Chapter 4

Non-normalizability in the strongly nonlinear regime

4.1 Reference measures and the o -finite <I>§ -measure

In this chapter, we prove non-normalizability of the ®3-measure in the strongly non-
linear regime (Theorem 1.2.1 (ii)). In [54], we introduced a strategy for establishing
non-normalizability in the context of the focusing Hartree ®%-measures on T3, using
the Boué-Dupuis variational formula. We point out that, in [54], the focusing Hartree
CIDg—measures were absolutely continuous with respect to the base Gaussian free field
. Moreover, the truncated potential energy R%ﬂr‘ree(u) and the corresponding dens-
ity e RN () of the truncated focusing Hartree CD‘;—measures formed convergent
sequences. In [54], we proved the following version of the non-normalizability of
the focusing Hartree @g—measure:

sup E,,[e RN @] = o0, (4.1.1)
NeN

Denoting the limiting density by e R0 | this result says that the o-finite version
of the focusing Hartree <I>‘3‘—measure:

e_RHurlree(u)dM(u)

is not normalizable (i.e. there is no normalization constant to make this into a prob-
ability measure). See also [61] for an analogous non-normalizability result for the
log-correlated focusing Gibbs measures with a quartic interaction potential.

The main new difficulty in our current problem is the singularity of the <I>§—
measure. In particular, the potential energy Ry, (u) in (1.2.10) (and the correspond-
ing density e RY W) does not converge to any limit. Hence, even if we prove a
non-normalizability statement of the form (4.1.1), it might still be possible that by
choosing a sequence of constants Zn appropriately, the measure Zx,le_RX/(”)d,u,
has a weak limit. This is precisely the case for the <I>‘3‘-measure; see [3]. The non-
convergence claim in Theorem 1.2.1 (ii) for the truncated CDg-measures (see Proposi-
tion 4.1.4 below) tells us that this is not the case for the ®3-measure.

In order to overcome this issue, we first construct a reference measure vg as a
weak limit of the following tamed version of the truncated @g—measure (with § > 0):

dvys(u) = Z;,i; exp(—8F (myu) — Ry (u))dw(u)

for some appropriate taming function F; see (4.1.6). See Proposition 4.1.1. We also
show that F(u), without the frequency projection wy on u, is well defined almost
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surely with respect to the limiting reference measure vs = limy o0 Vy,5. This allows
us to construct a o-finite version of the <I>g—measure:

dﬁS — esF(")dvg = lim Z;]lse(SF(u)e—SF(nNu)—R?V(u)du(u). (412)
N —o0 ?

The main point is that while the truncated @g—measure pN (= vy with 6 = 0) may
not be convergent, the tamed version vy s of the truncated @g-measure converges to
the limit vg, thus allowing us to define a o-finite version of the CIDg—measure. We then
show that this o-finite version pg of the <I>§—measure in (4.1.2) is not normalizable in
the strongly nonlinear regime. See Proposition 4.1.2. Furthermore, as a corollary to
this non-normalizability result of the o-finite version pg of the CDg—measure, we also
show that the sequence {pn}nen of the truncated @g—measures defined in (1.2.11)
does not converge weakly in a natural space' 4(T?3) (see (4.1.3) below) for the ®3-
measure. See Proposition 4.1.4.

We first state the construction of the reference measure. Let p; be the kernel of
the heat semigroup e’2. Then, define the space 4 = A(T?3) via the norm:

3
lullag = sup (¢3]ps *ullL3(r3))- (4.1.3)
0<z<l1

Recall from [45, Theorem 5.3]° (see also [76, eq. (2.41)] and [2, Theorem 2.34]) that
_3
A= By 3 (T?). 4.1.4)

In particular, the space «# contains the support of the massive Gaussian free field
on T3 and thus we have |ju||4 < oo, p-almost surely. See Lemma 4.2.2 below. In
the following, for simplicity of notation, we use + rather than B; i (T3). Moreover,
the notation # is suitable for our purpose, since we make use of the characteriz-
ation (4.1.3) extensively via the Schauder estimate, which we recall now (see for
example [60]):

_o_3¢1_1 _
Ipe % ullacrsy < Capgt™ 2 207D (V) Ul Lo 13 (4.1.5)

forany « > 0and 1 < p < g < oo. From the Schauder estimate (4.1.5) (or directly
from (4.1.4)), we see that W=3:3(T3) C .

Given N € N, we set uy = wyu. Then, given § > 0 and N € N, we define the
measure vy, s by

dvn,s(u) = Zyls exp(=8llun |2 — Ry (w))dp(u) (4.1.6)

'For example, in the weakly nonlinear regime, the support of the limiting @g—measure

constructed in Theorem 1.2.1 (i) is contained in the space #4(T3) D e—i (T3).
2The discussion in [45] is on R¥, but a slight modification yields the corresponding result
onT<.



