Chapter 6

Invariant Gibbs dynamics

6.1 Overview of the chapter

In this chapter, we present the proof of Theorem 1.3.2. In the remaining part of this
chapter, we work in the weakly nonlinear regime. Namely, we fix ¢ % 0 such that
|o| < 09, where oy is as in Theorem 1.2.1 (i). We also fix sufficiently large A > 1
as in Theorem 1.2.1 (i) such that the @g—measure p is constructed as the limit of the
truncated @g-measures pn in (1.2.11). With these parameters, consider the truncated
Gibbs measure py:

PN = PN ® Ho (6.1.1)

for N € N, where ¢ is the white noise measure; see (1.2.1) with s = 0. A standard
argument [37, 54, 59] shows that the truncated Gibbs measure PN is invariant under
the truncated hyperbolic CDg-model (1.3.6):

uy + deuy + (1 — Auy
—orrN(: (rvun)? :) + M( (myun)? Hnnuy = «/ES, (6.1.2)

where : (myupy)? := (ryun)? —on and wy and oy are as in (1.2.5) and (1.2.8),
respectively. See Lemma 6.2.3 below. Moreover, as a corollary to Theorem 1.2.1 (i),
the truncated Gibbs measure py in (6.1.1) converges weakly to the Gibbs measure
P =p® oin (1.2.18).

Our main goal is to construct global-in-time dynamics for the limiting hyper-
bolic ®3-model (1.3.1) almost surely with respect to the Gibbs measure p, and prove
invariance of the Gibbs measure p under the limiting hyperbolic CDg-dynamics. A
naive approach would be to apply Bourgain’s invariant measure argument [9, 10],
by exploiting the invariance of the truncated Gibbs measure gy under the truncated
hyperbolic ®3-dynamics, and to try to construct global-in-time limiting dynamics for
the limiting process ¥ = limy_c0 Uy . There are, however, two issues in the cur-
rent situation: (i) the truncated Gibbs measure py converges to the limiting Gibbs
measure p only weakly and (ii) the Gibbs measure p and the base Gaussian measure
L= i ® wo in (1.2.2) are mutually singular. Moreover, our local theory relies on
the paracontrolled approach, which gives additional difficulty. As a result, Bourgain’s
invariant measure argument [9, 10] is not directly applicable to our problem. In [14],
Bringmann encountered a similar problem in the context of the defocusing Hartree
NLW on T3, where he overcame this issue by introducing a new globalization argu-
ment, by using the fact that the (truncated) Gibbs measure is absolutely continuous
with respect to a shifted measure (as in Appendix A below) [13, 54] in a uniform
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manner and establishing a (rather involved) large time stability theory, where sets of
large probabilities are characterized via the shifted measures.

In the following, we introduce a new alternative globalization argument. This
new argument has the advantage of being conceptually simple and straightforward.
Our approach consists of several steps:

Step 1. In the first step, we establish a uniform (in N) exponential integrability of
the truncated enhanced data set Zy (see (6.1.10) below) with respect to the trun-
cated measure oy ® P, (Proposition 6.2.4). Here, P, is the measure for the stochastic
forcing defined in (6.1.4) below. By combining the variational approach with space-
time estimates, we prove this uniform exponential integrability without any reference
to (the truncated version of) the shifted measure Law(Y (1) + 0 3(1) + W(1)) con-
structed in Appendix A. As a corollary, we construct the limiting enhanced data set
E associated with the Gibbs measure o (see (6.1.11) below) by establishing conver-
gence of the truncated enhanced data set & 5 almost surely with respect to the limiting
measure p ® Ps.

Step 2. In the second step, we establish a stability result (Proposition 6.3.1). We
prove this stability result by a simple contraction argument, where we use a norm
with an exponentially decaying weight in time. As a result, the proof follows from a
small modification of that of the local well-posedness (Theorem 5.2.1). As compared
to [14], our stability argument is very simple (both in terms of the statements and the
proofs).

Step 3. In the third step, we establish a uniform (in N) control on the solution
(Xn, Yy, Ry) to the truncated system (see (6.3.2) below) with respect to the trun-
cated measure py ® PP, (Proposition 6.3.2). The proof is based on the invariance of
the truncated Gibbs measure px and a discrete Gronwall argument.

Step 4. In the fourth step, we study the pushforward measures (E 5 )#(oy ® P») and
(E)#(p ® P»). In particular, by using ideas from theory of optimal transport (the Kan-
torovich duality) and the Boué—Dupuis variational formula, we prove that the push-
forward measure (E y)#(on ® P2) converges to (E)#(p ® P») in the Wasserstein-1
distance, as N — o00; see Proposition 6.3.3 below.

Once we establish Steps 1—4, the proof of Theorem 1.3.2 follows in a straightfor-
ward manner. In Section 6.2, we first study the truncated dynamics (6.1.2) and briefly
go over almost sure global well-posedness of (6.1.2) and invariance of the truncated
Gibbs measure py (Lemma 6.2.3). We then discuss the details of Step 1 above. In
Section 6.3, we first go over the details of Steps 2, 3, and 4 and then present the proof
of Theorem 1.3.2.

Notations. By assumption, the Gaussian field i = u ® o in (1.2.2) and hence the
(truncated) Gibbs measure are independent of (the distribution of) the space-time
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white noise £ in (1.3.1) and (6.1.2). Hence, we can write the probability space €2 as
Q= Q] X Qz (613)

such that the random Fourier series in (1.2.4) depend only on w; € €21, while the
cylindrical Wiener process W in (3.1.1) depends only on w, € €2;. In view of (6.1.3),
we also write the underlying probability measure P on €2 as

P=P ®P,, (6.1.4)

where P; is the marginal probability measure on Q;, j = 1, 2.
With the decomposition (6.1.3) in mind, we set

t
11300, w2) = S(t)iio + ﬁ/ D —1)dW(', w3) (6.1.5)
0

forig = (ug,u1) € Jf_%_s('lp) and w, € 25, where S(¢) and D(¢) are as in (5.2.4)
and (5.2.2), respectively. When it is clear from the context, we may suppress the
dependence on 1y and/or w,. Given N € N, we set

