
Chapter 5

Local well-posedness

5.1 Overview of the chapter
In this chapter, we present the proof of Theorem 1.3.1 on local well-posedness of the
(renormalized) hyperbolic ˆ33-model (1.3.1):

@2t uC @tuC .1 ��/u � � Wu
2
W CM. Wu2 W /u D

p
2�; (5.1.1)

whereM is defined as in (1.3.2). For the local theory, the size of � ¤ 0 does not play
any role and hence we set � D 1 in the remaining part of this chapter. As mentioned
in Chapter 1, local well-posedness of (5.1.1) follows from a slight modification of
the argument in [36, 54]. We, however, point out that the argument in [36] on the
quadratic SNLW alone is not sufficient due to the additional termM.W u2 W/u, coming
from the taming in constructing the ˆ33-measure.

5.2 Paracontrolled approach

In this section, we go over a paracontrolled approach to rewrite the equation (5.1.1)
into a system of three unknowns. While our presentation closely follows those
in [36,54], we present some details for readers’ convenience. Proceeding in the spirit
of [18,36,47,54], we transform the quadratic SdNLW (5.1.1) to a system of PDEs. In
order to treat the additional term M. Wu2 W /u in (5.1.1), which contains an ill-defined
product in Wu2 W, we follow the approach in our previous work [54] on the focusing
Hartree ˆ43-model, which leads to the system of three equations; see (5.2.27) below.
Compare this with [18, 36, 47], where the resulting systems consist of two equations.
At the end of this section, we state a local well-posedness result of the resulting
system.

The main difficulty in studying the hyperbolic ˆ33-model (5.1.1) comes from the
roughness of the space-time white noise. This is already manifested at the level of
the linear equation. Let ‰ denote the stochastic convolution, satisfying the following
linear stochastic damped wave equation:´
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2�

.‰; @t‰/jtD0 D .�0; �1/;

where .�0; �1/ D .�!0 ; �
!
1 / is a pair of the Gaussian random distributions with

Law.�!0 ; �
!
1 / D E� D �˝ �0 in (1.2.2). Define the linear damped wave propagator
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viewed as a Fourier multiplier operator. By setting

ŒŒn�� D

r
3

4
C jnj2; (5.2.1)

we have

D.t/f D e�
t
2

X
n2Z3

sin.t ŒŒn��/
ŒŒn��

Of .n/en: (5.2.2)

Then, the stochastic convolution ‰ can be expressed as

‰.t/ D S.t/.�0; �1/C
p
2

Z t

0

D.t � t 0/dW.t 0/; (5.2.3)

where S.t/ is defined by

S.t/.f; g/ D @tD.t/f CD.t/.f C g/ (5.2.4)

and W denotes a cylindrical Wiener process on L2.T3/ defined in (3.1.1). It is
easy to see that ‰ almost surely lies in C.RCIW �

1
2�";1.T3// for any " > 0; see

Lemma 5.4.1 below. In the following, we use " > 0 to denote a small positive con-
stant, which can be arbitrarily small.

In the following, we adopt Hairer’s convention to denote the stochastic terms
by trees; the vertex “ ” corresponds to the space-time white noise � , while the edge
denotes the Duhamel integral operator 	 given by

	.F /.t/ D

Z t

0

D.t � t 0/F.t 0/dt 0
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F.t 0/dt 0: (5.2.5)

With a slight abuse of notation, we set

WD ‰; (5.2.6)

where ‰ is as in (5.2.3), with the understanding that in (5.2.6) includes the random
linear solution S.t/.�0; �1/. As mentioned above, has (spatial) regularity1 �1

2
�.

Given N 2 N, we define the truncated stochastic terms N and N by

N WD �N and N WD 	. N / D

Z t

0

D.t � t 0/ N .t
0/dt 0; (5.2.7)

1We only discuss spatial regularities of various stochastic objects in this part. Hereafter, we
use a� to denote a � " for arbitrarily small " > 0.
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where �N is the frequency projector defined in (1.2.5) and N is the Wick power
defined by

N WD
2
N � �N (5.2.8)

with

�N D E
�
2
N .x; t/

�
D

X
n2Z3

�2N .n/

hni2
� N !1; (5.2.9)

as N !1. Note that �N in (5.2.9) is independent2 of .x; t/ 2 T3 �RC and agrees
with �N defined in (1.2.8). Note that we have

D lim
N!1

N in C.Œ0; T �IW �1�;1.T3//

almost surely. See Lemma 5.4.1.
Next, we define the second order stochastic term :

WD 	. / D

Z t

0

D.t � t 0/ .t 0/dt 0;

as a limit of N defined in (5.2.7). With a naive regularity counting, with one degree
of smoothing from the damped wave Duhamel integral operator 	 in (5.2.5), one may
expect that has regularity 0� D 2.�1

2
�/C 1. However, by exploiting the multi-

linear dispersive smoothing effect, Gubinelli, Koch, and the first author showed that
there is an extra 1

2
-smoothing for and that has regularity 1

2
�. See Lemma 5.4.3

below. See also [14, 52, 65] for analogous multilinear dispersive smoothing for the
random wave equations. In particular, see [14, 65], where multilinear smoothing has
been studied extensively for higher order stochastic objects in the cubic case.