Reference measures and the o-finite CDg-measure 57
for N € N and § > 0, where RX, isasin (1.2.10) and
Zns = /exp(—8||uN||i) — R?V(u))du(u). 4.1.7)

Namely, vy is a tamed version of the truncated @g—measure pn in (1.2.11). We
prove that the sequence {vy s}nen converges weakly to some limiting probability
measure vg.

Proposition 4.1.1. Let o # 0 and y > 3. Then, given any § > 0, the sequence of meas-
ures {VN s} NeN defined in (4.1.6) converges weakly to a unique probability measure
vs, and similarly Zy s converges to Zs. Moreover, |u| 4 is finite vs-almost surely,
and we have

exp(—(8 — &) [[ull3)

d —
M) = 6 — )2 dvs (1)

dvg(u) (4.1.8)

foré >4 > 0.
This proposition allows us to define a o-finite version of the ®3-measure by
dps = eSMIZ gug (4.1.9)

for any § > 0. Ata very formal level, §|[u||% in the exponent of (4.1.9) and —§ ||un ||
in the exponent of (4.1.6) cancel each other in the limit as N — oo, and thus the
right-hand side of (4.1.8) formally looks like Z(;1 limy o0 e RY (”)du. While this
discussion is merely formal, it explains why we refer to the measure pg as a o-finite
version of the CDg-measure. The identity (4.1.8) shows how vg’s for different values
of § > 0 are related. When § = 0, the expression Zgps would formally correspond
to a limit of e_R?V(”)d;L, but in order to achieve the weak convergence claimed in
Proposition 4.1.1 and construct a o-finite version of the @g—measure, we need to
start with a tamed version (i.e. § > 0) of the truncated @g—measure. For the sake
of concreteness, we chose a taming via the #-norm but it is possible to consider a
different taming (say, based on some other norm) and obtain the same result.

The next proposition shows that the o-finite version pg of the CDg—measure defined
in (4.1.9) is not normalizable in the strongly nonlinear regime.

Proposition 4.1.2. Let 0 > 1 and y > 3. Given § > 0, let vs be the measure con-
structed in Proposition 4.1.1 and let pg be as in (4.1.9). Then, we have

/ldﬁg = /exp(SHuH%)dva = 0. (4.1.10)

Remark 4.1.3. (i) A slight modification of the computation in Section 3.4 combined
with the analysis in Section 4.2 presented below (Step 1 of the proof of Proposi-
tion 4.1.1) shows that the tamed version vg of the @g-measure, constructed in Pro-
position 4.1.1, and the massive Gaussian free field p are mutually singular, just like
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the d>g—measure in the weakly nonlinear regime, constructed in Chapter 3. As a con-
sequence, the o-finite version pg of the @g—measure defined in (4.1.9) and the massive
Gaussian free field p are mutually singular.

(i1) In Appendix A, we show that the limiting @g—measure is absolutely continu-
ous with respect to the shifted measure Law (Y (1) + 0 3(1) + W(1)) in the weakly
nonlinear regime. A slight modification of the argument in Appendix A also shows
that the tamed version vs of the ®3-measure constructed in Proposition 4.1.1 and
the o-finite version ps of the @g—measure in (4.1.9) are also absolutely continuous
with respect to the same shifted measure, even in the strongly nonlinear regime. See
Remark A.3.1. This shows that the measure pg in (4.1.9) is a quite natural candidate
to consider as a o-finite version of the @g-measure.

As a corollary to (the proofs of) Propositions 4.1.1 and 4.1.2, we show the fol-
lowing non-convergence result for the truncated ®3-measure py in (1.2.11).

Proposition 4.1.4. Let 0 > 1, y > 3, and A = A(T3) be as in (4.1.3). Then, the
sequence {pN}NeN Of the truncated CDg-measures defined in (1.2.11) does not con-
verge weakly to any limit as probability measures on 4. The same claim holds for

any subsequence {pn, }keN-

In Section 4.2, we present the proof of Proposition 4.1.1. In Section 4.3, we then
prove the non-normalizability (Proposition 4.1.2). Finally, we present the proof of
Proposition 4.1.4 in Section 4.4.

4.2 Construction of the reference measure
In this section, we present the proof of Proposition 4.1.1 on the construction of the
reference measure vg. We first establish several preliminary lemmas.

Lemma 4.2.1. Let the A-norm be as in (4.1.3). Then, we have

<
el < Nl
Proof. This is immediate from the Schauder estimate (4.1.5). ]

Lemma 4.2.2. We have W_%’3(T3) C A and thus the quantity ||u|| 4 is finite -
almost surely. Moreover, given any 1 < p < oo, we have

Epfllmnulli] < Cp < o0, 4.2.1)
uniformly in N € N U {oo} with the understanding that me, = 1d.