1w (o, w2) = 7N 1 (g, w2), (6.1.6)
where 7 is as in (1.2.5). We also set

v (tho, @2) = 13 (io, w2) — O,
Yn (o, 2) = wn I (Vv (tho, w2)), (6.1.7)
?N(ﬁo,wz) =Yy (tio. w2)® 1w (tho, w2),

and define A y (iig, ®>) as in (5.4. 9) by replacing 1y with 1y (ilo, @2). We define the
paracontrolled operator J@ o= J@ o (tig, w>) in a manner analogous to J@ o in
Lemma 5.4. 6 but with an extra frequency cutoff 7. Namely, instead of (5.2.19), we
first define 3 @ by

W) 0) = Iy 1w)(0), (6.1.8)

where 'y = 1y (to, wy) is as in (6.1.6). We then define SN and §§)’N as in
(5.2.20) and (5.2.21) with an extra frequency cutoff yy(n), depending on |ny| =
[n2|? or |ny| < |n2|?. Note that the conclusion of Lemma 5.4.5 (in partlcular the
estimate (5.4.5)) holds for é)’ , uniformly in N € N. Finally, we define 3, s@ o by

38,00 =3V w)© 18 (), (6.1.9)

namely, by inserting a frequency cutoff yy(n; + n2) and replacing 1 by 1y =
1§ (o, w3) in (5.2.23). We then define the truncated enhanced data set E y (1ig, w2)
by B

2y (g, w2) = (TN,vN,YN,yN,AN,sg’@), (6.1.10)
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where, on the right-hand side, we suppressed the dependence on (g, w,) for nota-
tional simplicity. Note that, given tig € # ~ e (T3), the enhanced data set E y (tig, w2)
does not converge in general. Nonetheless, for the notational purpose, let us formally
define the (untruncated) enhanced data set E (iig, w;) by setting

E(ig, w2) = (1. Y., A, 39.,0). (6.1.11)

where each term on the right-hand side is a limit of the corresponding term in (6.1.10)
(if it exists). In Corollary 6.2.6, we will construct the enhanced data set B (iig, w2)
in (6.1.11) as a limit of the truncated enhanced data set E y (iig, @) in (6.1.10) almost
surely with respect to p ® IP5.

In the remaining part of this chapter, we fix 51, 52, 53 € R satisfying

1 1 1
— <5 <=<85<s1+- and s —1<s53<0. (6.1.12)
4 2 4
Furthermore, we take both s; and s, to be sufficiently close to % (such that the con-

ditions in (6.3.26) are satisfied, say with r; = r, = 3).

Remark 6.1.1. (i) In view of (6.1.6) with (1.2.5) we have 1 y (tig, w2) =1 y (TN U0, @2)
and thus

B (thg, w2) = En(nntig, w2).
Namely, the truncated enhanced data set E y (1ig, ;) in (6.1.10) depends only on the
low frequency part 7 iig of the initial data.

(ii) Note that the terms Yy, \(QN, and §g .© in (6.1.10) come with an extra
frequency cutoff as compared to the corresponding terms studied in Chapter 5. When
Law(iig) = i1, the results in Lemmas 5.4.3, 5.4.4, and 5.4.6, and Remark 5.4.2 from
Section 5.4 also apply to Yn (g, @2), ?N (thg, w2), and §g@ (tg, w2).

(iii) Note that the X7.-norm for enhanced data sets defined in (5.5.3) also meas-
ures the time derivatives of ty and 'y in appropriate space-time norms. In view
of (6.1.7) and (5.2.5), the time derivative of Yy (1o, w2) is given by

t
0, Y n(t: g, w2) = nN[ 0, D(t — 1)y (t' g, wp)dt'.
0

As for the stochastic convolution, recall that, unlike the heat or Schrodinger case, the
stochastic convolution for the damped wave equation is differentiable in time and the
time derivative of 1y (lo, @;) is given by

t
01w (t; 1o, w2) = TN, S()g + «/Emv/ 0, D(t —tdW(t',wy). (6.1.13)

0
The formula (6.1.13) easily follows from viewing the stochastic integral in (6.1.5)

(with an extra frequency cutoff ) as a Paley—Wiener—Zygmund integral and taking
a time derivative.
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6.2 On the truncated dynamics

In this section, we study the truncated hyperbolic @g—model (6.1.2). We first go over
local well-posedness of the truncated equation (6.1.2) and then almost sure global
well-posedness and invariance of the truncated Gibbs measure py ; see Lemmas 6.2.1
and 6.2.3. Then, by combining the Boué—Dupuis variational formula (Lemma 3.1.1)
and space-time estimates, we prove uniform (in N) exponential integrability of the
truncated enhanced data set E y (o, w;) with respect to py ® P, on (iig, w2); see
Proposition 6.2.4. As a corollary, we prove that the truncated enhanced data set
En (g, @) in (6.1.10) converges to the limiting enhanced data set E (g, w;) in
(6.1.11) almost surely with respect to the limiting measure p ® P, (Corollary 6.2.6).

Given N € N, let g = (ug, u1) be a pair of random distributions such that
Law((ug, u1)) = py = pN ® po. Let uy be a solution to the truncated equation
(6.1.2) with (up, 0;uN)|i=0 = . With : (myupy)? := (Tyuy)? — on, we write
(6.1.2) as

djun + duny + (1 — Auy
—onN ((JTNMN)2 — O'N) + M((JTNMN)2 — O'N)T[NMN = «/ES (6.2.1)
(qu atuN)|t=0 = ﬁOa
where M is as in (1.3.2). Note that, due to the presence of the frequency projector py,

the dynamics (6.2.1) on high frequencies {|n| = N} and low frequencies {|n| < N}
are decoupled. The high frequency part of the dynamics (6.2.1) is given by