If we proceed with the second order expansion as in [36]:

u D C C v;

the residual term v satisfies the equation of the form:

.@2t C @t C 1 ��/v D 2v C 2 C other terms:

Inheriting the worse regularity �1
2
� of , the second term has regularity �1

2
�.

Hence, we expect v to have regularity at most 1
2
� D .�1

2
�/C 1. In particular, the

product v is not well defined since .1
2
�/C .�1

2
�/ < 0.

In order to overcome this problem, we now introduce a paracontrolled ansatz as
in [36, 47]:

u D C CX C Y; (5.2.10)

2This comes from the space-time translation invariance of the truncated stochastic convo-
lution N .
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where X and Y satisfy

.@2t C @t C 1 ��/X D 2.X C Y C / <
 �M. Wu2 W / ; (5.2.11)

.@2t C @t C 1 ��/Y D .X C Y C /2 C 2.X C Y C / >


�M. Wu2 W /.X C Y C / (5.2.12)

with the understanding that

Wu2 W D .X C Y C /2 C 2.X C Y / C 2 C : (5.2.13)

Here, >
 D >
 C =
 . Note that, in the X -equation (5.2.11), we collected the worst
terms from the v-equation, while all the terms in the Y -equation (5.2.12) are expected
to behave better (that is, if the resonant product in (5.2.12) can be given a meaning).
We point out that the problematic term M. Wu2 W / appears in both equations, unlike
the situation in [36].

There are two resonant products in the system (5.2.11)–(5.2.12), which do not a
priori make sense: =
 and X =
 . We can use stochastic analysis and multilinear
harmonic analysis to give a meaning to the first resonant product:

D
WD =


as a distribution of regularity 0� D .1
2
�/C .�1

2
�/ (without renormalization). See

Lemma 5.4.4 below. This in particular says that Y has expected regularity 1�.
In view of Lemma 2.1.2, the right-hand side of (5.2.11) has regularity�1

2
� (if we

pretend that M. Wu2 W / makes sense), and thus we expect that X has regularity 1
2
�. In

particular, the resonant product X =
 in the Y -equation is not well defined since the
sum of the regularities is negative. In [36], this issue was overcome by substituting
the Duhamel formulation of the X -equation into the resonant product X =
 and
then introducing certain paracontrolled operators (see (5.2.19), (5.2.20), and (5.2.22)
below). This was possible in [36] since there was no additional term M. Wu2 W / in
the system, in particular in the X -equation. In our current problem, the problematic
resonant product X =
 also appears in M. Wu2 W /, in particular, in the X -equation.
Thus, a strategy in [36,47] of substituting the Duhamel formulation of theX -equation
into X =
 would lead to an infinite iteration of such substitutions. We point out that
such an infinite iteration of the Duhamel formulation works in certain situations but
we choose an alternative approach which is simpler.

The main idea is to follow the strategy in our previous work [54] and introduce a
new unknown, representing the problematic resonant product:

“R D X =
 ” (5.2.14)

which leads to a system of three unknowns .X; Y;R/.
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We now turn our attention to Wu2 W in (5.2.13). Let QX;Y to denote a good part of
Wu2 W defined by

QX;Y D .X C Y /
2
C 2.X C Y / C 2X <
 C 2X >
 C 2Y : (5.2.15)

In view of X <
 and Y , QX;Y has (expected) regularity �1
2
� From (5.2.10),

(5.2.14), and (5.2.15), we can write Wu2 W as

Wu2 W D QX;Y C 2RC
2
C 2 C ; (5.2.16)

where denotes the product of and given by

D <
 C
D
C >
 :

By substituting the Duhamel formulation of the X -equation (5.2.11) and (5.2.16)
into (5.2.14), we obtain

R D 2	
�
.X C Y C / <


�
=


� 	
�
M
�
QX;Y C 2RC

2
C 2 C

� �
=
 :

(5.2.17)

As we see below, both resonant products on the right-hand side are not well defined
at this point.

Let us consider the first term on the right-hand side of (5.2.17):

	
�
.X C Y C / <


�
=
 : (5.2.18)

Due to the paraproduct structure (with the high frequency part given by ) under the
Duhamel integral operator 	, we see that the resonant product in (5.2.18) is not well
defined at this point since a term 	.w <
 / has (at best) regularity 1

2
�. In order to give

a precise meaning to the right-hand side of (5.2.17), we now recall the paracontrolled
operators introduced in [36].3 We point out that in the parabolic setting, it is at this
step where one would introduce commutators and exploit their smoothing properties.
For our dispersive problem, however, one of the commutators does not provide any
smoothing and thus such an argument does not seem to work. See [36, Remark 1.17].

