 0 in view of (3.3.2),
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Hence, from (3.3.13), (3.3.14), (3.3.15), and (3.3.16), we obtain that
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as k!1. Since the choice of ı > 0was arbitrary, it follows from (3.3.5) and (3.3.18)
that
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Therefore, (3.3.1) follows from (3.3.19) and (3.3.20).

Step 2. Next, we prove �.1/ D �.2/. This claim follows from a small modification of
Step 1. For this purpose, we need to prove that for every bounded Lipschitz continu-
ous function F W C�100.T3/! R, we have
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By the Boué–Dupuis variational formula (Lemma 3.1.1), we have
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(3.3.23)

where �?N D Id��N and yR˘ is as in (3.3.6). We can proceed as in Step 1 to show that
the second term on the right-hand side of (3.3.23) satisfies (3.3.18). Here, we need to
use the boundedness of F in showing an analogue of (3.3.16) in the current context
(with an almost optimizer ‡N

2
k for (3.3.22)).

Finally, we estimate the first term on the right-hand side of (3.3.23). Write
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A standard computation with (3.2.3) shows that the second term on the right-hand
side tends to 0 as k !1. As for the first term, from Lemma 3.1.2 and (an analogue
of) (3.3.16), we obtain
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as k !1. Since the choice of ı > 0 was arbitrary, we conclude (3.3.21) and hence
�.1/ D �.2/. This completes the proof of Proposition 3.3.1.

Remark 3.3.2. In the proof of Proposition 3.3.1, we used the orthogonality rela-
tion (3.3.13) to conclude that I2 D 0. While the same orthogonality holds for the
ball frequency projector �ball

N in (1.4.1), such an orthogonality relation is false for the
smooth frequency projector � smooth

N in (1.4.2). As seen from the proof of Lemma 3.2.3
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and the uniform bound (3.3.16) on UN2
k
. P‡

N2
k /, the quantity I2 in (3.3.12) is critical

(with respect to the spatial regularity/integrability and also with respect to the !-
integrability). From Remark 3.2.4 and (3.3.16), we see that the quantity I2 is bounded,
uniformly in k 2 N. In the absence of the orthogonality (3.3.13), however, we do not
know how to show that this term tends to 0 as k !1 in the case of the smooth fre-
quency projector � smooth

N . We point out that the same issue also appears in the proofs
of Propositions 4.1.1 and 6.3.3 in the case of the smooth frequency projector � smooth

N .

3.4 Singularity of the ˆ3
3

-measure

We conclude this chapter by proving mutual singularity of the ˆ33-measure �, con-
structed in the previous sections, and the base Gaussian free field � in (1.2.2). In [4,
Section 4], Barashkov and Gubinelli proved the singularity of the ˆ43-measure by
making use of the shifted measure. In the following, we follow our previous work [54]
and present a direct proof of singularity of theˆ33-measure without referring to a shif-
ted measure. See also Appendix A, where we construct a shifted measure with respect
to which the ˆ33-measure is absolutely continuous.

Proposition 3.4.1. Let RN be as in (1.2.9) with  D 3, and " > 0. Then, there exists
a strictly increasing sequence ¹Nkºk2N � N such that the set
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�.S/ D 1 but �.S/ D 0: (3.4.1)

In particular, the ˆ33-measure � and the massive Gaussian free field � in (1.2.2) are
mutually singular.

Proof. From (1.2.9) with  D 3, the Wiener chaos estimate (Lemma 2.3.1), Lem-
mas 2.3.2 and 2.2.1, we have
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where Q denotes the cube of side length 2 in R3 centered at the origin as in (1.2.7).
Thus, we have
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Hence, there exists a subsequence such that
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almost surely with respect to �. This proves �.S/ D 1 in (3.4.1).
Given k 2 N, define Gk.u/ by

Gk.u/ D .logNk/�
3
4RNk .u/: (3.4.2)

In the following, we show that eGk.u/ tends to 0 in L1.�/. This will imply that there
exists a subsequence of Gk.u/ tending to �1, almost surely with respect to the ˆ33-
measure �, which in turn yields the second claim in (3.4.1): �.S/ D 0.