FPryun + 0yun + (1 — A)ryuy = V2rE 62.2)
(TN D) i=o = .
The solution nﬁuN to (6.2.2) is given by
nyuy = 7y 1 (o), (6.2.3)

where 1 (1ig) is as in (6.1.5) with the w,-dependence suppressed. With vy = Tyuy,
the low frequency part of the dynamics (6.2.1) is given by
ava + d;oy + (1 —A)vy
—OTTN ((JTNUN)2 — O'N) + M((]TNUN)2 - O'N)JTNUN = \/EnNg (6.2.4)
(v, 0:vN)|r=0 = 7N lo,
where we kept y in several places to emphasize that (6.2.4) depends only on finite

many frequencies {n € NQ} with Q as in (1.2.7). By writing (6.2.4) in the Duhamel
formulation, we have

t
vy (1) = Ty S(t)io +/ D(t —t)Ny(on)(@)dt’ + 1n(2;0), (6.2.5)
0
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where the truncated nonlinearity Ny (vy) is given by
Ny (vy) = oy ((ryon)*> —on) — M ((wvon)? —on) v, (6.2.6)

and 1 5 (7;0) is as in (6.1.6) with 1y = 0:
t
TN (0, w0) = ﬁ/ Dt —tand W', wy).
0

For each fixed N € N, we have 15 (¢;0) = 7y 1(t;0) € C'(Ry; C®(T?3)); see
Remark 6.1.1. By viewing 1 5 (¢;0) in (6.2.5) as a perturbation, it suffices to study the
following damped NLW with a deterministic perturbation:

wn (t) = 7n S(t)(vo, v1) +/0 Dt —t") Ny (un)(¢)dt' + F, (6.2.7)

where (v, v1) € H1(T3), oy isasin (1.2.8),and F € C'(R4; C*(T?)) is a given
deterministic function.

A standard contraction argument with the one degree of smoothing from the
Duhamel integral operator I in (5.2.5) and Sobolev’s inequality yields the follow-
ing local well-posedness of (6.2.7). Since the argument is standard, we omit details.
See, for example, the proof of [54, Lemma 9.1].

Lemma 6.2.1. Let N eN. Given any (vg,v1) e H(T3) and F e C'([0,1]; H'(T?3))
with
[(vo, v llger =R and |[Flcigoq.a1y = K

forsome R, K > 1, there exist t = ©(R, K, N) > 0 and a unique solution vy to (6.2.7)
on [0, t], satisfying the bound.:

”UN”}'ZI(.[) SR+K,

where
X'(r) = C([0,7); H'(T?)) N C'([0, T]; L*(T?)).
Moreover, the solution vy is unique in X * (7).
Remark 6.2.2. (i) A standard contraction argument gives T = t(R, K, N) ~ (R +
K + N)~% for some 6 > 0, in particular the local existence depends on N € N.
(i) We also point out that the uniqueness statement for vy in Lemma 6.2.1 is
unconditional, namely, the uniqueness of the solution vy holds in the entire class

X (7). Then, from (6.2.3) and the unconditional uniqueness of the solution vy =
v (T tig) to (6.2.4), we obtain the unique representation of u y:

uy = 7y 1 (o) + vy (T ido).

See for example (6.3.73) below, where we use a different representation of u .
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Before proceeding further, let us introduce some notations. Given the cylindrical
Wiener process W in (3.1.1), by possibly enlarging the probability space €2;, there
exists a family of translations 7, : £, — €2 such that

W(t, try(w2)) = W(t + to, w2) — W(to, w2)

fort,t9p > 0 and w, € 2;. Denote by oN () the stochastic flow map to the truncated
hyperbolic @g—model (6.1.2) constructed in Lemma 6.2.1 (which is not necessarily
global at this point). Namely,

in(t) = un(t), dun () = V(1) (g, w2)
= (@Y (1) (g, w2), @Y (1) (o, »2)) (6.2.8)

is the solution to (6.1.2) with 1 v |;=o = iy, satisfying Law(iig) = pn, and the noise
£(w,). We now extend ®V (¢) as

N (1) (Gio. w2) = (N (1) (G0, w2). 7 (2)). (6.2.9)
Note that by the uniqueness of the solution to (6.1.2), we have

N (11 + 1) (o, w2) = CDN(IZ)(‘I)N(“)(’}O"‘)Z)’T“ (a)z))
= oM (1) (B (11) (Gio. w2))

for t1,1, > 0 as long as the flow is well defined.
By writing the truncated dynamics (6.1.2) as a superposition of the deterministic
NLW:
uy + (1 — Auy — Ny (uy) =0, (6.2.10)

where Ny (1) is as in (6.2.6), and the Ornstein—Uhlenbeck process (for d,u y):
3, (dun) = —0;un + 2€, (6.2.11)

we see that the truncated Gibbs measure py in (6.1.1) is formally' invariant under the
dynamics of (6.1.2), since py is invariant under the NLW dynamics (6.2.10), while
the white noise measure po on d;uy (and hence py = py ® o on (uy, d,upy)) is
invariant under the Ornstein—Uhlenbeck dynamics (6.2.11). Then, by exploiting the
formal invariance of the truncated Gibbs measure py, Bourgain’s invariant measure
argument [9] yields the following result on almost sure global well-posedness of the
truncated hyperbolic @g—model (6.1.2) and invariance of the truncated Gibbs measure
pn - Since the argument is standard (for fixed N € N), we omit details. See the proof
of [54, Lemma 9.3] for details.

'Namely, as long as the dynamics is well defined.
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Lemma 6.2.3. Let N € N. Then, the truncated hyperbolic @g—model (6.1.2) is almost
surely globally well-posed with respect to the random initial data distributed by the
truncated Gibbs measure py in (6.1.1). Furthermore, py is invariant under the res-
ulting dynamics and, as a consequence, the measure py ® P, is invariant under the
extended stochastic flow map N () defined in (6.2.9). More precisely, there exists
YN CQ=Q1 x Qs withpy @ Po(Xn) =1 such that the solutionuy = uy (g, w2)
to (6.1.2) exists globally in time and Law(un (1), 0;un (1)) = pn foranyt € R.

Next, we establish uniform exponential integrability of the truncated enhanced
data set E y (o, wy) in (6.1.10) with respect to the truncated measure py ® P,. We
also establish uniform exponential integrability for the difference of the truncated
enhanced data sets.