Given a function w on T3 �RC, define

I <
 .w/.t/ WD 	.w <
 /.t/

D

X
n2Z3

en
X

nDn1Cn2
jn1j�jn2j

Z t

0

e�
t�t0

2
sin..t � t 0/ŒŒn��/

ŒŒn��
Ow.n1; t

0/y.n2; t
0/dt 0;

(5.2.19)

3Strictly speaking, the paracontrolled operators introduced in [36] are for the undamped
wave equation. Since the local-in-time mapping property remains unchanged, we ignore this
minor point.
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where ŒŒn�� is as in (5.2.1). Here, jn1j � jn2j signifies the paraproduct <
 in the
definition of I <
 .4 As mentioned above, the regularity of I <
 .w/ is (at best) 1

2
� and

thus the resonant product I <
 .w/ =
 does not make sense in terms of deterministic
analysis. Proceeding as in [36], we divide the paracontrolled operator I <
 into two
parts. Fix small � > 0. Denoting by n1 and n2 the spatial frequencies of w and as
in (5.2.19), we define I

.1/
<
 and I

.2/
<
 as the restrictions of I <
 onto ¹jn1j & jn2j�º and

¹jn1j � jn2j
�º. More concretely, we set

I .1/<
 .w/.t/

WD

X
n2Z3

en
X

nDn1Cn2
jn2j

�.jn1j�jn2j

Z t

0

e�
t�t0

2
sin..t � t 0/ŒŒn��/

ŒŒn��
Ow.n1; t

0/y.n2; t
0/dt 0 (5.2.20)

and
I .2/<
 .w/ WD I <
 .w/ � I .1/<
 .w/: (5.2.21)

As for the first paracontrolled operator I
.1/
<
 , the lower bound jn1j & jn2j� and the

positive regularity of w allow us to prove a smoothing property such that the resonant
product I

.1/
<
 .w/ =
 is well defined. See Lemma 5.4.5 below.

As noted in [36], the second paracontrolled operator I
.2/
<
 does not seem to possess

a (deterministic) smoothing property. One of the main novelties in [36] was then to
directly study the random operator I <
 ; =
 defined by

I <
 ; =
 .w/.t/ WD I .2/<
 .w/ =
 .t/

D

X
n2Z3

en

Z t

0

X
n12Z3

Ow.n1; t
0/An;n1.t; t

0/dt 0; (5.2.22)

where An;n1.t; t
0/ is given by

An;n1.t; t
0/

D 1Œ0;t�.t 0/
X

n�n1Dn2Cn3
jn1j�jn2j

�

jn1Cn2j�jn3j

e�
t�t0

2
sin..t � t 0/ŒŒn1 C n2��/

ŒŒn1 C n2��
y.n2; t

0/y.n3; t /: (5.2.23)

Here, the condition jn1 C n2j � jn3j is used to denote the spectral multiplier corres-
ponding to the resonant product =
 in (5.2.22). See (5.4.6) and (5.4.7) for the precise

4For simplicity of the presentation, we use the less precise definitions of paracontrolled
operators. For example, see (5.4.4) for the precise definition of the paracontrolled operator
I .1/<
 .
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definitions. The almost sure bounded property of the random operator I <
 ; =
 was
studied in [36, 54]. See Lemma 5.4.6 below.

Next, we consider the second term on the right-hand side of (5.2.17):

	
�
M
�
QX;Y C 2RC

2
C 2 C

� �
=
 : (5.2.24)

Once again, the resonant product is not well defined since the sum of regularities
is negative. The term (5.2.24) appeared in our previous work [54] on the focusing
Hartree ˆ43-model, where we introduced the following stochastic term:

A.x; t; t 0/ D
X
n2Z3

en.x/
X

nDn1Cn2
jn1j�jn2j

e�
t�t0

2
sin..t � t 0/ŒŒn1��/

ŒŒn1��
y.n1; t

0/y.n2; t / (5.2.25)

for t � t 0 � 0, where jn1j � jn2j signifies the resonant product. Then, we have�
	
�
M.w/

�
=


�
.t/ D

Z t

0

M.w/.t 0/A.t; t 0/dt 0: (5.2.26)

We point out that the Fourier transform yA.n; t; t 0/ corresponds to An;0.t; t
0/ defined

in (5.2.23) and thus the analysis for A is closely related to that for the paracontrolled
operator I <
 ; =
 in (5.2.22). See Lemma 5.4.7 below for the almost sure regularity
of A.

Finally, we are ready to present the full system for the three unknowns .X; Y;R/.
Putting together (5.2.11), (5.2.12), (5.2.15), (5.2.17), (5.2.20), (5.2.22), and (5.2.26),
we arrive at the following system:

.@2tC@tC1��/X D 2.X C Y C / <


�M
�
QX;Y C 2RC

2
C 2 C

�
;

.@2tC@tC1��/Y D .X C Y C /2 C 2.RC Y =
 C
D
/

C 2.X C Y C / >
 (5.2.27)

�M
�
QX;Y C 2RC

2
C 2 C

�
.X C Y C /;

R D 2I .1/<


�
X C Y C

�
=
 C 2I <
 ; =


�
X C Y C

�
�

Z t

0

M
�
QX;Y C 2RC

2
C 2 C

�
A.t; t 0/dt 0;

.X; @tX; Y; @tY /jtD0D.X0; X1; Y0; Y1/:

By viewing the following random distributions and operator in the system above:

; ; ;
D
; A; and I <
 ; =
 ; (5.2.28)

as predefined deterministic data with certain regularity/mapping properties, we prove
the following local well-posedness of the system (5.2.27).
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Theorem 5.2.1. Let 1
4
< s1 <