Let � be a smooth bump function as in Section 2.1. By Fatou’s lemma, the weak
convergence of �M to �, the boundedness of �, and (1.2.11), we haveZ
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provided that limM!1 CM;k exists. Here, Z D limM!1 ZM denotes the partition
function for �.

Our main goal is to show that the right-hand side of (3.4.3) tends to 0 as k!1.
As in the previous sections, we proceed with the change of variables (3.2.4):

P‡M .t/ D P‚.t/ � � PZM .t/:

Then, by the Boué–Dupuis variational formula (Lemma 3.1.1) and (3.4.2), we have
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where yR˘N is as in (3.2.25). In the following, we prove that the right-hand side (and
hence the left-hand side) of (3.4.4) diverges to1 as k !1.

Proceeding as in Section 3.2 (see (3.2.18)), we bound the last two terms on the
right-hand side of (3.4.4) as
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where UM D UM . P‡
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Next, we study the first term on the right-hand side of (3.4.4), which gives the

main (divergent) contribution. From (1.2.9) with  D 3, we have

RNk .Y C ‡
M
C �ZM / D �

�

3

Z
T3
WY 3Nk W dx � �

Z
T3
WY 2Nk W ‚Nkdx

� �

Z
T3
YNk‚

2
Nk
dx �

�

3

Z
T3
‚3Nkdx

C A

ˇ̌̌̌Z
T3

�
WY 2Nk W C 2YNk‚Nk C‚

2
Nk

�
dx

ˇ̌̌̌3
DW I C IIC IIIC IVC V (3.4.7)

for Nk �M , where ‚Nk is given by
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As we see below, under an expectation, the second term II on the right-hand side
of (3.4.7) (which is precisely the term removed by the second renormalization) gives
a divergent contribution; see (3.4.14) below. From Lemma 3.1.2, the first term I on
the right-hand side of (3.4.7) gives 0 under an expectation. As for the last three terms,
we proceed as in Section 3.2 (see also the proof of Proposition 3.3.1) and obtainˇ̌
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In view of the smallness of .logNk/�
3
4 in (3.4.4), the second term in (3.4.10)

can be controlled by the positive terms UM in (3.4.5) (in particular by the second
term in (3.4.6)). As for the first term in (3.4.10), it follows from (3.2.52), �Nk‡

M D

�Nk�M‡
M for Nk �M , and Lemma 3.2.3 with (3.4.6) that
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for Nk �M . Hence, UNk in (3.4.10) can be controlled by UM in (3.4.6):

UNk . 1CUM : (3.4.11)

Hence, from (3.4.4), (3.4.5), (3.4.7), (3.4.9), and (3.4.11), we obtain
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for any M � Nk � 1.
Therefore, it remains to estimate the contribution from the second term on the

right-hand side of (3.4.7). Let us first state a lemma whose proof is presented at the
end of this section.

Lemma 3.4.2. We have
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for any 1 � N �M , where PZN D �N PZN .

By assuming Lemma 3.4.2, we complete the proof of Proposition 3.4.1. By (3.2.2),
(3.2.3) with ZNk D �NkZNk , (3.4.8), Lemma 3.4.2, Cauchy’s inequality (with small
"0 > 0), and Lemma 3.1.2 (see (3.1.7)), we have
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for M � Nk � 1. Thus, putting (3.4.4), (3.4.12), and (3.4.14) together, we have
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for any sufficiently large k� 1 (such that Nk � 1). Hence, from (3.4.15), we obtain
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for M � Nk � 1, uniformly in M 2 N. Therefore, by taking limits in M !1 and
then k !1, we conclude from (3.4.3) and (3.4.16) that

lim
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Z
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as desired. This completes the proof of Proposition 3.4.1.

We conclude this chapter by presenting the proof of Lemma 3.4.2.

Proof of Lemma 3.4.2. For simplicity, we suppress the time dependence in the fol-
lowing. From (3.2.3), we have
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where Q is as in (1.2.7). Hence, from (3.4.17) and (3.4.18), we have
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We now proceed as in the proof of (3.1.7) in Lemma 3.1.2 (i). By applying (3.2.3)
and Lemma 2.3.2, and summing over ¹jnj � 2
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jn2j � jnj and jnj j � N , j D 1; 2), we have
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where �N .nj / is as in (1.2.6). By integrating on Œ0; 1�, we obtain the desired bound
(3.4.13).