Proposition 6.2.4. Let T > 0. Then, we have
/]E[pz [exp(| E n (i0. @2) %z ) |d v (iio) < C(T.e.) < 00 (6.2.12)

for0 <o < % uniformly in N € N, where the X7.-norm and the truncated enhanced

data set B y (g, wz) are as in (5.5.3) and (6.1.10), respectively. Here, Ep, denotes an

expectation with respect to the probability measure Py on w, € 2, defined in (6.1.4).
Moreover, there exists small B > 0 such that

/]Elpz[exp(NZﬁHENl (g, w2) — ENz(ﬁo,wz)H‘;g%)]dﬁN(ﬁo)

<C(T,e,a) <00 (6.2.13)

for0 <a < %, uniformly in N, N1, N, € N with N > N1 > N,.

Proof. For simplicity, we only prove (6.2.12) and (6.2.13) for the random operator
i?g,@ defined in (6.1.9). The other terms in E y (iig, w,) can be estimated in an
analogous manner. See Remark 6.2.5.

We break the proof into two parts.

Part 1. We first prove the following uniform exponential integrability:
/EP2 [exp(“%é”@ ||(;2(q’T)>j|d,5N(ﬁo) <C(T,ea) <o (6.2.14)

forany 7 > 0, any finiteg > 1,and 0 < o < % uniformly in N € N. Note that the
range 0 < o < % of the exponent in (6.2.14) comes from the presence of || 3 x ”%/Vl—mo
in (6.2.28) and (6.2.32), since 3y defined in one line below (3.2.3) belongs to H<,.
Similarly, the overall restriction 0 < o < % in this proposition comes from the terms
involving ¥; in (6.2.38), where v is defined in (6.2.23) with (6.2.21). Namely,
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the worst contribution in (6.2.38) behaves like || 35 ||€I‘j‘1_8_oo which is exponentially
integrable only for o < %; see (6.2.39).
From (6.1.8) and (6.1.9), we see that §g@ depends on two entries of Ty =

7y 1(do, w2). We now generalize the definition of §@’@ to allow general entries.

Given y; € C(R4; D'(T?)), j = 1,2, we first define 33 [y/1] by
8 lw) = I(an W (ny1))). (6.2.15)

As in (5.2.20) and (5.2.21), define 33" [1] to be the restriction of 3& [y1] onto
{In1] < [n2|%}:

3N il (w) = I(an (K8 (w, 7w yn))), (6.2.16)

where K is the bilinear Fourier multiplier operator with the multiplier 1 (n11<n2]f}-
More precisely, we have

FQN [y )(w)(r)
:ZXN(”)en Z Z @j(n) ek (n2) xn (n2)

nez3 n=nj1+n2 0<j<0k+cgo
t : _ 4/

x/ e_% sin((t — t")[n])
0 [~]

where yu isasin (1.2.6) and ¢y € R is as in (5.4.4). Then, we define §g@ [V1, ¥2]
by

W(ny, 1)1 (s, t')dt', (6.2.17)

38 o W v2lw) = 3N Y1 1)@ (anv2). (6.2.18)
Note that §g .o [¥1. ¥2] is bilinear in 1 and y>. We also set

38 oW =38 olv.v] (6.2.19)

for simplicity. With this notation, we can write §g o in(6.2.14) as 3 9.0 1o, w2)],
where g = (49, u1). Note that we have

38.olwvl =38 o vl

Before proceeding further, we record the following boundedness of K¢ defined in
(6.2.16) and (6.2.17); a slight modification of the proof of (2.1.7) in Lemma 2.1.2
yields

1K sz, < 1S e gl (6:2.20)

forany s, e Rand 1 < p, p1, p2,q foosuchthat% = %—l—é.
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By the Boué-Dupuis variational formula (Lemma 3.1.1) with the change of vari-
ables (3.2.4), we have

~log / exp( |38 o [1 Gio. w21 1) ) o)

= it [0+ 0o

~ 1 o
FRRO TN 403w+ [ ||TN<z>||§,ldr] T log Zy.
0 X

where IQX, is asin (3.2.25) and
©=71"+03n. (6.2.21)
Recall the notation Yy =nn Y and Yy =7 YV . Then, from Lemmas 3.2.2 and 3.2.3

with Lemma 3.1.2 and (3.2.17), there exists g9, Co > 0 such that

—log / exp(“ §’é o1, w2)] ||;2(4,T))d,0N (1)

Z N E[-[38 01X +0.u1.02)]%, 1)

+eo(IT I3 + 11w 152) | - Co. (6.222)

uniformly in ¥ and w,.
In view of (6.1.5), we write 1(Y 4+ ©,uy, w;) as

WY + O, u1,m) = 1(Y,u1, @) + S()(©,0) = Yo + ¥1, (6.2.23)
where S(7) is as in (5.2.4). By (6.2.19), we have
138,011 +©.u1.02)]| ¢, 1)
= ||§g@ [¥0, Yol |é€2(q,T) + ”%g@ [¥o0, wl]“;(iz(q,T)
+ 138 o W1 vol | s + 138 .o V1. vl £5(q.T)" (6.2.24)

Under the truncated Gibbs measure py, we have Law(u1) = o and thus we have
Law(Y,u1) = ji = it ® j1o. Then, from the uniform exponential tail estimates in Lem-
mas 5.4.1 and 5.4.6 (see also Remark 6.1.1) with (3.2.3), there exists K(Y, uy, ;)
such that

138 0 Wolleyqiry + 1007y, o+ 13wlwi-scs o225
T x . .
< K(Y,ui,ws)
and
E;ep,[exp($K(Y.u1, w2))] < oo (6.2.26)

for sufficiently small § > 0.
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We now estimate the last three terms on the right-hand side of (6.2.24). Let s3 < 0.
By Sobolev’s inequality, (6.2.18), Holder’s inequality,” (6.2.16), Sobolev’s inequality,
Lemma 5.3.1, and (6.2.20) with (6.2.23), we have

138 .0 o, vil(w) | oo pysa

<38V wolw)© (ﬂN%)H

=55
soLy

L; __llznyn || Lﬁ

< 38 ol w)|
LF
SIZE @ mn oDl e WVt lgempe
7 Hx
< 0
< 1K (w,nNWO)HLlTH;T%H||®||H1—g

< llw —lo2cco Ollgi-e, 6.2.27
iy 2 Vol —3—2eco 1Ola1- ( )

T "X
for ¢ > O sufficiently small such that 4¢ < —s3. Hence, by the definition (5.2.30) of
the £(q, T')-norm, Cauchy’s inequality, and (6.2.21), we obtain
IN
H«S@,@ [Yo. V1] H£2(CI,T)

a=1
T e ol 1 oecollOllHi—
LW, 2

X

a—1
ST (ol 4 o+ IV I + 13N ) (6228)
LPW.