1
2
< s2 � s1 C

1
4

and s2 � 1 � s3 < 0. Then, there
exist � D �.s3/ > 0 and " D ".s1; s2; s3/ > 0 such that if

• is a distribution-valued function belonging to C.Œ0; 1�IW �
1
2�";1.T3//\

C 1.Œ0; 1�IW �
3
2�";1.T3//,

• is a distribution-valued function belonging to C.Œ0; 1�IW �1�";1.T3//,

• is a distribution-valued function belonging to C.Œ0; 1�IW
1
2�";1.T3//\

C 1.Œ0; 1�IW �1�";1.T3//,

•
D

is a distribution-valued function belonging to C.Œ0; 1�IH�".T3//,

• A.t; t 0/ is a distribution-valued function belonging to L1t 0 L
3
t .�2.1/IH

�".T3//,
where �2.T / � Œ0; T �2 is defined by

�2.T / D ¹.t; t
0/ 2 R2C W 0 � t

0
� t � T º; (5.2.29)

• the operator I <
 ; =
 belongs to the class L2.
3
2
; 1/, where L2.q; T / is defined by

L2.q; T / WD L.Lq.Œ0; T �IL2.T3//IL1.Œ0; T �IH s3.T3///; (5.2.30)

then the system (5.2.27) is locally well-posed in H s1.T3/ � H s2.T3/. More pre-
cisely, given any .X0; X1; Y0; Y1/ 2 H s1.T3/ �H s2.T3/, there exist T > 0 and a
unique solution .X; Y;R/ to the hyperbolic ˆ33-system (5.2.27) on Œ0; T � in the class:

Zs1;s2;s3.T / D X s1.T / � Y s2.T / � L3.Œ0; T �IH s3.T3//: (5.2.31)

Here, X s1.T / and Y s2.T / are the energy spaces at the regularities s1 and s2 inter-
sected with appropriate Strichartz spaces defined in (5.5.1) below. Furthermore, the
solution .X; Y;R/ depends Lipschitz-continuously on the enhanced data set:�

X0; X1; Y0; Y1; ; ; ;
D
;A;I <
 ; =


�
(5.2.32)

in the class:

X
s1;s2;"
T D H s1.T3/ �H s2.T3/

�
�
C.Œ0; T �IW �

1
2�";1.T3// \ C 1.Œ0; T �IW �

3
2�";1.T3//

�
� C.Œ0; T �IW �1�";1.T3//

�
�
C.Œ0; T �IW

1
2�";1.T3// \ C 1.Œ0; T �IW �1�";1.T3//

�
� C.Œ0; T �IH�".T3// � L1t 0 L

3
t .�2.T /IH

�".T3// �L2

�
3

2
; T

�
:

Given the a priori regularities of the enhanced data, Theorem 5.2.1 follows from
the standard energy and Strichartz estimates for the wave equation. While the proof
is a slight modification of those in [36, 54], we present the proof of Theorem 5.2.1 in
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Section 5.5 for readers’ convenience. The local well-posedness of the hyperbolicˆ33-
model (Theorem 1.3.1) follows from Theorem 5.2.1 and the almost sure convergence
of the truncated stochastic objects:

N ; N ; N ; D

N
; AN ; and IN<
 ; =
 (5.2.33)

to the elements in the enhanced data set in (5.2.28); see Lemmas 5.4.1, 5.4.3, 5.4.4,
5.4.5, 5.4.6, and 5.4.7 in Section 5.4. See Remark 5.2.2 below.

Remark 5.2.2. (i) For the sake of the well-posedness of the system (5.2.27), we con-
sidered general initial data .X0;X1;Y0;Y1/2H s1.T3/�H s2.T3/ in Theorem 5.2.1.
However, in order to go back from the system (5.2.27) to the hyperbolic ˆ33-model
(5.1.1) with the identification (5.2.14) (in the limiting sense) we need to set .X0; X1/D
.0; 0/ since the resonant product of the linear solution S.t/.X0; X1/ and is not well
defined in general. As we see in Chapter 6, we simply use the zero initial data for
the system (5.2.27) in constructing global-in-time invariant Gibbs dynamics for the
hyperbolic ˆ33-model (5.1.1).

(ii) Our choice of the norms for
D

is crucial in the globalization argument. See
Proposition 6.2.4 and Remark 6.2.5.

(iii) In proving the local well-posedness result of the system (5.2.27) stated in
Theorem 5.2.1, we do not need to use the C 1T -norms for and . However, we
will need these C 1T -norms for and in the globalization argument presented in
Chapter 6 and thus have included them in the hypothesis and the definition of The-
orem 5.2.1 of the space X

s1;s2;"
T . See also (5.5.3) and Remark 5.5.1.

Furthermore, with this definition of the space X
s1;s2;"
T , the map from an enhanced

data set in (5.2.32) (with .X0; X1; Y0; Y1/ D .0; 0; u0; u1/) to .u; @tu/, where u D
C CX C Y as in (5.2.10) becomes a continuous map from X

s1;s2;"
T to C.Œ0; T �I

H�
1
2�".T3//.

