Chapter 3

Construction of the <I>§-measure in the weakly nonlinear
regime

In this chapter, we present the construction of the q)g—measure in the weakly non-
linear regime (Theorem 1.2.1 (i)). Our proof is based on the variational approach
introduced by Barashkov and Gubinelli [3]. See the Boué—Dupuis variational for-
mula (Lemma 3.1.1) below. In Section 3.1, we briefly go over the setup of the vari-
ational formulation for a partition function. In Section 3.2, we first establish the
uniform exponential integrability (1.2.13) and then prove tightness of the truncated
d>§—measures pn in (1.2.11), which implies weak convergence of a subsequence. In
Section 3.3, we follow the approach introduced in our previous work [54] and prove
uniqueness of the limiting ®3-measure, thus establishing weak convergence of the
entire sequence {py } yeN. Finally, in Section 3.4, we show that the @g—measure and
the base Gaussian free field p in (1.2.2) are mutually singular. While our proof of sin-
gularity of the @g—measure is inspired by the discussion in [4, Section 4], we directly
prove singularity without referring to a shifted measure. In Appendix A, we show that
the <I>§-measure is indeed absolutely continuous with respect to the shifted measure
Law(Y (1) + 03(1) + W(1)), where Law(Y (1)) = u, 3 = 3(Y) is the limit of the
quadratic process 3V defined in (3.2.3), and the auxiliary quintic process W = W(Y)
is defined in (A.1.1).

3.1 Boué-Dupuis variational formula

Let W(t) be the cylindrical Wiener process on L2 (T 3) (with respect to the underlying
probability measure P):

W(t) = Z By ()en, (3.1.1)

nez3

where {B),},cz3 is defined by B, (t) = (§, 1jo,¢] - €n)x,:- Here, (-, -)x denotes the
duality pairing on T3 x R. Note that we have, for any n € Z3,

Var(B, (1)) = E[(€. 10,11 - €n)x.t (6. 110,61 - €n)x.t | = | 10,11 - €n “1242” =1

As aresult, we see that { B, },e A, is a family of mutually independent complex-valued
Brownian motions conditioned so that B_,, = B,,, n € Z3.! We then define a centered

'In particular, By is a standard real-valued Brownian motion.
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Gaussian process Y (¢) by

Y(t) = (V)"'W(@). (3.1.2)
Then, we have Law(Y (1)) = u. By setting Yy = nyY, we have Law(Yy (1)) =
(7 )# . In particular, we have E[Yy (1)?] = oy, where oy is as in (1.2.8).

Next, let H, denote the space of drifts, which are the progressively measurable
processes belonging to L?([0, 1]; L?(T3)), P-almost surely. For later use, we also
define H to be the space of drifts, which are the progressively measurable processes
belonging to L2([0, 1]; H'(T3)), P-almost surely. Namely, we have

H! = (V)"'H,. (3.1.3)

We now state the Boué—Dupuis variational formula [8, 77]; in particular, see [77,
Theorem 7]. See also [3, Theorem 2].

Lemma 3.1.1. Let Y(t) = (V)" W(t) be as in (3.1.2). Fix N € N. Suppose that F :
C®(T?3) — R is measurable such that E[| F(Yy (1))|?] < oo and E[|e” F XN (D]4] <
oo for some 1 < p,q < oo with % + ‘17 = 1. Then, we have

1 1
“log E[e O] = int B[ PO () + w101 + 5 [ 160001t ]
OGHa 2 0 Lx
(3.1.4)
where 1(0) is defined by

t

10)(t) = /0 (V)yLotydr. (3.1.5)

Lemma 3.1.1 plays a fundamental role in almost every step of the argument
presented in this chapter and Chapter 4.
We state a useful lemma on the pathwise regularity estimates of : Y*(¢) : and

1(0)(1).
Lemma 3.1.2. (i) Forlli = 1,2, any finite p > 2, and ¢ > 0, : );f, (t) : converges to
L Yk(t) s in LP(Q;€7275(T3)) and also almost surely in €~ 27¢(T3). Moreover,
we have .

E[|l :YX(1): ||g_%_8] <p? <o, (3.1.6)

uniformly in N € N and t € [0, 1]. We also have
E[ll :Y§y(0): 15— ] ~ t*log N (3.1.7)

foranyt € [0,1].
(ii) For any N € N, we have

E[/T3 Yy(1): dx] =0.
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(iii) For any 0 € H,, we have

1
11O, < /0 100)]12, dv.

Proof. The bound (3.1.6) for ¢ > 0 follows immediately from the Wiener chaos
estimate (Lemma 2.3.1), Lemma 2.3.2, and then carrying out summations, using
Lemma 2.2.1. See, for example, [35,36]. As for (3.1.7), proceeding as in the proof
of [63, Lemma 2.5] with Lemma 2.3.2, we have

E[ll :Y5(0): ||H1

- Z / B[ G0 tom) (Y 0010 Jeny = )y

Y MGG [ - pindy

neZz3 n)? ny,ny€Z3 {11)?(n2)? TxTj
1? 13 (1) x% (n2)
— LAY AN 2 3.1.8
XZ: < n= ;‘I’IZ <n1)2(n2)2 ( )

where yn(n;) is as in (1.2.6). The upper bound in (3.1.7) follows from applying
Lemma 2.2.1 to (3.1.8). As for the lower bound, we consider the contribution from
In| < 2N and {|n| < |n| < 1|n| (which implies |n5| ~ |n|and |nj| < N, j = 1,2).
Then, from (3.1.8), we obtain

which proves the lower bound in (3.1.7). As for (ii), it follows from recalling the
definition :Yﬁ,(l): = H3(Yn(1); 0n) (with oy as in (1.2.8)) and the orthogonality
relation of the Hermite polynomials (Lemma 2.3.2 with k = 3 and £ = 0). Lastly,
the claim in (iii) follows from Minkowski’s integral inequality and Cauchy—Schwarz
inequality; see [38, Lemma 4.7]. ]

Remark 3.1.3. In [38,57], a slightly different (and weaker) variational formula was
used. See also [3, Lemma 1]. Given a drift 8 € H,, we define the measure Qg whose
Radon-Nikodym derivative with respect to P is given by the following stochastic
exponential:

dQg  [o0@®.dWn)-% fy 1)1, d

dP
where (-, -) stands for the usual inner product on L2(T3). Let H. denote the subspace
of H, consisting of drifts such that Qg (2) = 1. Then, the (weaker) variational for-
mula used in [38,57] is given by (3.1.4), where the infimum is taken over H, C H,
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and we replace Y and E = Ep by Yy =Y — I(0) and Eq,. Here, E = Ep and
Eq, denote expectations with respect to the underlying probability measure P and
the measure Qg, respectively. In such a formulation, Yy and the measure Qg depend
on a drift 6. This, however, is not suitable for our purpose, since we construct a drift 8
in (3.1.4) depending on Y.