X

Proceeding as in (6.2.27) and applying Sobolev’s embedding theorem with (6.2.21)
and (6.2.23), we have

” §g O [¥1, ¥l HJCz(q,T)

a=1
ST 7 ||yl 1200 lOl1— A ||O||H1 —e
LW, 2

X

ST (V20 + 138121 ens). (6.2.29)

2To be more precise, this is the Coifman-Meyer theorem on T3 to estimate a resonant
product. The Coifman—Meyer theorem on T3 follows from the Coifman-Meyer theorem for
functions on R? [31, Theorem 7.5.3] and the transference principle [26, Theorem 3]. We may
equally proceed with (2.1.9) in Lemma 2.1.2 with a slight loss of derivative which does not
affect the estimate.
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Finally, from Lemmas 2.1.2, 5.3.1, Sobolev’s inequality, and (6.2.20), we have
138 o 1. Yol ) | o gy
< |38 w1 )© (v vo) | oo 2

< ||I<J<9(w,nw1)>||L

OOHX%+23 ||¢0 ||L%OW7%78.OO

X

6
<
<K (w,anﬁl)”L%H;%Jrzs||\/f0||L?OW7%7£.oo

X

9
<
<K (w’anl)”LlTLﬁ ||W0||L%owf%ﬂ;,ij

X

<
~ ||w ||L3"L)2c ”1//1 ||L?~,BO 6 5 ||W0 ||L’79W—%—£.OC . (6230)

T—4¢ x

Note that (%, 1_648) is (1 — ¢)-admissible. Since ¢ > 1, we can choose ¢ > 0 suffi-
ciently small such that ¢’ < % Then, by Minkowski’s integral inequality, (6.2.23),
and Lemma 5.3.1, we have

1

o0 2
/ < S()(P;O,0)|? < 1O 1—e, 6.2.31
||W1||L%BO6 2_(;” (1)(P;0, )IIL%,L;%) < 1O g ( )

1—4¢>

where P; is the Littlewood—Paley projector onto the frequencies {|n| ~ 2/}. Hence,
from (5.2.30), (6.2.30), (6.2.31), and Cauchy’s inequality with (6.2.21), we obtain

||§g ,© [¥1. Yo ”xz(q,r)

= C(D)[[voll “JecolOla1—2
LW

=CM (ol o+ 1TV + 1385 1—ee)-  (6232)
LWy

By (6.2.24), (6.2.25), (6.2.28), (6.2.29), (6.2.32), and Young’s inequality (with
o < 1) we have

Y;gﬂE[—HS@,@[T(Y +0.u1, 0|y qr + 2 (ITV 20 + 1T 152) ]

> —cE[K(Y,u1,02)**] + Lt (—eITMIE + 2ol TV 31) — G

a

> —E[K(Y.u1,02)**] — Cs. (6.2.33)
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Therefore, from (6.2.22), (6.2.33), Young’s inequality, and Jensen’s inequality, we
obtain

/ eXP(HSg,@ [t (o, 2)] “‘;32([1,1))de (10)
< exp(C]E[K(Y, ul,a)z)z“D
< exp(SE[K(Y, ul,a)z)])

< / exp(SK(Y. u1. 02))du(Y)

for0 <o < % Finally, by integrating in (u#, w2) with respect to u, ® P», we obtain
the desired bound (6.2.14) from (6.2.26).

Part 2. Next, we briefly discuss how to prove (6.2.13) for the random operator §g o-
For N > N; > N, > 1, proceeding as in Part 1, we arrive at

_log/eXP(Nzﬂ 1381 o 1 GGio. @2)] — 382 [ (i, )] H;z(q,T))dPN(uo)
> inf E[—Nﬂ SN _[1(Y + ©O,u,
> TAI’Ié]HI}, 2 ”6@,@[ (Y +0,uy, w)]
- §gz@ [1¥ +0, “1"‘)2)]”;2@1)
+eo(ITV 121 + 1w 152) | = Co.

uniformly in u; and w,. See (6.2.22). With ¢ and 1 as in (6.2.23), we write
N[ F Y +0 3 (Y +©
P ||~S©’@[T( + O, u1, wr)] 3@,@“( + »ulva)Z)]”;gz(q,T)
< N |38 o o, ol — S22 [vo, vl |
- 2 @a@ 0 0 @s@ 0, 0 xZ(q:T)
BaN N
+ Ny “6@1,@ [Vo. ¥1] — 352 g [Vo, %]sz(q,T)
L aN 3N
+ Ny H«S‘@‘,@ V1. Vol = 3520 [V1. Yol sz(q,T)

B~ ~
+ N 380 o, 1] = 3820 [V vl ¢y .1y (6.2.34)

In view of Remark 6.1.1 (see also Lemma 5.4.6 and Remark 5.4.2), we see that there
exists K(Y,u1,w,) such that

BuaN N
Ny || 30 o Vo, Yol =327 ¢ [Vo, WO]”iz(q’T)
+ vol? 4o 13N Iw1-cce < K(Y,uy, ;) (6.2.35)
LOO

T WX
and
Eep,[exp(K (Y. u1,@,))] < oo (6.2.36)
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for sufficiently small § > 0, provided that 8 > 0 is sufficiently small. The last three
terms on the right-hand side of (6.2.34) can be handled as in (6.2.28), (6.2.29),
and (6.2.32). By noting that one of the factors comes with 7, — 7y, , we gain a small
negative power of N, by losing small regularity in (6.2.28), (6.2.29), and (6.2.32),
while keepin% the resulting regularities on the right-hand sides unchanged. This allows

us to hide N,* in (6.2.34). The rest of the argument follows precisely as in Part 1. m