5.3 Strichartz estimates

Given 0 � s � 1, we say that a pair .q; r/ is s-admissible (a pair . Qq; Qr/ is dual s-
admissible,5 respectively) if 1 � Qq < 2 < q � 1, 1 < Qr � 2 � r <1,

1

q
C
3

r
D
3

2
� s D

1

Qq
C
3

Qr
� 2;

1

q
C
1

r
�
1

2
; and

1

Qq
C
1

Qr
�
3

2
:

We say that u is a solution to the following nonhomogeneous linear damped wave
equation: ´

.@2t C @t C 1 ��/u D F

.u; @tu/jtD0 D .u0; u1/
(5.3.1)

5Here, we define the notion of dual s-admissibility for the convenience of the presentation.
Note that . Qq; Qr/ is dual s-admissible if and only if . Qq0; Qr 0/ is .1 � s/-admissible.
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on a time interval containing t D 0, if u satisfies the following Duhamel formulation:

u D S.t/.u0; u1/C

Z t

0

D.t � t 0/F.t 0/dt 0;

where S.t/ and D.t/ are as in (5.2.4) and (5.2.2), respectively. We now recall the
Strichartz estimates for solutions to the nonhomogeneous linear damped wave equa-
tion (5.3.1).

Lemma 5.3.1. Given 0�s�1, let .q; r/ and . Qq; Qr/ be s-admissible and dual s-admis-
sible pairs, respectively. Then, a solution u to the nonhomogeneous linear damped
wave equation (5.3.1) satisfies

k.u; @tu/kL1
T

Hs
x
C kukLq

T
Lrx

. k.u0; u1/kHs C kF k
L
Qq
T
LQrx

(5.3.2)

for all 0 < T � 1. The following estimate also holds:

k.u; @tu/kL1
T

Hs
x
C kukLq

T
Lrx

. k.u0; u1/kHs C kF kL1
T
H s�1x

(5.3.3)

for all 0 < T � 1. The same estimates also hold for for any finite T > 1 but with the
implicit constants depending on T .

The Strichartz estimates on Rd are well known; see [30, 41, 46] in the context of
the undamped wave equation (with the linear part @2t ��). For the undamped Klein–
Gordon equation (with the linear part @2t C 1 � �), see [42]. Thanks to the finite
speed of propagation, these estimates on T3 follow from the corresponding estimates
on R3.

As for the current damped case, by setting v.t/D e
t
2u.t/, the damped wave equa-

tion (5.3.1) becomes ´
.@2t C

3
4
��/v D e

t
2F

.v; @tv/jtD0 D .u0; u1/;

to which the Strichartz estimates for the Klein–Gordon equation apply. By undoing
the transformation, we then obtain the Strichartz estimates for the damped equa-
tion (5.3.1) on finite time intervals Œ0; T �, where the implicit constants depend on T .

In proving Theorem 5.2.1, we use the fact that .8; 8
3
/ and .4; 4/ are 1

4
-admissible

and 1
2

-admissible, respectively. We also use a dual 1
2

-admissible pair .4
3
; 4
3
/.

5.4 Stochastic terms and paracontrolled operators

In this section, we collect regularity properties of stochastic terms and the paracon-
trolled operators. See [36, 54] for the proofs. Note that the stochastic objects are
constructed from the stochastic convolution D ‰ in (5.2.3). In particular, in the
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following, probabilities of various events are measured with respect to the Gaussian
initial data and the space-time white noise.6

First, we state the regularity properties of and . See [36, Lemma 3.1] and [54,
Lemma 4.1].

Lemma 5.4.1. Let T > 0.
(i) For any " > 0, N in (5.2.7) converges to in C.Œ0; T �IW �

1
2�";1.T3// \

C 1.Œ0; T �IW �
3
2�";1.T3// almost surely. In particular, we have

2 C.Œ0; T �IW �
1
2�";1.T3// \ C 1.Œ0; T �IW �

3
2�";1.T3//

almost surely. Moreover, we have the following tail estimate:

P
�
k N k

CTW
� 1
2
�";1

x \C1
T
W
� 3
2
�";1

x

> �
�
� C.1C T / exp

�
�c�2

�
(5.4.1)

for any T > 0 and � > 0, uniformly in N 2 N [ ¹1º with the understanding that
1 D .

(ii) For any "> 0, N in (5.2.8) converges to inC.Œ0;T �IW �1�";1.T3// almost
surely. In particular, we have

2 C.Œ0; T �IW �1�";1.T3//

almost surely. Moreover, we have the following tail estimate:

P
�
k N kCTW

�1�";1
x

> �
�
� C.1C T / exp

�
�c�

�
for any T > 0 and � > 0, uniformly in N 2 N [ ¹1º with the understanding that
1 D .

Remark 5.4.2. A slight modification of the proof of the exponential tail estimate
(5.4.1) shows that there exists small ı > 0 such that

P
�
N ı
2 k N1 � N2k

CTW
� 1
2
�";1

x \C1
T
W
� 3
2
�";1

x

> �
�
� C.1C T / exp

�
�c�2

�
for any T > 0 and � > 0, uniformly in N1 � N2 � 1. A similar comment applies to
the other elements N , N ,

D

N
, AN , and IN<
 ; =
 in the truncated enhanced data set

in (5.2.33).