3.2 Uniform exponential integrability and tightness

In this section, we first prove the uniform exponential integrability (1.2.13) via the
Boué—Dupuis variational formula (Lemma 3.1.1). Then, we establish tightness of the
truncated ®3-measures {pn } NeN-

As in the case of the <I>‘3‘—measure studied in [3] (see also [54, Section 6]), we
need to introduce a further renormalization than the standard Wick renormaliza-
tion (see (1.2.10)). As a result, the resulting @g—measure is singular with respect to
the base Gaussian free field p; see Section 3.4. We point out that this extra renor-
malization appears only at the level of the measure and thus does not affect the
dynamical problem, at least locally in time.” In the following, we use the follow-
ing shorthand notations: Yy (1) = anyY(¢), ®(t) = 1(0)(¢), and On () = nyO(¢)
with Yy = Yy (1) and O = O (1). Wealsouse Y = Y (1) and ® = O(1).

Let us first explain the second renormalization introduced in (1.2.10). Let Ry be
asin (1.2.9) and set

ZN = /e_RN(”)d/L(u).

By Lemma 3.1.1, we can express the partition function Zn as
log Z inf E| R (Y+®)+1/1||9(t)||2 dt
—1lo = in = .
EEN 6eH, N 2 0 L%
By expanding the cubic Wick power, we have

_E/ :(YN+®N)3:dx=—g/ :Yﬁ,:dx—a/ Y3 : Ondx
3 T3 3 T3 T3

—o/ YN@)fvdx—f/ ®3 dx. (3.2.1)
T3 3 T3

In view of Lemma 3.1.2, the first term on the right-hand side vanishes under an
expectation, while we can estimate the third and fourth terms on the right-hand side

2As mentioned in Chapter 1, this singularity of the @g—measure causes an additional diffi-
culty for the globalization problem.
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of (3.2.1) (see Lemma 3.2.2). As we see below, the second term turns out to be diver-
gent (and does not vanish under an expectation). From the Ito product formula, we

have
1
EU :Yﬁ:@Ndx}:EU/ :YJ%,(t):G)N(t)dxdt], (3.2.2)
T3 0o JT3

where we have O (1) = (V)17 0(r) in view of (3.1.5). Define 3V with 3V (0) =0
by its time derivative:

VO =1-M":Y20): (3.2.3)
and set 3y = 7y 3. Then, we perform a change of variables:
YN(@) =0O@)—o3n() (3.2.4)

and set Yy = xy Y. From (3.2.2), (3.2.3), and (3.2.4), we have

1 1
8|0 [ VRionds+ 3 [l
T3 2 Jo b

1 .
ZEEUO ||TN(t)||iI)}dt]—ozN, (3.2.5)

where the divergent constant o is given by

o2 1
an = 7]EUO ||3N(t)||il}dt] — 00, (3.2.6)

as N — oo. The divergence in (3.2.6) can be easily seen from the spatial regularity 1 —
eof 3y()=(1—-A)" :YI%,(I): (with a uniform bound in N € N). See Lemma 3.1.2.

In view of the discussion above, we define RY, as in (1.2.10), which removes
the divergent constant o in (3.2.5). Then, from (1.2.12) and the Boué-Dupuis vari-
ational formula (Lemma 3.1.1), we have

1 1
—logZy = Oierg IEJ[RX,(Y + 0) + 5/0 ||9(z)||§§dz} (3.2.7)

for any N € N. By setting

1 1
Wy (0) = E[RX,(Y + 0) + 5/ ||9(t)||22 dzi|, (3.2.8)
0 X
it follows from (1.2.9) with y = 3, (1.2.10), (3.2.1), (3.2.5), and Lemma 3.1.2 (ii) that
Wy (0) = E[—U/ Yn©%dx — 3] ©3 dx
T3 3 T3

3

Lt
+A +§/0 ||TN(t)||2)%dt]

(3.2.9)

/11*3(:)]1%: +2YNOpN + @i,)dx
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We also set
Tv =Ty =ayT¥(1) and Iy =3In()=anv3¥(D).  (B2.10)
In view of the change of variables (3.2.4), we have
On =Ty +ony3y = Tn +03y. ie 3y :=7nN3N. (3.2.11)

Namely, the original drift 6 in (3.2.7) depends on Y. By the definition (3.2.3) and
(3.2.10), 3w is determined by Yy . Hence, in the following, we view YV as a drift
and study the minimization problem (3.2.7) by first studying each term in (3.2.9)
(where we now view Wy as a function of TN ) and then taking an infimum in TV ¢
H, where H! is as in (3.1.3). Our main goal is to show that Wy (Y) in (3.2.9) is
bounded away from —oo, uniformly in N € N and TN e H}l.

Remark 3.2.1. In this paper, we work with the cube frequency projector my =
5 defined in (1.2.5), satisfying 7% = 7n. In view of (3.2.10) and (3.2.11), we
have 3 ~ = 3n. Nonetheless, we introduce the notation S N in (3.2.11) to indicate
the modifications necessary to consider the case of the smooth frequency projector
oo™ defined in (1.4.2), which does not satisfy (7 yr°°™)? = 75, This comment
applies to the remaining part of the paper.

We first state two lemmas whose proofs are presented at the end of this section.
While the first lemma is elementary, the second lemma (Lemma 3.2.3) requires much
more careful analysis, reflecting the critical nature of the ®3-measure.