Remark 6.2.5. In the proof of Proposition 6.2.4, we only treated §g@ from the
truncated enhanced data set E y (1, @) in (6.1.10). Let us briefly discuss how to treat
the other terms in E y (o, @) to get the exponential integrability bound (6.2.12).
The second bound (6.2.13) follows in a similar manner. The terms ' n, VN, Y,
and Ay can be estimated in a similar manner since they are (at most) quadratic in
1(Y + ©,u1, wy) and the product Yoy is well defined, where ¥, j = 0, 1, is as
in (6.2.23).
As for ?N, with the notation above and (6.2.23), we have

?N[T(Y + 0O, uy, w;)]
= ?N[l/fo + V1]
=Yn[Vo + ¥v1]O (en o) + Yn[Vo + V11O (mn ). (6.2.37)

Let) <o < % Then, by Lemma 2.1.2 and Young’s inequality, we can estimate the
second term on the right-hand side as

IV n[vo + ¥11© (v v O)NE, e

< o o

S IYw o + WI]HCTWX%_S’OO IWilic, gi-e
3

SV +vilI2° A+ vl .. (6.2.38)
CTVVXZ . T1x

Noting that %a < % and 3x < 1, we can control the first term on the right-hand side
of (6.2.38) by the exponential integrability bound for Y’y under py ® P,, while by
Young’s inequality with (6.2.23) and (6.2.21), we can bound the second term by

ST lgr + 13w lwi—ec0) + Cs. (6.2.39)

for any small § > 0.
Let us consider the first term on the right-hand side of (6.2.37). In view of (6.1.7),
by writing

Yo + ¥11© (v o) = Y [vol® (mn o)

+2(nn I (N Y0) (TN 1)) © (Tn Yo)
+ (en I (N y1)?)) @ (envo). (6.2.40)
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Note that we have Yy [¥o]@ (Ty o) = ?N ((Y, u1), wp), where the latter term
is as in (6.1.7). While there is an extra frequency cutoff as compared to ?N in
Lemma 5.4.4, the conclusion of Lemma 5.4.4 also holds for Yy [¥0]® (n ¥o) =
}N ((Y, u1), wz). Hence, we can control the first term on the right-hand side of
(6.2.40) by the exponential tail estimate in Lemma 5.4.4 with 0 < o < % The third
term on the right-hand side of (6.2.40) causes no issue since the resonant product of
an I((mnv1)?) and Vo is well defined.

Lastly, let us consider the second term on the right-hand side of (6.2.40). In view
of (6.2.15), (6.2.16), and (6.2.18), we have

(en I ((en Yo) (e ¥1))) © (7t o)
= (an I (e Y1) © (7w ¥0))) © (w Yo)
+ §((@1)’N [Yol(rn 1)@ (TN Yo) + §g,@ [Wol(nvr1), (6.2.41)

where 38 ’N[wo] is defined by
38" ol := 3§ o] = 3§ o). (6.2:42)

From Lemma 2.1.2 and the one degree of smoothing from the Duhamel integral oper-
ator I, we see that T ((my¥1)® (mn o)) € C([0, T; H3 3 (T3)), which allows us
to handle the first term on the right-hand side of (6.2.41).

Next, we estimate the second term on the right-hand side of (6.2.41). Recall
from (6.2.23) that Yo = 1 (Y, uy, wp) with Law(Y, u;) = [i. Namely, §g)’N[x//0]
defined in (6.2.42) is nothing but 3 D-N in Lemma 5.4.5 with an extra frequency
cutoff yn (n). Hence, the conclusion of Lemma 5.4.5 (in particular (5.4.5)) holds true

for S&N [V0]. Then, from Lemmas 2.1.2 and 5.4.5, we have

58" WalGrn ) © o vo)| &

<3 1),N[Wo](nNW1)HZ H%Hgllwoll‘é i
Tax

TWx
< COOIWAIE, e lvol™

crwy 20

Then, Young’s inequality allows us to handle this term.
Finally, we treat the third term on the right-hand side of (6.2.41). From (5.2.30)
and Young’s inequality, we have

H%@ [Vfo](ﬂNl/fl)HoéTH—s < ||§g@ (Yol ||‘;(% olvl® 5
* ’ L2L%

~ 3
s (138 o Woll gy ry + 19115 ).

T tXx
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which can be controlled by (6.2.14) and (6.2.39).
Therefore, Proposition 6.2.4 holds for all the elements in the truncated enhanced
data set E y (1ig, w;) in (6.1.10).

We conclude this section by constructing the full enhanced data set E (g, ;)
in (6.1.11) under p ® P, as a limit of the truncated enhanced data set E y (1g, ®2)
in (6.1.10).

Corollary 6.2.6. Let T > 0. Then, the truncated enhanced data set E y(ilg, w3)
in (6.1.10) converges to the enhanced data set E(iig, w>) in (6.1.11), with respect
to the X.-norm defined in (5.5.3), almost surely and in measure with respect to the
limiting measure p @ Ps.

Proof. Let0 <o < % and B > 0 be as in Proposition 6.2.4. Then, by Fatou’s lemma,
the weak convergence of py ® PP, to p ® IP», and Proposition 6.2.4, we have

[ (N2 12w, o, 02) — B o, )5 )4 B P i 2)

< liminf / exp(min(NL || 2., (o, @2)— B, (o, @) [ . L) ) d(BRPs) g, )

L—>o0

= liminf lim exp(min(Nzﬂ | E N, (o, w2)
L—oco N—oo

— B, 0, 02) 1% - L) )d By @ Py) (o, @)

< Jim [ exp(Nf 2, io.02) — Ewa o, 02l ) B @ Pa)(o. 2
<1, (6.2.43)
uniformly in N; > N, > 1. Then, by Chebyshev’s inequality, we have

d -~ = ~ - — B
£ ® P2 (|| E n, (o, w2) — sz(Mo,wz)”(;C? > 1) <Ce cNy A

for any A > 0 and N; > N, > 1. This shows that {E y (ilg, w2)} yeN is Cauchy in
measure with respect to p ® P, and thus converges in measure to the full enhanced
data set E(ilg, ) in (6.1.11). By Fatou’s lemma and (6.2.43), we also have