Proof. As we already mentioned, the first claim follows from the Schauder estimate
(4.1.5) (or from (4.1.4)). As for the bound (4.2.1), from the Schauder estimate (4.1.5),
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Minkowski’s integral inequality, and the Wiener chaos estimate (Lemma 2.3.1) with
(1.2.4), we have

EM[””N””i]iE [|u||" W oy

1 p
< pg(z 7) < 0Q.
neZz3 <I’l)§

This proves (4.2.1). [ ]

We now present the proof of Proposition 4.1.1.

Proof of Proposition 4.1.1. We break the proof into three steps.

Step 1. In this first part, we prove that Z y s in (4.1.7) is uniformly bounded in N € N.
As for the tightness of {vy 5} ven and the uniqueness of vs claimed in the statement,
we can repeat arguments analogous to those in Sections 3.2 and 3.3 and thus we omit
details.

From (4.1.7) and the Boué-Dupuis variational formula (Lemma 3.1.1) with the
change of variables (3.2.4), we have

—logZys = inf ]E|:5||YN +®N”§8_O/ YNG%de_ 0/ @3 dx
TN eH} T3 3

v

/ 1T 01, ] 422)

where Oy = Yy + ogN with §N = nny 3N asin (3.2.11). Our goal is to establish
a uniform lower bound on the right-hand side of (4.2.2). Unlike Section 3.2, we do
not assume smallness on |0 |. In this case, a rescue comes from the extra positive term
8 YN + On||% as compared to (3.2.9).

Given any 0 < ¢g < 1, it follows from Young’s inequality (3.2.32) with y > 3 that

Y

/3(IY1\2/2 +2YNOpN + @%,)dx
']I‘.

3
—-C. (4.2.3)

= Co

/T}(:YAZ,: +2YNON + OF )dx
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Then, taking an expectation and applying Lemmas 3.2.2 and 3.2.3 with Lemma 3.1.2
and (3.2.17), we have
|

IEZ[A/ (:Yy:+2YNOy + OF)dx
T3

> CoE[ITn ] — CiE[IITN 3] - C 4.2.4)

for some Cy > 0,0 < Cy < %. Hence, it follows from (4.2.2), (4.2.4), and Lemma 3.2.2
together with Lemma 3.1.2 and (3.2.17) that there exists C, > 0 such that

. ~ [0} ~
—logZys >  inf IE[5||YN +Yv +03nI% - —/ (Yn +03n5)dx
TN eH} 3 Jr3
+ Gl S, + C2||TN||§_I1i| - C. (4.2.5)
By Young’s inequality, we have

_|_

/ T,z\,gNdx / TNéﬁ,dx
T3 T3

2 2
< I lz2l3n ller—e + T llz2 I 3w lle1--

C
leumuzz + 13N 1S + Co (4.2.6)

A

Hence, from (4.2.5) and (4.2.6) with (3.2.32) (with y = 20) and Lemma 4.2.2, we
obtain

8 lo|
—1 7 > inf El =Y 20 ™M1 T 3
oszys = inf E|SITai - Sliais,
C, 6 )
+ S ITwllL + Gl Yl |~ €. (4.2.7)

Now, we need to estimate the L3-norm of Y. From (4.1.3), Sobolev’s inequality,
and the mean value theorem: |1 — e_’|”|2| < (t|n]?)? forany 0 < 6 < 1, we have

-9
ITwl7s <t 8||TN||3,A,+||TN_Pt*TN”Z%
9 3
STS|ON I + 3TN 7

for 0 < ¢ < 1. By choosing 13~ 1+ |C12| | Yw 1)~ and applying Young’s inequal-
ity, we obtain

3 Cz
o lITN 1175 < Cos ol TNl I 13 + TIITNH%” +1

8 C2
= Corols + 7N + I 70 (4.2.8)
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Therefore, from (4.2.7) and (4.2.8), we conclude that
Zngs < Cs < 00,
uniformly in N € N.

Step 2. Next, we show that ||u|| 4 is finite vg-almost surely. Let 1 be a smooth function
with compact support with [g3 [7(§)|*d§ = 1 and set

A(E) = / 1€ — DN EDdEL.
R3
Given ¢ > 0, define p, by
pe(x) = Y plen)e™™. (4.2.9)

nez3

Since the support of p is compact, the sum on the right-hand side is over finitely many
frequencies. Thus, given any ¢ > 0, there exists No(g) € N such that

Pe kU = P xUN (4.2.10)
for any N > Ny(¢e). From the Poisson summation formula, we have

Pe(x) = Z e_3|fFR_31(n)(e_1x + 27m)|2 >0,

nez3

where F' denotes the inverse Fourier transform on R*. Noting that

loellersy = [ pe(oydx = 50 = Inlagsy = 1
we have, from Young’s inequality, that

lloe * ulla =< lulla- (4.2.11)

Moreover, {p,} defined above is an approximation to the identity on T3 and thus for
any distribution u on T3, p,; * u — u in the A-norm, as ¢ — 0.