Lemma 3.2.2. Let A > 0and0 < |o| < 1. Then, there exist small ¢ > 0 and a constant
¢ > 0 such that, for any § > 0, there exists Cs > 0 such that

/W YnNORdx| S 1+ CsllYnIL ) + SITw 32 + 8N 70 + 13w g1

(3.2.12)
[, Ohdx] £ 1+ ITWIG + 1Tl + 130 R G2.13)
and
3
A/ (:Yg:+2YNOy + OF)dx
T3
A 3
> 51 @ty + YR)aa| —sitw,
T-
3
—Ca,a{ /T LY dx +||YN||;_5_S+||3N||%M}, (3.2.14)

uniformly in N € N, where Oy = Ty + ong asin (3.2.11).
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The next lemma allows us to control the term || Y ||22 appearing in Lemma 3.2.2.

Lemma 3.2.3. There exists a non-negative random variable B(w) with E[B?] <
C, < oo for any finite p > 1 such that

3
T3(2YNTN +Yy)dx| + [ TNlI7 + Bw), (3.2.15)

6
ITwlz2 <

uniformly in N € N.

By assuming Lemmas 3.2.2 and 3.2.3, we now prove the uniform exponential
integrability (1.2.13) and tightness of the truncated @g-measures ON .

Uniform exponential integrability. In view of (3.2.9) and Lemma 3.2.3, define the
positive part Uy of Wy by

. A S B
uN(TN)=E[3‘A3(2YNTN+T3V)dx +§/0 IITN(t)||12LI}dt:|. (3.2.16)

As a corollary to Lemma 3.1.2 (i) with (3.2.3), we have, for any finite p > 1,

1
B[I3wIE. ] = [ EIIYR0: 12, Jdr 5 p < o, (3.2.17)

uniformly in N € N. Then, by applying Lemmas 3.2.2 and 3.2.3 to (3.2.9) together
with Lemma 3.1.2 and (3.2.17), we obtain

: A 3
WN(TN) > —Cy + E[(E — C|O’|) ‘/ (ZYNTN + lev)dx
T3

1 L,
+ (5 -elot) [ 1T¥ o]

1 .
> —C+ 5 Un(TY), (3.2.18)

for any 0 < |o| < 0y, provided A = A(op) > 0 is sufficiently large. Noting that the
estimate (3.2.18) is uniform in N € N and TV € H!, we conclude that

1 .
inf inf Wy(YV)> inf inf —Cy + —Un (TN} > —Cy > —o0.
NeN YNeH)} NeN YN cH} 10

(3.2.19)
Therefore, the uniform exponential integrability (1.2.13) follows from (3.2.7), (3.2.8),
and (3.2.19).

Tightness. Next, we prove tightness of the truncated @%—measures {pN}NeN. Al-
though it follows from a slight modification of the argument in our previous work [54,
Section 6.2], we present a proof here for readers’ convenience.



Construction of the Qg-measure in the weakly nonlinear regime 36

As a preliminary step, we first prove that Zx in (1.2.12) is uniformly bounded
away from O:

inf Zy > 0. (3.2.20)
NeN

In view of (3.2.7) and (3.2.8), it suffices to establish an upper bound on Wy in (3.2.9).
By Lemma 2.1.1 and (3.2.11), we have

3

< 3 3
< IIYNllf_%_,H@NIIH%HS

[ 2YNOpndx
T3

S+ IIYNIIQ_% 3w lei— + 1T Nl

Thus, we have

3
A

/3(:Y1%: +2YNON + OF )dx
T

sl+||:Y£:||%,178+||YN||;1 + 138 1—e + TN 15 (322D

2—8

Then, from (3.2.9), Lemma 3.2.2, and (3.2.21) with Lemma 3.1.2 and (3.2.17), we
obtain
1 c
Cinf Wy <1+ inf E[(/ ||‘rN(z)||§{ldz) } <1
TN eH]} TN eH} 0 x
by taking TV = 0, for example. This proves (3.2.20).

We now prove tightness of the truncated CDg—measures. Fix small ¢ > 0 and let
BrR CH —3-¢ (T3) be the closed ball of radius R > 0 centered at the origin. Then,
by Rellich’s compactness lemma, we see that Bg is compact in H _%_28(71“ 3). In the
following, we show that given any small § > 0, there exists R = R(6) > 1 such that

sup pn(BR) <. (3.2.22)
NeN

Given M > 1, let F be a bounded smooth non-negative function such that

<3
(3.2.23)

> R.

B
2
I
2
Then, from (3.2.20), we have
pr(By) = 25! [ ORI gy

< / e FOO-RY W g, = 7 (3.2.24)
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uniformly in N > 1. Under the change of variables (3.2.4) (see also (3.2.5)), define
R, (Y + YN +03n) by

ﬁ;v(Y+TN+03N)=—3/ S E dx—o/ YN®§de—§/ @3 dx
3 T3 T3 3 T3

3

+A4 , (3.2.25)

/T3(: Yg:+2YNOy + OF)dx

where Oy = Yu + 03y with 3y = 7wy 3y as in (3.2.11). Then, by (3.2.24) and
the Boué—Dupuis variational formula (Lemma 3.1.1), we have

—logZy = inf IE[F(Y + YN +03w)
YN eH}

~ 1 [t .
+ R + 7YY +03n8) + 5/ ||TN(z)||§ndt].
O X
(3.2.26)

Since Y + 03N € H<», it follows from Lemma 3.1.2, (3.2.17), Chebyshev’s
inequality, and choosing R > 1 that

R
N
p(17 + 7V 4 o3ml, 1> 5)

2
R R
= P(IIY +o3nll, -1 > Z) - IP’(||TN||H1 > Z)
1 16
<5+ mEITYIZ,] (3.2.27)

uniformly in N € N and R > 1. Then, from (3.2.23), (3.2.27), and Lemma 3.1.2, we
obtain

E[F(Y + TV +03x)] = ME|

5%}]

1{||Y+TN+03N||
H

1
e
M 16M N2
27_ R2 E[”T ”H;]
M 1 1
e ) YN 0|3, dt |, 3.2.28
= [t oRa]. e

where we set M = é R? in the last step. Hence, from (3.2.26), (3.2.28), and repeating
the computation leading to (3.2.19) (by possibly making oy smaller), we obtain

—logZN

%

M . po N 1 ! N 2
7+TN12€HLE[RN(Y+T +03N)+Z/O 1T @)%, dt
M

—, 3.2.2
4 (3.2.29)

v
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uniformly N € Nand M = 6—14R2 > 1. Therefore, given any small § > 0, by choos-
ing R = R(6) > 1 and setting M = 6L4R2 > 1, the desired bound (3.2.22) fol-
lows from (3.2.24) and (3.2.29). This proves tightness of the truncated @g—measures
{PNINeN.