The next two lemmas treat and the resonant product
D

, exhibiting an extra
1
2

-smoothing. See [36, Propositions 1.6 and 1.8]. While the exponential tail estim-
ates (5.4.2) and (5.4.3) were not proven in [36], they follow from the second moment

6With the notation in Chapter 6 (see (6.1.4)), this is equivalent to saying that we measure
various events with respect to E�˝ P2.
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bounds on the Fourier coefficients of N and
D

N
obtained in [36] and arguing as

in the proof of [37, Lemma 2.3], using a version of the Garsia–Rodemich–Rumsey
inequality (see [37, Lemma 2.2]) with the fact that N 2 H2 and

D

N
2 H�3. Since

the required argument is verbatim from [37], we omit details.

Lemma 5.4.3. Let T > 0. Then, N converges to in C.Œ0; T �IW
1
2�";1.T3// \

C 1.Œ0; T �IW �1�";1.T3// almost surely for any " > 0. In particular, we have

2 C.Œ0; T �IW
1
2�";1.T3// \ C 1.Œ0; T �IW �1�";1.T3//

almost surely for any " > 0. Moreover, we have the following tail estimate:

P
�
k N k

CTW
1
2
�";1

x \C1
T
W
�1�";1
x

> �
�
� C.1C T / exp

�
�c�

�
(5.4.2)

for any T > 0 and � > 0, uniformly in N 2 N [ ¹1º with the understanding that
1 D .

Lemma 5.4.4. Let T > 0. Then,
D

N
WD N =
 N converges to

D
in C.Œ0; T �I

W �";1.T3// almost surely for any " > 0. In particular, we have

D
2 C.Œ0; T �IW �";1.T3//

almost surely for any " > 0. Moreover, we have the following tail estimate:

P
�
k

D

N
kCTW

�";1
x

> �
�
� C.1C T / exp

�
�c�

2
3

�
(5.4.3)

for any T > 0 and � > 0, uniformly in N 2 N [ ¹1º with the understanding that
D

1
D

D
.

Next, we state the almost sure mapping properties of the paracontrolled operators.
We first consider the paracontrolled operator I

.1/
<
 defined in (5.2.20). By writing out

the frequency relation jn2j� . jn1j � jn2j in a more precise manner, we have

I .1/<
 .w/.t/ D
X
n2Z3

en
X

nDn1Cn2

X
�kCc0�j<k�2

'j .n1/'k.n2/

�

Z t

0

e�
t�t0

2
sin..t � t 0/ŒŒn��/

ŒŒn��
Ow.n1; t

0/y.n2; t
0/dt 0; (5.4.4)

where 'j is as in (2.1.1) and c0 2 R is some fixed constant. Given a pathwise regular-
ity of , the mapping property of I

.1/
<
 can be established in a deterministic manner.

See [54, Lemma 7.1]. See also [36, Corollary 5.2].

Lemma 5.4.5. Let s > 0 and T > 0. Then, given small � > 0, there exists small
"D ".s;�/ > 0 such that the following deterministic estimate holds the paracontrolled
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operator I
.1/
<
 defined in (5.2.20):

kI .1/<
 .w/k
L1
T
H
1
2
C3"

x

. kwkL2
T
H sx
k k

L2
T
W
� 1
2
�";1

x

: (5.4.5)

In particular, I
.1/
<
 belongs almost surely to the class

L1.T / D L.L2.Œ0; T �IH s.T3//IC.Œ0; T �IH
1
2C3".T3///:

Moreover, by letting I
.1/;N
<
 , N 2 N, denote the paracontrolled operator in (5.2.20)

with replaced by the truncated stochastic convolution N in (5.2.7), the truncated
paracontrolled operator I

.1/;N
<
 converges almost surely to I

.1/
<
 in L1.T /.

Next, we consider the random operator I <
 ; =
 defined in (5.2.22). By writing out
the frequency relations more carefully as in (5.4.4), we have

I <
 ; =
 .w/.t/ D
X
n2Z3

en

Z t

0

1X
jD0

X
n12Z3

'j .n1/ Ow.n1; t
0/An;n1.t; t

0/dt 0; (5.4.6)

where An;n1.t; t
0/ is given by

An;n1.t; t
0/ D 1Œ0;t�.t 0/

1X
kD0

0�j<�kCc0

1X
`;mD0
j`�mj�2

X
n�n1Dn2Cn3

'k.n2/'`.n1 C n2/'m.n3/

� e�
t�t0

2
sin..t � t 0/ŒŒn1 C n2��/

ŒŒn1 C n2��
y.n2; t

0/y.n3; t /: (5.4.7)

Then, we have the following almost sure mapping property of the random operator
I <
 ; =
 . See [54, Proposition 2.5]. See also [36, Proposition 1.11].