[ exp (V212 o, 02) — Ewa o, 02) 5 )5 ® Pa) o) % 1

uniformly in N; > N, > 1, which in turn implies

R o . _eNPa
,0®]P’2(||a(u0,a)2)— DNz(uo,a)z)”ax? >)L) <Ce cNy A

for any A > 0 and N, € N. By summing in N, € N and invoking the Borel-Cantelli
lemma, we also conclude almost sure convergence E y (g, w3) to E (g, wp) with
respect to p ® P,. ]
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6.3 Proof of Theorem 1.3.2

In this section, we present the proof of Theorem 1.3.2. The main task is to prove con-
vergence of the solution (1, d;u ) to the truncated hyperbolic @g—model (6.1.2).
We first carry out Steps 2, 3, and 4 described at the beginning of this chapter. Namely,
we first establish a stability result (Proposition 6.3.1) as a slight modification of the
local well-posedness argument (Theorem 5.2.1). Next, we establish a uniform (in N)
control on the solution (X, Y, 3 ) to the truncated system (see (6.3.1) below) with
respect to the truncated measure py x P, (Proposition 6.3.2). Then, by using ideas
from theory of optimal transport, we study the convergence property of the pushfor-
ward measure (Ex)#(oy ® P) to (E)x(p ® P,) with respect to the Wasserstein-1
distance (Proposition 6.3.3).

Let ® (¢)(tio, w2) be the first component of ®V (¢)(iig, w,) in (6.2.8). Then, by
decomposing <I>]1v () (g, wy) as in (5.2.10):

Y (1) (o, w2) = 1(t:1g. w2) + oY (t:10. w2) + XN (1) + YN (1),  (6.3.1)
we see that X, Yy, and Ry := Xy @ 1 n (o, wy) satisfy the following system:
0+ 0, +1—-A)Xy
=20nN((Xn + YN +0YVN)Q 1)
— M(Qxy vy + 2%y + 02y + 20"y + V)TN,
(0240, +1—A)Yy
=onn((Xn + Yy +0Yn) +2(Ry + YN 1y + o)
+2(Xn +Yn +0YN)D TN) (6.3.2)
— M (Qxy.yy + 20N + 02y + 20N +VN)(Xy + Yy +0Vn),
Ry =203 (Xn + Yy +0VN)O 1w
+ 2a§g,@ (Xnv + YN +0Ynw)

t
- [ M(Oxy.y + 29y + 023 + 20y + V) () An (0, 1),
0
(XN, 0: XN, YN,0:YN)|r=0 = (0,0,0,0),

where M isasin (1.3.2), Qx, vy isasin(5.2.15) with 1 replaced by ' y =1 y (1o, w2)
as in (6.1.6), and the enhanced data set is given by E y (ilg, w2) in (6.1.10).

We first establish the following stability result. The main idea is that by intro-
ducing a norm with an exponential decaying weight in time (see (6.3.7)), the proof
essentially follows from a straightforward modification of the local well-posedness
argument (Theorem 5.2.1). A simple, but key observation is (6.3.9) below.
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Proposition 6.3.1. Let T > 1, K > 1, and Cy > 1. Then, there exist No(T, K, Cy) €
N and small ko = ko(T, K, Co) > 0 such that the following statements hold. Suppose
that for some N > Ny, we have

1€ (i, w3) ||z, < K (6.3.3)

and
(XN, YN, RN zs152.53¢m) < Co (6.3.4)

Sor the solution to (Xn, YN, RN) to the truncated system (6.3.2) on [0, T'| with the
truncated enhanced data set B y (i, w5). Furthermore, suppose that we have

IE (o, w2) — En (idg, w3) [l xs. < & (6.3.5)

for some 0 < k < ko and some (g, w3), where B (ig, w,) denotes the enhanced data
set in (6.1.11). Then, there exists a solution (X, Y, R) to the full system (5.2.27) on
[0, T'] with the zero initial data and the enhanced data set E (g, wy), satisfying the
bound

[(X,Y, R)| zs1.52.53¢7) < Co + 1.

Conversely, suppose that
€ (o, w2) ]| xs. < K

and that the full system (5.2.27) with the zero initial data and the enhanced data set
E(tig, w2) has a solution (X, Y, R) on [0, T}, satisfying

(X, Y, 3%)||ZSI~S2-53(T) < Cp.

Then, if (6.3.5) holds for some N > Ny, 0 < k < ko, and (iiy, w}), then there exists
a solution (Xn, YN, RN) to the truncated system (6.3.2) on [0, T]| with the enhanced
data set B y (g, w}), satisfying

I(Xn, YN, Rn) — (X, Y, R) || zs1.5253¢r) < AT, K, Co)(k + N7°)  (6.3.6)
for some A(T, K, Cy) > 0 and some small § > 0.
Proof. Fix T 3> 1. Given A > 1 (to be determined later), we define Zi‘ S253(T') by

[(X. Y. ) g15293 ) = (€7 X, 7Y TR 25152557 (6.3.7)

For notational simplicity, we set Z=(X,Y,Z), Zy=(Xn.Yn.RpN), E=E (1o, w2),
and Ey = By Uy, 05).

In the following, given N € N, we assume that (6.3.3), (6.3.4), and (6.3.5) hold.
Without loss of generality, assume that ¥ < 1. Then, from (6.3.3) and (6.3.5), we have

I8 g, w2)ll s < K +& < K + 1 =: K. (6.3.8)
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In the following, we study the difference of the Duhamel formulation® (5.5.2) of the
system (5.2.27) with the zero initial data (i.e. (Xo, X1, Yo, Y1) = (0,0, 0, 0)) and the
Duhamel formulation of the truncated system (6.3.2) with respect to the Z3'*>"(T')-
norm by choosing appropriate A = A(T, Ko, R) > 1. See (6.3.16) below.