We conclude this section by presenting the proofs of Lemmas 3.2.2 and 3.2.3.

Proof of Lemma 3.2.2. From (2.1.5), (2.1.6), (2.1.4), and (2.1.3) in Lemma 2.1.1 fol-
lowed by Young’s inequality, we have

[N Yy ©%dx

SNy (P e (1N ez + 13w lher—) + 13w 12 )

SNl -3 1ON ], 12 1ON 2

) )
S ey (002 NN DT (I D2 + I3 lher) + 13 1)
ST+ GlYnIL 4 + SIS + 81Tl + 13N lIGi— (3.2.30)

which yields (3.2.12). As for the second estimate (3.2.13), it follows from Sobolev’s
inequality, the interpolation (2.1.3), and Young’s inequality that

3 3
/WT?vdx < ||TN||Z% SN ILICN I S IS + 1PN (7. (3231)
while Holder’s inequality with (2.1.4) shows
[ 3 3wax| | [ tuFhax| +| [ Bhdx| < 14 1TNIE + 13011
T3 T3 T3
Note that, given any y > 0, there exists a constant C = C(J) > 0 such that
J ’ J
Z;aj > §|a1|y—C(Z;|aj|y) for any a; € R. (3.2.32)
j= Jj=

See [54, Section 5]. Then, from (3.2.32) and Cauchy’s inequality, we have

3

A / (YR :+2YNOy + O )dx
T3

—CA{‘/ YR dx
T3

/ Ty 3ndx
T3

3 3

3
> +lof?

fTs QYN YN +TR)dx

/ Yn3ndx
’]1‘3

/T3 g%\,dx

3
+ o) +0°

]

3

A
=S| [ ey + Thyd| s
T

/T3:Y§,: dx

This proves (3.2.14). This completes the proof of Lemma 3.2.2. |

3
-G ISy, + 13N I8
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Next, we present the proof of Lemma 3.2.3.

Proof of Lemma 3.2.3. If we have

It lI72 > /3 YnYndx|, (3.2.33)
T
then, we have
3 3
ITw 5. = (/ T}"vdx) ~ / (YN Yw + Y3)dx| | (3.2.34)
T3 T3
which shows (3.2.15). Hence, we assume that
TN 72 < V Yn Ywndx (3.2.35)
T3

in the following.
Given j € N, define the sharp frequency projections I1; with a Fourier multiplier
Lgjnj<2y when j = 1 and 1(5/-1), <o/} When j > 2. We also set

J
Moj=) T and I.; =Id-T;.
k=1

Then, write Yy as

[e.¢] oo
Y=Y Ty =Y (AI,;Yy +w). (3.2.36)
j=1 j=1

where A; and w; are given by

(Yn,I; YN) )
)tj = ”HjYN”iZ , lf”H]YN”LZ #0’ and wj = HjTN—)ijjYN.
0, otherwise,
(3.2.37)
By definition, w; = I1;w; is orthogonal to T1; Yy (and also to Y ) in L?(T3). Thus,
we have

o0

TN 172 =D (AT, YN 72 + lwill7.). (3.2.38)
j=1
o0
_ X X 2
/T3 YnYndx = ZAJ ITL; Y 2,. (3.2.39)

Jj=1
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Hence, from (3.2.35), (3.2.38), and (3.2.39), we have

o0
oI YNl7, S : (3.2.40)
j=1

[o¢]
Y AT YN,
j=1

Fix jo = jo(w) € N (to be chosen later). By Cauchy—Schwarz’s inequality and
(3.2.37), we have

o0
> LI YN,

J=jot+1

o b | 4
s(zxizzfnﬂjmniz) ( > 2‘21||H1YN||22)

J=1 J=Jjo+1

< (Zzzfunjmniz) ( > 2—21||n,-YN||iz>

J=1

J=Jjo+1
~ YNl TS o Yo | =1 (3.241)

On the other hand, it follows from Cauchy—Schwarz’s inequality, (3.2.40), and
Cauchy’s inequality that

1

Jo 2
( IIHjYNIIiz)
j=1

% Jjo %
(Z ITT, Yoy ||zz)
J=1

(S

o0
< (ZA?HH;YNM,%Z)

J=1

Jo
> AT, YN 2,
j=1

o0
> LI YN 2,

Jj=1

o0
> AT, YN 2,

Jj=1

IA

C

IA

+ C/||n§j0YN||§2. (3.2.42)

1
2
Hence, from (3.2.41) and (3.2.42), we obtain

o0
> LT, YN,

Jj=1

SNl s o Ya g1 + 1Mo Y llzo.  (3:243)

Since Yy is spatially homogeneous, we have
IS o YN 13- = /T2 (V) 'S, YN )% dx + E[((V) s j, YN)?]. (3.2.44)

Recalling (3.1.2), we can bound the second term by

x5 ()
(n)*

5jo = E[(V) ' joYn)*] = > <270, (3.2.45)
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Let Zy,j, = (V) ', Yn. Proceeding as in the proof of [63, Lemma 2.5] with
Lemma 2.3.2, we have

#[(f, 2 or) |

- /TWBE[HZ(ZN,jO(x);ajO)Hz(zN,jo(y);ajo)]dxdy

X (1) (i (n2)
= 2 Z % en1+n2(x y)dxdy

ni,nz 73 ) (n2>4 Tg T

|n; |>270

4
-2 ) AN osio (3.2.46)

Now, define a non-negative random variable B;(w) by

1
[e] 2\ 2
Bi(w) = (Z 94j (/T3 Z3 dx) ) ) (3.2.47)

J=1

By Minkowski’s integral inequality, the Wiener chaos estimate (Lemma 2.3.1), and

(3.2.46), we have
4j 2 .
<p ( E 24 / Lyt dx

for any finite p > 2 (and hence for any finite p > 1). Hence, from (3.2.44), (3.2.45),
and (3.2.47), we obtain

2

2
SpP <o (3.2.48)
L2(Q)

ITTs o YN 12— S 2720 By (w) +277%. (3.2.49)