Lemma 5.4.6. Let s3 < 0 and T > 0. Then, there exists small � D �.s3/ > 0 such
that, for any finite q > 1, the paracontrolled operator I <
 ; =
 defined by (5.2.22)
and (5.2.23) belongs to L2.q; T / defined in (5.2.30), almost surely. Furthermore,
the following tail estimate holds for some C; c > 0:

P
�
kI <
 ; =
 kL2.q;T / > �

�
� C.1C T / exp.��/ (5.4.8)

for any �� 1.
If we define the truncated paracontrolled operator IN<
 ; =
 , N 2 N, by replacing

in (5.2.22) and (5.2.23) with the truncated stochastic convolution N in (5.2.7),
then the truncated paracontrolled operators IN<
 ; =
 converge almost surely to I <
 ; =


in L2.q; T /. Furthermore, the tail estimate (5.4.8) holds for the truncated paracon-
trolled operators IN<
 ; =
 , uniformly in N 2 N.
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Finally, we state the regularity property of A defined in (5.2.25). See [54, Lem-
ma 7.2]. Given N 2 N, we define the truncated version AN :

AN .x; t; t
0/ D

X
n2Z3

en.x/
X

nDn1Cn2
jn1j�jn2j

e�
t�t0

2
sin..t � t 0/ŒŒn1��/

ŒŒn1��
y
N .n1; t

0/yN .n2; t /

(5.4.9)
by replacing by N in (5.2.25).

Lemma 5.4.7. Fix finite q � 2. Then, given any T; " > 0 and finite p � 1, ¹AN ºN2N

is a Cauchy sequence inLp.�IL1t 0 L
q
t .�2.T /IH

�".T3///, converging to some limit
A (formally defined by (5.2.25)) in Lp.�IL1t 0 L

q
t .�2.T /IH

�".T3///, where�2.T /
is as in equation (5.2.29). Moreover, AN converges almost surely to the same limit in
L1t 0 L

q
t .�2.T /IH

�".T3//. Furthermore, we have the following uniform tail estimate:

P
�
kAN kL1

t0
L
q
t .�2.T /IH

�"
x / > �

�
� C.1C T / exp.��/

for any �� 1, and N 2 N [ ¹1º, where A1 D A.

5.5 Proof of local well-posedness

In this section, we present the proof of Theorem 5.2.1. In the following, we assume
that s3 < 0 < s1 < s2 < 1. Recall that .8; 8

3
/ and .4; 4/ are 1

4
-admissible and 1

2
-

admissible, respectively. Given 0 < T � 1, we define X s1.T / (and Y s2.T /) as the
intersection of the energy spaces of regularity s1 (and s2, respectively) and the
Strichartz space:

X s1.T / D C.Œ0; T �IH s1.T3// \ C 1.Œ0; T �IH s1�1.T3//

\ L8.Œ0; T �IW s1�
1
4 ;
8
3 .T3//;

Y s2.T / D C.Œ0; T �IH s2.T3// \ C 1.Œ0; T �IH s2�1.T3//

\ L4.Œ0; T �IW s2�
1
2 ;4.T3//;

(5.5.1)

and set
Zs1;s2;s3.T / D X s1.T / � Y s2.T / � L3.Œ0; T �IH s3.T3//:

By writing (5.2.27) in the Duhamel formulation, we have

X D ˆ1.X; Y;R/

WD S.t/.X0; X1/C 2	
�
.X C Y C / <


�
� 	

�
M
�
QX;Y C 2RC

2
C 2 C

� �
;
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Y D ˆ2.X; Y;R/

WD S.t/.Y0; Y1/C 	
�
.X C Y C /2

�
C 2	

�
RC Y =
 C

D

�
C 2	

�
.X C Y C / >


�
� 	

�
M
�
QX;Y C 2RC

2
C 2 C

�
.X C Y C /

�
;

R D ˆ3.X; Y;R/

WD 2I .1/<


�
X C Y C

�
=
 C 2I <
 ; =


�
X C Y C

�
�

Z t

0

M
�
QX;Y C 2RC

2
C 2 C

�
A.t; t 0/dt 0:

(5.5.2)

In the following, we use "D ".s1; s2; s3/ > 0 to denote a small positive number. Given
an enhanced data set as in (5.2.32), we set

„ D
�
; ; ;

D
;A;I <
 ; =


�
and

k„kX"
T
D k k

CTW
� 1
2
�";1

x \C1
T
W
� 3
2
�";1

x

C k k
CTW

�1�";1
x

C k k
CTW

1
2
�";1

x \C1
T
W
�1�";1
x

C k
D
kCTH

�"
x

C kAkL1
t0
L3t .�2IH

�"
x / C kI <
 ; =
 kL2.

3
2 ;T /

(5.5.3)

for some small " D ".s1; s2; s3/ > 0. Moreover, we assume that

k.X0; X1/kHs1 C k.Y0; Y1/kHs2 C k„kX"
1
� K (5.5.4)

for some K � 1. Here, we assume the bound on „ for the time interval Œ0; 1�.

Remark 5.5.1. As for proving local well-posedness stated in Theorem 5.2.1, we do

not need to use the C 1TW
� 32�";1
x -norm for and the C 1TW

�1�";1
x -norm for . How-

ever, in constructing global-in-time dynamics, we need to make use of these norms
and thus we have included them in the definition of the X"

T -norm in (5.5.3).