Let § > §’ > 0. By Fatou’s lemma, the weak convergence of {vy s} nen from Step
1 with (4.2.10), (4.2.11), and the definition (4.1.6) of vy 5, we have

f w6 =1tz )avs < timint [ exp((s —low D)

= liminf lim
e—>0 N-—>oo

Jdim [ exp(@ = )lhunlF)dvn

ZNs Zsr
lim ZN4 /1va5/ =¥
N—oo Zy s ’ Zs

exp((8 — 8[| ps * un||%)dvn.s

IA
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Hence, we have
/exp((S — 8’)||u||i))dv5 < 00

for any § > §’ > 0. By choosing §' = ‘%, we obtain

§
/exp(znunjﬁ’)dw < 00,

which shows that ||u|| 4 is finite almost surely with respect to vg.

Step 3. Finally, we prove the relation (4.1.8). We first note that it suffices to show that

z
Z—;dvg = exp(—(8 — 8)[|u]120)dvs- (4.2.12)

for any § > §’ > 0. In fact, once we have (4.2.12), by integration, we obtain

Z
Zj/ = /exp(—(S—S/)||u||2!A9)dv3/ (4.2.13)

and thus (4.1.8) follows from (4.2.12) and (4.2.13).
Let F : €719(T3) — R be a bounded Lipschitz function with F > 0. The

dominated convergence theorem, the weak convergence of {vy s} nen from Step 1,
and (4.1.6) yield that

d /F(u)dvg—/F(u)exp(—(S—8’)||u||f£)dv(g/

- [ Faoexp(-G =8l x ulZ)avy

z
— lim lim (L’(S/F(u)d\w,(g
N,§’

- / Fu) exp(—(5 — )]s * uanf)va,y)

= lim lim | F(u)[exp(—(8 — &) |un %)

e—>0 N—>o0

—exp(—(8 — &)l pe * un %) ]dvas
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Therefore, we have

ﬁ Fw)dvs— | F - 20)g
Zs (u)dvs (1) exp(—( MullZ))dvs
< lim sup lim sup/{exp(—(r? — 8 unl%)

e—>0 N—o0
—exp(—(8 — 8l ps * un|I2)|dv.s ()

< lim sup lim sup/‘exp(—((‘i — 5’)||JTNuN(w)||§,?)

e—>0 N-—oo

—exp(—(8 = &)lps * wvu™ (@) I [dP (), (4.2.14)

where ¥ is a random variable with Law(u?) = vy,s. Noting that the integrand

is uniformly bounded by 2, it follows from the bounded convergence theorem that
the right-hand side of (4.2.14) tends to 0 once we show that |p, * Tyu® () —
anu®y (w)]|| 4 tends to 0 in measure (with respect to ). Namely, it suffices to show

o . N N
leR)ngnooP({w €Q: lpe x iyu” (@) — wyu’ (®)|4 > a})

= lim lim v ({lun — pe xunlla >a}) =0

for any o > 0.
From (4.1.3) and (4.1.5), we have

1
lunw = pexunlla S luw —pexunll 35 S eSllunll 55 (4.2.15)
Hence, from Chebyshev’s inequality and (4.2.15), it suffices to prove

[ sl g sdvs 5 [ expllunl,, go)dvwy < Co<oo.  @216)

uniformly in N € N. We use the variational formulation as in (4.2.2), and write

_ log(/ exp(|luy ||W§,3)dVN,6’)

= inf E[SIHYN—F@NHZX—”YN—I-@NH _53—0/ YN®%de
TNeH]} w3 T3

v

/3(:1/1\2,: +2YNON + OF )dx
T

o 3
- — d A
3/T3®N X +

1 [t
= ||TN<z)||§,;dr}

+ IOg ZN,S’,
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where
Oy =Ty +03nN.

From Lemma 3.1.2 and (3.2.17), we have, for any finite p > 1,
E[IYNI? s, + 13517 s ,] <oe, (4.2.17)
W8 W%

uniformly in N € N. See also the proof of Lemma 4.2.2. Then, arguing as in (4.2.7)
and (4.2.8) with Young’s inequality, Sobolev’s inequality, and (4.2.17), we obtain

_ log(/ exp(||uN||W§_3)va,5/)

> inf E[—umn
TN ecH]}

s
L

8/
+ ColI T+ 1T ) + 101 | = Cer

z —1.