Next, define a non-negative random variable B;(w) by

/T3 ((T1;Yn)?: dx

oo

Br(w) = Z

Jj=1

Then, a similar computation shows
Mes ¥l = [ :(Majy s dx + B[]
< By(w) + 27° (3.2.50)

and E[BY] < C, < oo for any finite p > 1.
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Therefore, putting (3.2.35), (3.2.39), (3.2.43), (3.2.49), and (3.2.50) together,
. 2
choosing 270 ~ 1 4+ || Tn || 131, , and applying Cauchy’s inequality, we obtain

3 3

o0
=D LI Yy 2,
=0
. 3 3. .
< (27¥0B1 ()2 +2727)|| YN |3, + B3 (w) + 2370

SN, + B (@) + B3 (@) + 1, (3.2.51)

1wl < '/ Yy Twdx
T3

where the implicit constant is independent of N € N. This proves (3.2.15) in the
case (3.2.35) holds. This concludes the proof of Lemma 3.2.3. ]

Remark 3.2.4. From the proof of Lemma 3.2.3 (see (3.2.33) and (3.2.51)) with
Lemma 3.2.3, we also have

E|: / YNTNdX
T3

where Uy is as in (3.2.16).

3
] <E[ITw ]S + Iwl2.] + 1

< Uy +1, (3.2.52)

3.3 Uniqueness of the limiting <I>§ -measure

The tightness of the truncated Gibbs measures {px } yeN, proven in the previous sec-
tion, together with Prokhorov’s theorem implies existence of a weakly convergent
subsequence. In this section, we prove uniqueness of the limiting <I>g—measure, which
allows us to conclude the weak convergence of the entire sequence {pn } ven. While
we follow the uniqueness argument in our previous work [54, Section 6.3], there are
extra terms to control due to the focusing nature of the problem under consideration.

Proposition 3.3.1. Let {p 1 Yoy and{p N2 Vo betwo weakly convergent subsequen-

ces of the truncated CDg—measures {oN}neN defined in (1.2.11), converging weakly
10 pV and p@ as k — oo, respectively. Then, we have p™ = p@.

Proof. We break the proof into two steps.

Step 1. We first show that

lim Zy) = lim Zyo, (3.3.1)

k—o00 k—o00

where Z is as in (1.2.12). By taking a further subsequence, we may assume that
Nk1 > Nkz, k € N. Recall the change of variables (3.2.4) and let R}, (Y + YN +03n)
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be as in (3.2.25). Then, by the Boué-Dupuis variational formula (Lemma 3.1.1), we
have

: po Ny U ong oo 2
—logZy; = TNI;:HLE[RN;? (Y +07 +03y,) + 5/0 ™ (Z)”H%dz]
(3.3.2)
for j = 1,2 and k € N. We point out that ¥ and 3 do not depend on the drift TV
in (3.3.2).
Given § > 0, let IN % be an almost optimizer for (3.3.2) with j = 2:

1
~ N2 1 . N2 2
—logZy> = E[ijkz(y + XY +03y2) + 5/0 | k(t)”Hxldt] —-§8. (33.3)
By setting INkz = nNkzIng, we have
JTNIEIN]g = INI% (3.34)

since Nk1 > Nkz. Then, by choosing TNIE = IN%, it follows from (3.3.3) and (3.3.4)
that

—logZN]i —|—10gZN%

~ 1 [t .
< inf ]E[ijlg(Y%—TN/ngo?,Nkl)%—E/o||TN’§(I)H§1}dt}

TNk em}

_IE[I?;]?(Y +YNE +03ng) + %/01||IN13(’)H§1}0‘1[} +6
< E[ﬁ;kl (Y + Xy +03) + 5 /O l ing(t)Hiﬂdt]

_]E[ﬁjvlg(Y + YR +03N]3) + %/01||IN£(’)H12‘I}C”} +6
<E[R(Yyy + Xy2 +03u) = RO (Y2 + X2 +0352) | 46, 335)

where SN]{ =Ty 3ng is as in (3.2.11). Here, R? is defined by

1$°(Y+T+03)=—o/ Y@de—if ®%dx
T3 3 T3

3

+ A4 , (3.3.6)

/ (:Y?: +2YO + ©%)dx
T3

where ® = T 4 0.3.
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We now estimate the right-hand side of (3.3.5). The main point is that in the
difference

E[R°(Yy) + Xy +03y)) = R (Y2 + Tp2 +03y2) |, (33.7)

we only have differences in Y -terms and 3-terms, which allows us to gain a negative
power of N kz The contribution from the first term on the right-hand side in (3.3.6) is
given by

_0E|:/T3(YNk - Yng)Ii,]gdx]
_02E|:/T3(YN]: — YN,?)(le,f + USNé)gNgdx]
_02E|:/T3 YNkz(gNkl — gng)(ZINIg + UgNkl + of))ng)dx}. (3.3.8)

. N2
Let Uy = uN%@Nk) be as in (3.2.16) with Ty = Y2 and TV = Y. Then,

from Lemmas 3.1.2 and 3.2.3, we have
E[[nz 5 + 1Tazl72] S 1+ Uz

Now, proceeding as in (3.2.30) together with Holder’s inequality in @ and Young’s
inequality, we bound the first term in (3.3.8) by

EU“W;"N%“—%ﬂ”TNﬂuz ”TN4P+R]

32 1+2
||YNk N lez “L3 498_2_F “Tng leﬁ LEZ HTN/? ”zﬁ,Hz
TG O s o W g
S N1+ Upz), (339)

where the implicit constant is independent of Ng, k € N. Here, the second inequality
follows from a modification of the proof of Lemma 3.1.2 (i) and noting that the Four-
ier transform of Y 1= Yng is supported on the frequencies {|n| = N kz}, which allows

us to gain a small negative power of N kz Note that the implicit constants in (3.3.9)
depend on A > 0 and 0. However, the sizes of A and |o| do not play any role in the
subsequent analysis and thus we suppress the dependence on A and o in the follow-
ing. The same comment applies to Sections 3.3 and 3.4.

The second and third terms in (3.3.8) and the second term on the right -hand side
of (3.3.6) can be handled in a similar manner (with (3.2.17) to control the 3 N} -terms).