We first establish preliminary estimates. By Sobolev’s inequality, we have

kf 2kH�a . kf 2k
L

6
3C2a

D kf k2

L
12
3C2a

. kf k2
H
3�2a
4

(5.5.5)

for any 0 � a < 3
2

. By (5.2.15), (5.5.5), Lemma 2.1.2, Lemma 2.1.3 (ii), and Hölder’s
inequality with (5.5.4), we have

kQX;Y kL1
T
H�100x

. k.X C Y /2kL1
T
H�100x

C kX kL1
T
H�100x

C kY kL1
T
H�100x

C kX <
 kL1
T
H�100x

C kX >
 kL1
T
H�100x

C kY kL1
T
H�100x
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. kXk2L1
T
H"x
C kY k2L1

T
H"x

C
�
kXkL1

T
L2x
C kY kL1

T
L2x

�
k kL1

T
L1x

C kXkL1
T
L2x
k k

L1
T
W
� 1
2
�";1

x

C kY k
L1
T
H
1
2
C"

x

k k
L1
T
W
� 1
2
�";1

x

. k.X; Y;R/k2Zs1;s2;s3 .T / CK
2; (5.5.6)

provided that s1 � " and s2 � 1
2
C ".

We now estimate ˆ1.X; Y;R/ in (5.5.2). By (5.5.1), Lemmas 5.3.1 and 2.1.2,
(1.3.2), and (5.5.6) with (5.5.4), we have

kˆ1.X; Y;R/kXs1 .T /

. k.X0; X1/kHs1 C


.X C Y C / <





L1
T
H
s1�1
x

C


M �

QX;Y C 2RC
2
C 2 C

� 


L1
T
H
s1�1
x

. k.X0; X1/kHs1 C T kX C Y C kL1
T
L2x
k k

L1
T
W
� 1
2
�";1

x

C T
1
3 kQX;Y C 2RC
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C 2 C k

2

L3
T
H�100x

k k
L1
T
H
s1�1
x

. k.X0; X1/kHs1 C T
1
3K

�
k.X; Y;R/k4Zs1;s2;s3 .T / CK

4
�
; (5.5.7)

provided that " � s1 < 1
2
� ", s2 � 1

2
C ", and s3 � �100.

Next, we estimate ˆ2.X; Y;R/ in (5.5.2). By (5.5.1) and Lemma 5.3.1 with the
fractional Leibniz rule (Lemma 2.1.3 (i)), we have

	

�
.X C Y C /2
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Y s2 .T /

.


hris2� 12 .X C Y C /2
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1
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�
k.X; Y;R/k2Zs1;s2;s3 .T / CK

2
�
; (5.5.8)

provided that 1
2
� s2 � min.1 � "; s1 C 1

4
/. By Lemmas 5.3.1 and 2.1.2, (5.5.8),

and (5.5.6) with (5.5.4), we have
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. k.Y0; Y1/kHs2 C T
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2
�
C T

2
3 kRk
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x
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T
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CT

�
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T
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Ck k
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3 kQX;Y C 2RC
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H�100x
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kXk
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x
C kY k

L1
T
H
s2
x
C k k

L1
T
W
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2
�";1

x
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. k.Y0; Y1/kHs2 C T

1
4

�
k.X; Y;R/k5Zs1;s2;s3 .T / CK

5
�
; (5.5.9)

provided that s1 � ", 12 C " < s2 � min.1 � 3"; s1 C 1
4
; s3 C 1/, and s3 � �100.

Finally, we estimate ˆ3.X; Y;R/ in (5.5.2). By Lemmas 2.1.2, 5.4.5 (in particu-
lar (5.4.5)), and (5.5.6) with (5.5.4), we have
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.
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3KkQX;Y C 2RC

2
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L3
T
H�100x
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1
3K

�
k.X; Y;R/k4Zs1;s2;s3 .T / CK

4
�

(5.5.10)

provided that s1 > 0 with sufficiently small " D ".s1/ > 0 (in view of Lemma 5.4.5),
s2 �

1
2
C ", and �100 � s3 � �".

Note that jxjx is differentiable with a locally bounded derivative. In view of
(1.3.2), this allows us to estimate the difference M.w1/ �M.w2/. By repeating a
similar computation, we also obtain the difference estimate:

k Ê .X; Y;R/ � Ê . zX; zY ; zR/kZs1;s2;s3 .T /

. T
1
4

�
k.X; Y;R/k4Zs1;s2;s3 .T / CK

4
�
k.X; Y;R/ � . zX; zY ; zR/kZs1;s2;s3 .T /;

(5.5.11)

where
Ê WD .ˆ1; ˆ2; ˆ3/:

Therefore, by choosing T D T .K/ > 0 sufficiently small, we conclude from (5.5.7),
(5.5.9), (5.5.10), and (5.5.11) that Ê D .ˆ1;ˆ2;ˆ3/ is a contraction on the closed ball
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BR�Z
s1;s2;s3.T / of radiusR� 1Ck.X0;X1/kHs1 Ck.Y0;Y1/kHs2 centered at the

origin. A similar computation yields Lipschitz continuous dependence of the solution
.X;Y;R/ on the enhanced data set .X0;X1;Y0; Y1;„/measured in the X

s1;s2;"
T -norm

by possibly making T > 0 smaller. This concludes the proof of Theorem 5.2.1.