This proves (4.2.16) and hence concludes the proof of Proposition 4.1.1. ]

4.3 Non-normalizability of the o -finite measure p;

In this section, we present the proof of Proposition 4.1.2 on the non-normalizability
of the o-finite version pg of the @g—measure defined in (4.1.9).

Given ¢ > 0, let p; be as in (4.2.9). Then, by (4.2.11), the weak convergence of
{vns}Nen (Proposition 4.1.1), (4.2.10), and (4.1.6), we have

/exp(SHuIIif))dva > /exp(5||/?e *ul| %) dvs

> lim sup/exp(S min(|| pe * u[|%, L))dvs

L—o0

= li li § mi * 20 1.))d
imsup lim exp(6 min(||pe *x un |12, L))dvn,s

= limsup lim Z;,,llg/exp(Smin(Hpg*uN||f,?,L)—8||uN||f£—R}>v(u))du(u).

L—soco N—o0
Hence, (4.1.10) is reduced to showing that

limsulei_r)nooEM[exp((Smin(||p8 * uN||2Af),L) —8||MN||§8 — RX,(u))] =o00. (4.3.1)

L—oo
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Let Y = Y(1) be as in equation (3.1.2). By the Boué-Dupuis variational formula
(Lemma 3.1.1) with the change of variables (3.2.4), we have

— log E[exp(8 min([|pe * un 120, L) — §llun 1% — Ry (u))]
= inf E[—S min(||pe * (Yx + Tn + o 3n5)|%, L)
TN ecH)}
+8|Yy 4+ T +03n %
~ |
+Ry(Y +TN +03N) + 5/ ||TN(t)||§11dt}, (4.3.2)
0 X

where ﬁf\, is as in (3.2.25) with the third power in the last term replaced by the yth
power. With O = Yx + 03w, a slight modification of (3.2.30) yields

‘/;r% YN®§VdX

= ‘/ YN(T?V +20 N3N + Uzgﬁ)dx
T3

< Colt+IMwlE

1
100|0|(

7] A

+ 1N 17> + 1w 17 (4.3.3)

By Young’s inequality, we have

/:ﬂg G?de_[W Yydx

- ‘/T3(30T§,§N + 302 N33 + 0333 )dx

1
= Co||3N||~?é1—g + WHTN”%Z‘ 4.3.4)

Then, applying (4.3.3) and (4.3.4) with Lemma 3.1.2 and (3.2.17) to (4.3.2), we obtain
— log E[exp(8 min(|| pe * u|I%). L) — 8llun %) — Ry (u))]

< inf E[—S min(||ps * Yy + Yn + 3812, L)
TN eH)}
~ o
48l + Xy + 03wl -5 [ Yhax+ 1Tyl
T3

¥
+ A

/11‘3(:YA2,Z +2YNOpN + Gﬁv)dx

3 (1 N ’
3 [T o]+ e @35)

where Oy = Yy + ong.
In the following, we show that the right-hand side of (4.3.5) tends to —oo as
N, L — oo, provided that |o| > 0 is sufficiently large. By following the strategy
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introduced in our previous works [54, 61], we construct a drift YN , achieving this
goal. The main idea is to construct a drift YN such that TV looks like “—Y (D+a
perturbation” (see (4.3.14)), where the perturbation term is bounded in L?(T?3) but
has a large cubic integral (see (4.3.9) below). While we do not make use of solitons in
this paper, one should think of this perturbation as something like a soliton or a finite
blowup solution (at a fixed time) with a highly concentrated profile.

Remark 4.3.1. While our construction of the drift follows that in [54], we need to
proceed more carefully in our current problem in handling the first two terms under
the expectation in (4.3.5). If we simply apply (3.2.32) (with y = 20) to separate Yy
from Yx and ofg N, we end up with an expression like

(1
-5 m1n(§||p‘g * Y |12, L) + 28| Y |I%

such that the coefficients of ||p. * Tn ||§,? and | Yy ”?AO no longer agree, which causes
a serious trouble. We instead need to keep the same coefficient for the first two terms
under the expectation in (4.3.5) and make use of the difference structure. Compare
this with the analysis in [54, 61], where no such cancellation was needed.

Fix a parameter M > 1. Let f : R3 — R be a real-valued Schwartz function

such that the Fourier transform f is a smooth even non-negative function supported
{% < €] < 1} such that [3 | f(§)|*d§ = 1. Define a function fjs on T3 by

fu()=M"3 Y f(%)en, (4.3.6)
nez3

where f denotes the Fourier transform on R defined by

1

(271)% R3

feE = f(x)e ™ dx.