As a result, we can bound the first two terms on the right-hand side of (3.3. 6) by

(N (C(Yyp Yoz By Bw2) + Unz) S (VD14 Uy2)  (33.10)
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for some small a > 0, where C (Y, i Yng, 3N 1 3 N,f) denotes certain high moments

of various stochastic terms involving YN jand 3 N/ J = 1,2, which are bounded by
. k k

some constant, independent of N ]g , j = 1,2, in view of Lemma 3.1.2 and (3.2.17).

It remains to treat the difference coming from the last term in (3.3.6). By Young’s
and Holder’s inequalities, we have

i

3

5 5 \2
/1F3(:Y1$]33+2YN,§(IN,§ +03n) + (L2 +03y;) )dx

= 5 \2
/;r-?(:YAz’/?: +2¥y2 (IN,f + 03N,§) + (IN,f + U3N,3) )a’x

5{ /W(:YAZ,/%:—:YAZﬂ:)dx

k

3]
L3

/1r3 Yy2 (gNkl - gNkz)dx

Lg)}

= 5 \2
/T3(:Y1\2/k1 42V (Lyz +03y) + (L2 +03n;) )dx

°

/T3(szkl = Yy2) X y2dx

L3

[E3(YN1< —Yng)gNkldx +

L3

.

L3

* H/qﬁ(gNlé _SNI?)(ZIng +0§N}l +O'§N]§)dx

d

2

L3

+

= = \2
/1r3(:Y1‘2’/?: +2V 2 (X2 +0352) + (L2 +0352) )dx

2
L;j)}

=:IxIL (3.3.11)
We divide I into two groups:

1=(1— )+‘
L

=11 + L. (3.3.12)

/T3(YN,g - YN,?)IN,gdx

/T3(YN,§ - YN,?)IN,gdx .

By the definition (1.2.5) of the cube frequency projector 7y = nf\}‘be, we have

/T3(YN —Yng)INkzdxASang(YN —Yy2) - Xy2dx =0 (3.3.13)

and thus I, = 0.
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By Lemma 2.1.1, Holder’s inequality in @, and Young’s inequality, followed by
Lemma 3.2.3 with (3.2.16), we can estimate I, in (3.3.12) by

LS|, Y&:HL3 o
+] Yyi—Yy2 HL6 e i ”3Nk g er-e
1wzl ot I3m = Bnzllger—

+ [ 3n1 = Sw2lLs e
X (HIN2 HLS)L_% + |’§N,§ ”Lga}—s + HgN,f ”Lgt’}—g)
SNDHTA(1+ ‘ung)%, (3.3.14)

where we used Lemma 3.1.2 and (3.2.17) in bounding the terms involving YN_,-
k

and §N,- =TTyJ 3Nj. As for IT in (3.3.11), it follows from (3.2.52), Lemma 3.2.3,
k K Nk
and (3.2.16) that

~ ~ 2
/qr3(:Y1i;{ : +2YN]_<,-(IN]3 +03N1{) + (Lv,f +03NA{) )dx

Yy X dx
/Ir? G L3

w

L

<1+

+ | Xn2 ||22,L§
<1+ ‘uflz. (3.3.15)
k

From (3.2.18), (3.2.8), (3.2.9), (3.2.25), and replacing IN/? by 0in view of (3.3.2),
we have

sup Uy (T N" )
keN

1
< 10C{ + 10 sup IE[R (Y + XM 4 63,2) +1/ ||iNk2(t)||§,1dt]
keN K 2 Jo ¥

S48+ supE[ w2 (Y +0+03N2)]
keN k K
<1 (3.3.16)
Hence, from (3.3.13), (3.3.14), (3.3.15), and (3.3.16), we obtain that
I- H<(N )% —0, 3.3.17)

as k — oo. Therefore, from (3.3.10) and (3.3.17), we conclude that

E[RO(YN,g +Xy2 +03N;i) — R<>(YN]3 + X2 +03N§)] -0, (3.3.18)
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as k — oo. Since the choice of § > 0 was arbitrary, it follows from (3.3.5) and (3.3.18)
that
lim Zy1 > lim ZNz (3.3.19)

k—00 k k—00
By taking a subsequence of {Nkz}keN, still denoted by {Nkz}keN, we may assume
that N;' < NZ. By repeating the computation above, we then obtain

lim ZNL < l1m ZNk' (3.3.20)

k—o0

Therefore, (3.3.1) follows from (3.3.19) and (3.3.20).

Step 2. Next, we prove p() = p®_ This claim follows from a small modification of
Step 1. For this purpose, we need to prove that for every bounded Lipschitz continu-
ous function F : €7199(T3) — R, we have

lim /exp(F(u))del > lim /exp(F(u))dez
k—o00 k k—00 k

under the condition N;! > N2, k € N (which can be always satisfied by taking a
subsequence of {Nk1 teen). In view of (1.2.12) and (3.3.1), it suffices to show

lim sup|:— log(/ exp(F(u) — ;’12 (u))du)

k—o0
+ log(/ exp(F (u) — R;vz(u))du):| <0. (3.3.21)
k
By the Boué-Dupuis variational formula (Lemma 3.1.1), we have

- 1og(/ exp(F (u) — R;II{ (u))du)

= inf JE[—F(Y+TN/?+03N,»)
TNl'éeH}l «

1 1 . i
+ RS, (Y + 1M +o3yi)+ 5/ | TN (r)||i11dz],
0 X
(3.3.22)

where R<> Y+ TNk + 03N,) is asin (3.2.25). Given § > 0, let TNk be an almost
optimizer for (3.3.22) with j = 2:

- 1og(/ exp(F(u) — R;}v]? (u))du)

> IE[—F(Y + XY +03y2)

N2 1 1 ng 2
F R (r + T 4 03,2) + 5/ 12V @2, dr |~
O X
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Then, by choosing TV = Ing = JTnging and proceeding as in (3.3.5), we have

— log(/ exp(F (u) — R;,kl (u))d,u) + log(/ exp(F(u) — R;)V,? (u))dp,)
~ 1. 5
+ ijkl (Y +Xy2 +0351) + 5/0 HIN]?(t)HH}dt}
- IE[—F(Y + V4 o3n2)
~ 2 1 (Y . N2 2
+ R?vlg(Y + 1N +03ng) + 5/0 ||I k(z)HH)}dt:| +4

< Lip(F) -E| |22 = (3, = 3w2) le-100]

+ E[EO(YN,Q + X2+ UgN,g) - ﬁo(YN,% + Xy + UgN,f)] +34,
(3.3.23)

where nf\; =Id—ny and R®isasin (3.3.6). We can proceed as in Step 1 to show that
the second term on the right-hand side of (3.3.23) satisfies (3.3.18). Here, we need to
use the boundedness of F' in showing an analogue of (3.3.16) in the current context
(with an almost optimizer IN % for (3.3.22)).

Finally, we estimate the first term on the right-hand side of (3.3.23). Write

E[”ﬂlt]glle —0o(3n —3n2) ”8*100]
SB[ 0 fesoo| + E[ 13w ~ 3wz le-o |

A standard computation with (3.2.3) shows that the second term on the right-hand
side tends to 0 as k — oo. As for the first term, from Lemma 3.1.2 and (an analogue
of) (3.3.16), we obtain

1
B[z X feroo] £ VDT |5y < N2 (s1p Uz)” = 0,

as k — oo. Since the choice of § > 0 was arbitrary, we conclude (3.3.21) and hence
pM = p@_ This completes the proof of Proposition 3.3.1. n

Remark 3.3.2. In the proof of Proposition 3.3.1, we used the orthogonality rela-

tion (3.3.13) to conclude that I, = 0. While the same orthogonality holds for the
ball frequency projector JTR?” in (1.4.1), such an orthogonality relation is false for the

smooth frequency projector nls\‘,“""th in (1.4.2). As seen from the proof of Lemma 3.2.3
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and the uniform bound (3.3.16) on U N2 (IN’g), the quantity I, in (3.3.12) is critical
(with respect to the spatial regularity/integrability and also with respect to the w-
integrability). From Remark 3.2.4 and (3.3.16), we see that the quantity I, is bounded,
uniformly in k € N. In the absence of the orthogonality (3.3.13), however, we do not
know how to show that this term tends to 0 as k — oo in the case of the smooth fre-
quency projector n?{,“""‘h. We point out that the same issue also appears in the proofs

of Propositions 4.1.1 and 6.3.3 in the case of the smooth frequency projector nf\‘,no"‘h.

3.4 Singularity of the <I>§’ -measure

We conclude this chapter by proving mutual singularity of the ®3-measure p, con-
structed in the previous sections, and the base Gaussian free field  in (1.2.2). In [4,
Section 4], Barashkov and Gubinelli proved the singularity of the <I>‘3‘—measure by
making use of the shifted measure. In the following, we follow our previous work [54]
and present a direct proof of singularity of the Cbg—measure without referring to a shif-
ted measure. See also Appendix A, where we construct a shifted measure with respect
to which the @g—measure is absolutely continuous.

Proposition 3.4.1. Let Ry be as in (1.2.9) with y = 3, and € > 0. Then, there exists
a strictly increasing sequence { Ny }xeny C N such that the set

S :={ue H 35(T3): lim (log Ny)~ % Ry, (u) = 0}
k—o00
satisfies
uw(S)y=1 bur p(S)=0. (3.4.1)

In particular, the @g-measure p and the massive Gaussian free field p in (1.2.2) are
mutually singular.

Proof. From (1.2.9) with y = 3, the Wiener chaos estimate (Lemma 2.3.1), Lem-
mas 2.3.2 and 2.2.1, we have
/ ‘uy s dx
T3

/:u?v:dx
T3
/:u%\,:dx
T3

/ uy s dx
T3 L2(w) L2(w)

S Y R (Y ) ) )
ni+na+n3=0 ni+nx=0
n;eNQ n;eENQ

S ), (m)Pr—m)T +15logN,

|n1l,ln—ny|SN

2 6

” Ry (u) ||1%2(M) <

a

LO6(u)
6

L2 ()
2
<

~

a

3
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where Q denotes the cube of side length 2 in R? centered at the origin as in (1.2.7).
Thus, we have

. _3 . _1
Aim (log N)"3|[Ry (w)llz2,) S lim (log N)™3 = 0.
Hence, there exists a subsequence such that
lim (log Ni)™# Ry, (u) = 0,
k—o0

almost surely with respect to u. This proves u(S) = 1in (3.4.1).
Given k € N, define G (u) by

Gr(u) = (log No) ™3 Ry, (). (3.4.2)

In the following, we show that e%+®) tends to 0 in L'(p). This will imply that there
exists a subsequence of G (1) tending to —oo, almost surely with respect to the <I>§-
measure p, which in turn yields the second claim in (3.4.1): p(S) = 0.

Let ¢ be a smooth bump function as in Section 2.1. By Fatou’s lemma, the weak
convergence of pys to p, the boundedness of ¢, and (1.2.11), we have

/ eCc M dp(u) < lim inf / ¢(GkT(u))eGk(”)dp(u)

= liminf lim ¢(GkT(u))eGk(“)dpM (u)

K—o00o M —o00

< lim [ ¢%*®dpy(u) =27 lim eG"'(")_RX/!(”)d/L(u)
M —o0 M —o0

=ZzZ! Jim Car e, (3.4.3)

provided that limps o0 Cprk exists. Here, Z = limps o0 Zpy denotes the partition
function for p.

Our main goal is to show that the right-hand side of (3.4.3) tends to 0 as k — co.
As in the previous sections, we proceed with the change of variables (3.2.4):

T (1) = 0(t) — o 3m ().

Then, by the Boué-Dupuis variational formula (Lemma 3.1.1) and (3.4.2), we have

—logCpyr = inf IE|:—(10g Nk)_%RNk Y +TM +63u)
T™eH)}

~ |
R+ T o3+ [T O]
0 X

= Ailanl Wagx (TM), (3.4.4)
€ a
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where I?X, is as in (3.2.25). In the following, we prove that the right-hand side (and
hence the left-hand side) of (3.4.4) diverges to co as k — oo.