Then, a direct calculation shows the following lemma.

Lemma 4.3.2. Forany M € N and o > 0, we have
/ firdx =1+ 0(M™), (43.7)
T3
/ (V)7 fu)?dx S M2, (4.3.8)
T3

/T2 | fur3dx ~/T3 fldx ~ M3, (4.3.9)
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Proof. As for (4.3.7) and (4.3.8), see the proof of [54, Lemma 5.13]. From (4.3.6)
and the fact that f is supported on {% < |&| < 1}, we have

-3 Afn1\ pfn2\ »f n1+nz
Josias=at 3 A(5) ()7 (-52) -

nl,n2€Z3

N

(4.3.10)

The bound || fs ”ISﬁ z M 3 follows from (4.3.10), while || far ”Isﬁ < M 3 follows from
Hausdorff—Young’s inequality. This proves (4.3.9). |

We define Z)s and aps by

Zn =) Y(%)(n)en and oy = E[Z3,(x)]. (4.3.11)

[nl<M

Note that aps is independent of x € T3 thanks to the spatial translation invariance of
Z - Then, we have the following lemma. See [54, Lemma 5.14] for the proof.

Lemma 4.3.3. Let M > 1 and 1 < p < oo. Then, we have

am ~ M, (4.3.12)

E / |ZM|de]sc(p)M5’,
T3

IE:(/TF3ZJ%,,dx—aM)2:| +E[(/T3 YNZde—/TBZ]%,,dx)Z] <1,
o o o[ ([, s ]

forany N > M.

We now present the proof of Proposition 4.1.2.

Proof of Proposition 4.1.2. As described above, our main goal is to prove (4.3.1).
Fix N € N, appearing in (4.3.5). For M > 1, we set fa, Zpy, and oy as
in (4.3.6) and (4.3.11). We now choose a drift YV for (4.3.5) by setting

YN@) =2 1t>%<V)(—zM + sgn(o) Jau fu), (4.3.13)
where sgn(o) is the sign of o # 0. Then, we have

1
TV = 1(YM)(1) :/ (VYTIYN(0)dt = —Zp + sen(o) Jans fur. (4.3.14)
0

Note that for N > M > 1, we have Yy = 7y TN = TV, since Z3s and fum are
supported on the frequencies {|n| < M}.
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Let us first make some preliminary computations. We start with the first two terms
under the expectation in (4.3.5):

—8min(||pe * Yy + Yn + 03I L) +8lYy + T + 03512
= —min(|lpe * (Y5 + Yn + 03|20 = [ YN + T + 0 3n]2.
L—|IYy + Yy +03n]%)
=: —§ min(I, II). (4.3.15)
We first consider II. From Lemma 4.2.1, (2.1.3), and Lemma 4.3.2, we have
I la < 1Al < Wfaall ol fuall oy < ME (43.16)
From (4.3.14), (4.3.12) in Lemma 4.3.3, and (4.3.16), we have

0> L—2a]fll il —C>IYNIZ + 1 Zu 1% + o113~ %)
> L—CoM® —C(IIYNn IR + 1Zu 1% + 1o13n %)

1
P

1
> §L—C(||YNIIff+ 1Zu 1% + 1013w 1) (4.3.17)

for L >> M?. Note that the second term on the right-hand side is harmless since it is
bounded under an expectation. Next, we turn to I in (4.3.15). Let §¢ denote the Dirac
delta on T 3. Then, by applying (4.3.14), Young’s inequality, Lemma 4.2.1, (4.3.12),
and (4.3.7) in Lemma 4.3.2 and by choosing ¢ = ¢(M) > 0 sufficiently small, we
have

1> —|llps * (Y + Tn + 030X — 1Yy + Tn + 035 %
> —C||(pe — 80) * (Yn + Yn + 0304l ¥n + Yn + 0 3n[%

> =Caipf (o = 80) % fua |2y = C(IYNIZ + 120 |2 + 101131130
> —CeMY —C(|Yn|% + 1 Zul? + o]13n %)

=—Co—C(IYNIZ + 1Zu % + 1ol113n 1) (4.3.18)

Therefore, from (4.3.15), (4.3.17), and (4.3.18) together with (4.3.11), Lemma 4.2.2
and (3.2.17), we obtain
IE[—S min(I,II)] < C(8,0). (4.3.19)

Next, we treat the third term under the expectation in (4.3.5). This term gives the
main contribution. From (4.3.14) and Young’s inequality with Lemma 4.3.2, we have

3
0/ T13\,dx—|0|alf,1/ fiydx
T3 T3
= —0/ Z3dx + 3|0|/ ZIZ‘,“/OéMfde—-’)U/ Zymam fgdx
T3 T3 T3

3
> —r]|o|ozf,1/ fIadx—C,”ol/ | Zm|2dx (4.3.20)
T3 T3
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for any 0 < n < 1. Then, it follows from (4.3.20) with n = % and Lemmas 4.3.2
and 4.3.3 that

3
E[U/ T]%,dx]z(l—n)lo|a]\24/ ffldx—C,,|o|]E[/ |ZM|3dx}
T3 T3 T3
3 3
2 |o|M” —|o|M?>

> |lo|M? 4.3.21)

for M > 1.