Proceeding as in Section 3.2 (see (3.2.18)), we bound the last two terms on the
right-hand side of (3.4.4) as

~ 1t 1
E[RXJ(Y + M +03m) + 5 / ||TM(r>||§,1dz] > —Co+ 15Un. (45
0 X
where Upsr = Upr (TM) is given by (3.2.16) with Yy = s Y™ and YN = TM:

A

ot M ()2
+ 5/0 1T (t)||H)£dti|.
(3.4.6)
Next, we study the first term on the right-hand side of (3.4.4), which gives the
main (divergent) contribution. From (1.2.9) with y = 3, we have

/ (2YM71'MTM + (JTMTM)z)dX
T3

o
Ry, (Y +TM 4+ 634) =_§/T3 YR, dx—o/T3 Yy, : On,dx

o
— Yy, O%, dx — — v d
G/T3 N, O, dx 3/11‘3®ka

/T3(:Y,$k: +2Yy, On, + O}, )dx

= 14+ 0+M+IV+V (3.4.7)

3
+A

for Ny < M, where Oy, is given by
On, = 1N 0 = n YM + o7y, 3. (3.4.8)

As we see below, under an expectation, the second term II on the right-hand side
of (3.4.7) (which is precisely the term removed by the second renormalization) gives
a divergent contribution; see (3.4.14) below. From Lemma 3.1.2, the first term I on
the right-hand side of (3.4.7) gives 0 under an expectation. As for the last three terms,
we proceed as in Section 3.2 (see also the proof of Proposition 3.3.1) and obtain

IE[I + IV + V]| S C(Yn, . 7N 3m) + Uy, S 1+ Uy, (3.4.9)

where C(Yn, , my, 3m) denotes certain high moments of various stochastic terms
involving Yy, and 7y, 3m and Uy, = Un, (0: 7N, TM) is given by (3.2.16) with
TN = TN = T[NkTMi

A 3
uNk = E[E‘/ 3(2Y1\/k7'[NkT1u + (JTNkTM)z)dX
T3

1 1
+ 5/0 ||8t(nNkTM)(t)||§,}dt]. (3.4.10)
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In view of the smallness of (log Nk)_% in (3.4.4), the second term in (3.4.10)
can be controlled by the positive terms Uy in (3.4.5) (in particular by the second
term in (3.4.6)). As for the first term in (3.4.10), it follows from (3.2.52), mp, ™ —
TN, TM TM for N, < M, and Lemma 3.2.3 with (3.4.6) that

]

]EH/ YN, YM + (my, TM)?)dx
T3

3

< Yy YMdx|  + [low, YIS
/T R o T
M 6 M2

<14+ Uy
for Ny < M. Hence, Uy, in (3.4.10) can be controlled by Uy in (3.4.6):
Un, S 1+ Upy. (3.4.11)
Hence, from (3.4.4), (3.4.5), (3.4.7), (3.4.9), and (3.4.11), we obtain

O 1
Ware (TM) > 5 (log Nk)—iE[/ R @dex} —Cit 5 Un (3412)
T

forany M > N > 1.

Therefore, it remains to estimate the contribution from the second term on the
right-hand side of (3.4.7). Let us first state a lemma whose proof is presented at the
end of this section.

Lemma 3.4.2. We have
1
E[/ (3N(l‘),3M(l))H)1cdti| ~log N (3.4.13)
0

foranyl < N < M, where 3N = JTNSN.

By assuming Lemma 3.4.2, we complete the proof of Proposition 3.4.1. By (3.2.2),
(3.2.3) with 3y, = JTNk3Nk, (3.4.8), Lemma 3.4.2, Cauchy’s inequality (with small
go > 0), and Lemma 3.1.2 (see (3.1.7)), we have

1
0]E|:/;r3 :Yfzk: @dexi| = a]E|:/0 /1r3 :YAz,k(z); @Nk([)d,]
1 . - .
ZOZEU (3Nk(”’3M(f>>H;df} +0E[ / (3Nk(t),TM(t))H}dt:|
0 0
! 1
> clog Ni —801E|:/ | :Yf,k(t): 112 _ldt:| — C80E|:/ ||TM(I)||i11dt:|
0 x o 1

>

1
log Ny — CSOE[/ ||TM(t)||§11dt] (3.4.14)
0 X

NS
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for M > Ny > 1. Thus, putting (3.4.4), (3.4.12), and (3.4.14) together, we have
1
—logCrpx > inf Je(log Np)3 — Co + —Ups b > c(log Np)3 — Co (3.4.15)
’ TMecH) 40

for any sufficiently large & >> 1 (such that N; >> 1). Hence, from (3.4.15), we obtain
Crx S exp(—c(log N)¥) (3.4.16)

for M > N > 1, uniformly in M € N. Therefore, by taking limits in M — oo and
then £k — oo, we conclude from (3.4.3) and (3.4.16) that

lim / e W dpu) =0
k—o00
as desired. This completes the proof of Proposition 3.4.1. |

We conclude this chapter by presenting the proof of Lemma 3.4.2.

Proof of Lemma 3.4.2. For simplicity, we suppress the time dependence in the fol-
lowing. From (3.2.3), we have

v =m > Ynm)Yn(n2) (3.4.17)
ni,no€Z3
n=n1+ny#0
for n # 0. On the other hand, when n = 0, it follows from Lemma 2.3.2 that
~ ~ 2
E[BvOPT=E[( X (vl -)2) s X ™51, 6418)
I’l]EZ3 n1€Z3

nieNQ

where Q is as in (1.2.7). Hence, from (3.4.17) and (3.4.18), we have
1 )
E[/O (3w (), 3M(l))H)1cdti|

- /01 E[ Z (n)zéN(n,t)%]dt

nez3

1 ¢ —
=/0 E[ 3 )3we.03u.0]ar + 0.

neZ3\{0}

We now proceed as in the proof of (3.1.7) in Lemma 3.1.2 (i). By applying (3.2.3)
and Lemma 2.3.2, and summing over {|n| < %N, %|n| <|m| < %|n|} (which implies
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|n2| ~ |n|and [nj| < N, j = 1,2), we have

E[ Y 3wn03mn0)]

nezZ3\{0}
_ XN (1) xm (n)
- nGZZ:3 (n>2

XfTa T3H*:[HZ(Y’V(X’t);“"N)ILIz(YN(yJﬁION)]en(y—x)alxdy
xxXLly

_ Z lzXN(”)XM(n) Z X%v(nl))(%v(”h)

_ — yv)dxd
)2 ()2 {n2)2 Jpapy e 0T Ay

nez3 ny.n2€Z3
/2 2 (n)x (n
i) T Sy 1G5 U Y
nez3 (rl) n=nj+ny (n1> (nz)

where yn(n;) is as in (1.2.6). By integrating on [0, 1], we obtain the desired bound
(3.4.13). [