We now treat the fourth and sixth terms under the expectation in (4.3.5). From
(4.3.14), we have Yy € H<;. Then, by the Wiener chaos estimate (Lemma 2.3.1)
and (4.3.14) with Lemmas 4.3.2 and 4.3.3, we have

3
E[ITn13.] S E[ITwIZ,]% < M3, 4.3.22)

Recall that both Zps and fM are supported on {|n| < M}. Then, from (4.3.13),
(4.3.14), and Lemmas 4.3.2 and 4.3.3 as above, we have

1
E[/ ||TN(z)||12qldt} < MPE[ITV)2,] < M3 (4.3.23)
0 X

We state a lemma which controls the fifth term under the expectation in (4.3.5).
We present the proof of this lemma at the end of this section.

Lemma 4.3.4. Let y > 0. Then, we have

i

uniformly in N > M > 1.3

_ %
/ (YN + TN + 03N)2: dx } < C(0,y) < o0, (4.3.24)
T3

Therefore, putting (4.3.5), (4.3.19), (4.3.21), (4.3.22), (4.3.23), and Lemma 4.3 .4
together, we obtain

— log E[exp(8 min(||ps * ul1%), L) — 8llun [IZ) — Ry (u))]
< —Ci|o|M? 4+ C,M? + C(8,0.y) (4.3.25)

for some C;, Co > 0, provided that L > M> > 1 and ¢ = ¢(M) > 0 sufficiently
small. By taking the limits in N and L, we conclude from (4.3.25) that

limsup lim ]Eu[exp(S min(||p£ * uN||2J,?, L) — 5||uN||2Af’ — Rj’v(u))]
L—soo N—o0

> exp(C1|0|M3 —CoM? — Co(0)) — o0,

3Recall from (4.3.14) that the definition of Y depends on M.
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as M — oo, provided that |o| is sufficiently large. This proves (4.3.1) and thus we
conclude the proof of Proposition 4.1.2. ]

We conclude this section by presenting the proof of Lemma 4.3.4.

Proof of Lemma 4.3.4. From (3.2.3) and (3.2.11), we have
1
/ Yn3ndx =/ / (V)3 Yy - (V)" 372 (:Y2(t): )dxdt
T3 0o JT3

1
<ITwl, 3 [ 1701, g0 4326)

As for the first factor, it follows from (4.3.14), (2.1.3), (4.3.12), and Lemma 4.3.2 that

<
x5 S 1Zull,,-3 + vearl furll, -3
3 1
SIZmll -3 + Vemll full g1/l
S1Zml, 3 + M7, “3.27)

Hence, from (4.3.26), (4.3.27), (4.3.11), and Lemma 3.1.2, we obtain

2
|| [, 13w | SEIMWE 1 +EILOR, s
T3 H 4 Li([0,1:Hy *)
(4.3.28)
From (4.3.14), we have
T2 + 2y YN
= Zy — 2sgn(0) Vo Zy fu + om fig
—2YNZpy + 2sgn(o)JSapu Y fu
= (Ziy —am) — 2sgn(o) Vo Zu fu + o (=1 + fi7) + 2am
—2(YNZym — Zjy) — 2(Zjy — anr) — 2000 + 25gn(0) o YN fu
= —(Zyy —am) — 23gn0(0) Jar Zas fur + e (=1 + frp)
—2(YNZm — Z3y) + 2sgn(0) Jau YN fu. (4.3.29)

Note from (3.2.3) and (4.3.14) that fT3 (Yn+ Yy + ong)Z: dx € #H<4. Then, from
the Wiener chaos estimate (Lemma 2.3.1), (4.3.14), (4.3.28), (4.3.29), and
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Lemmas 3.1.2 and 4.3.3 with (4.3.7), we have
]

< C(y){EH/T3 (YN + Yv +03n)%: dx

IEH/ YN+ TN +0§N)2: dx
T3

2%
_ C(y){]EH/TS Y2 dx+/TB(T12\, +2YN11}V)dx+oZ/T3§%de
1
(] 5 o], 5]
vors[( [ wdvax) o8 ( [ muBwa) |
+E[(_/T3YNszx+/T3zmx)2}
+IE[(/TBZ]%4dx—aM)2} vad (14 [ f,@dx)z
+o¢MIE[(/TB YNfde)z} +aME[(/T3 szde)z}}z

< C(o,7),

+20/ TNgNdx-i-Zo[ YNgNdx
T3 T3

which yields the bound (4.3.24). [ ]

4.4 Non-convergence of the truncated Qg-measures

In this section, we present the proof of Proposition 4.1.4 on non-convergence of the
truncated ®3-measures {pn } NeN-
We first define a slightly different tamed version of the truncated @g-measure by

setting
dvi™ @) = (ZM) 7V exp(=8[ul| % — RS (u))dp(u) (4.4.1)

for N € N and § > 0, where the +A-norm and RX] are as in (4.1.3) and (1.2.10),
respectively, and

20" = [ exp(-81ul - B3 0)dp).
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As compared to vy s in (4.1.6), there is no frequency cutoff 7 in the taming —6 ||u ||2J€
in (4.4.1). As a corollary to the proof of Proposition 4.1.1, we obtain the following
convergence result for véN).

Lemma4.4.1. Let§ > 0, Then, as measures on €~ 100(T3), the sequence of measures
{véN)} NeN defined in (4.4.1) converges weakly to the limiting measure vg constructed
in Proposition 4.1.1.

Proof. By the definitions (4.1.6) and (4.4.1) of vy 5 and v{", it suffices to prove
li F —8|Jul|?} — RS, (u))d
Jim { [ P exp(81ul — R o)
- [ Favexp(-slhon 12 - Ry )duto} =0
for any bounded continuous function F : €7199(T3) — R. In the following, we prove
i [ lexp(=8l1u120 = R5,0) = exp(=8lun 20 = R )| dpea) =0. (44

By the uniform boundedness of the frequency projector 7 on 4, we have

lunlla < llulla (4.4.3)

uniformly in N € N. Then, it follows from the mean-value theorem, (4.4.3), and the
Schauder estimate (4.1.5) that there exists co > 0 such that

[ exe(-81u120 ~ R3y0) - exp(-8luux % ~ R5:0) dnta)
<8 [ exp(-8min(lu2 Juw 20) — Ry o) [l — o 2] o
<8 [ exp(=Beollun 20 = R 0) e~y Ll e
<8 [ exp(-Beollun 20 = R @) NH P diut). @44
In the last step, we used the following bound:

1 _1
e —unlla S Il 35 N7 Elull, g5,
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which follows from (4.1.3), (4.1.5), and the fact that nﬁu = u —u y has the frequency
support {|n| = N}. Therefore, by (4.1.6), Proposition 4.1.1, and (4.2.16), we obtain

lim sup/|exp —8 )% — R} (w) — exp(—8||uN||2£ — R?V(u))|du(u)

. _1
<8 Jim / exp(=collun I = R ()N [ul®_s du)

20
=4 NIE;H N~ 8 ZN coé “u”W_%jdVN,cO(?
= 0.
This proves (4.4.2). [ ]

Remark 4.4.2. In the penultimate step of (4.4.4), we used the boundedness of the

cube frequency projector Ty = nf\‘,‘b" on L3(T?3) and hence this argument does not

work for the ball frequency projector 75" defined in (1.4.1).
We conclude this chapter by presenting the proof of Proposition 4.1.4.

Proof of Proposition 4.1.4. Suppose by contradiction that, as probability measures
on A, {pn, }ken has a weak limit vy. Then, given any § > 0, from Lemma 4.4.1
with (4.4.1) and (1.2.11), we have

. exp(—5||u||2 v, (1))
lim 50
k—oo [ exp(=8vll% — (v))du(v)

exp(=8lul)

im
koo [exp(=8[vIE)dpn, (v)
C exp(=Slull)

Jexp(=8l[v[1Z))dvo(v)

where the limits are interpreted as weak limits of measures on € ~190(T 3). Note that,
in the last step, we used the weak convergence in # of the truncated CI>3 -measures

PNy since exp(—8ul|%) is continuous on A, but not on €~1%9(T?3). Therefore,
from (4.4.5) and (4.1.9), we obtain

dvs = dp(u)

Nk (M)

dvo(u), (4.4.5)

duot) = ( [ exp(=81012)vo) )i (446

By assumption, v is a probability measure on # and thus ||u| 4 < 00, vg-almost
surely. By the fact that vy is a probability measure, (4.4.6), and Proposition 4.1.2,
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we obtain

1= ld\)o

/exp(—8||u||i))dvo(u)/ 1d ps (u)
00

’

which yields a contradiction. Therefore, no subsequence of the truncated QDg—measures
pn has a weak limit as probability measures on . |