The main observation is the following bound:

- / _1
e e ”L?,([O,t]) SATa. (6.3.9)

Let I be the Duhamel integral operator defined in (5.2.5). Then, using (6.3.9), we
have

t
le™ I(F)llcpmy < e / Ml F ()| gyt
0

LF

<1"a|le M F(@)| (6.3.10)

LY Hy™
forany 1 < g < oco. Let (g1, 71) be an s1-admissible pair with 0 < 57 < 1. Then, there
exists an sy-admissible pair (g2, r2) with 0 < 57 < s, < 1 such that

1 0 1-06 1 6 1-6

q_1:;+ P Z:5+ — and s1=6-04 (1 —06)s,

for some 0 < 6 < 1. By the homogeneous Strichartz estimate ((5.3.2) with F = 0),
we have

t
||e_“I(F)||Lc;2Lr2 < ” / e 2Dt — 1"y M F(t))dr
x 0

L‘71—~2L;2
T a5t
f / ||i)(t — t/)(e_ 4 F(l/))”L;IZ([O,T];L;Z)dZ,
0
< e F(t’)||L1TH;2_1. (6.3.11)

Thus, given any § > 0, it follows from interpolating (6.3.10) with large ¢ > 1 and
(6.3.11) that there exists small & = 6(8) > 0 such that

le™  I(F)lpar < CDA e F @] (6.3.12)

L1T+3H§171

Recalling that (4, 4) is %—admissible, it follows from (6.3.10), (6.3.12), and Sobolev’s
inequality that

le™™I(F)| < C(T)A e ™ F ()|
Cr¥ZnL% LY

< C(TA e ™ F ()|

1
1+3Hx_7

1+8L (6.3.13)

3Recall that we set 0 = 1 in Chapter 5 for simplicity and thus need to insert ¢ in appropriate
locations of (5.5.2).
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By writing (6.3.2) in the Duhamel formulation, we have
XN = Q1N (XN, YN, BN)
=207nI((Xn + YN +0YN)Q TN)

—I(M(Qxy,yy +2RN + o2V + 200N + VN)TN),
Yy = O n(Xn. YN, Ry)

=onnyI((Xn + YN + UYN)Z)
+ 2071NI(§RN +YNO N+ a?N)
+ 207N I((XN + YN +0YN)O tw) (6.3.14)
— I(M(Qxy vy + 2%y + 025
+ 200N +VN) (XN + YN +0YN)),
Ry = P3N (XN, YN, RN),

=203 1)’N(XN + YN +0YN)O 1N
+ 20§g,@ (Xnv + YN +0Yn)
t
= [ M(Qxy.ry + 2 + 07V + 20y + V)W) 1.0
0

Then, Z —Zy = (X — Xn,Y — YN, R — Ry ) satisfies the system

X—Xy =X, Y. R) — DO n(Xn, YN, RN),
Y =Yy = O(X. Y. R) — Py (XN, YN, Ry), (6.3.15)
R-—ANy = D:3(X, YV, R) — D3 v (XN, YN, Ry).

By setting
SXn=X—-Xy, Yy=Y—-Yy, and Ry =R -—Ry,
we have
X =06Xy+ Xy, Y =686Yy+Yy, and R =56Ry+ Ry.
Then, we can view the system (6.3.15) for the system for the unknown
8ZN = (8XN,8YN,6RN)

with given source terms Zy = (Xn,Yn,ZnN), En, and E. We thus rewrite (6.3.15)

as
SXN = \I’l(SXN,(SYN,&RN),

§Yn = Wa(8Xn,8Yw, 8% N), (6.3.16)
SRy = U3(8Xn. 8V, 5RN),
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where ¥;, j = 1,2, 3, is given by

U (6XN,0YN,60RN)
= @j((SXN + X§N.8YN + YN, 6RN + RN) — S, N XN, YN, RN). (63.17)

We now study the system (6.3.16). We basically repeat the computations in Sec-
tion 5.5 by first multiplying the Duhamel formulation by e~* and using (6.3.10),
(6.3.12), and (6.3.13) as a replacement of the Strichartz estimates (Lemma 5.3.1).
This allows us to place e** on one of the factors of §Xn (t'), §Yn (t'), or SRy (')
appearing on the right-hand side of (6.3.16) under some integral operator (with integ-
ration in the variable #’). Our main goal is to prove that

U = (U, Uy, U3) (6.3.18)

is a contraction on a small ball in Z3""*>**3(T). In the following, however, we first
establish bounds on W; in (6.3.17) for §Zy € Bj, where By C Z*1-°2%3(T') denotes
the closed ball of radius 1 (with respect to the Z51-52-°3(T")-norm) centered at the
origin. For §Zy € By, it follows from (6.3.4) that

I Z]| zs1s253(my S NIBZN || zs1-s2.53¢7) + 1 Z N || zs1-52:53(T)
<1+ Cy=:R. (6.3.19)

We first study the first equation in (6.3.16). From (6.3.17) with (5.5.2), (6.3.14),
and (6.3.17), we have

MU (8X N, 8Y N, SRN)(@) = e M1 (1) + e M (1) + e MIs(1),  (6.3.20)

where (i) I; contains the difference of one of the elements in the enhanced data sets &
and E y, (ii) I, contains the terms with the high frequency projection 7 ﬁ =Id—ny
onto the frequencies {|n| = N}, and (iii) I3 consists of the rest, which contains at least
one of the differences § X, 6Yn, or Ry (other than thosein Z = §Zy + Zn).

In view of (6.3.5), the contribution from I; gives a small number «, while the
contribution from I, with JTIJV‘ gives a small negative power of N by losing a small
amount of regularity.* Proceeding as in (5.5.7) with (6.3.3), (6.3.4), (6.3.5), (6.3.8),
and (6.3.19), we have

le ™1y + e La|lxsi ry < C(T)(k + N0 Ko)(R* + K§)
< C(T)(k + N~ Ko(R* + K (6.3.21)

4We have sharp inequalities in (6.1.12) as compared to the regularity condition in The-
orem 5.2.1. This allows us to gain a small negative power of N, by losing a small amount of
regularity and using ﬁ
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for any §Zn € B; and some small § > 0. As for the last term on the right-hand side
of (6.3.20), we use (6.3.10) and (6.3.12) in place of Lemma 5.3.1. Then, a slight
modification of (5.5.7) yields

le ™ Ts]|xs1(ry < C(TIA O Ko(R?|8Zw | 251253 (7 + Kg) (6.3.22)

forany 6Zx € B;.
Next, we study the second equation in (6.3.16). As in (6.3.20), we can write

e MU, (XN, 8Y N, SRN)(@) = e M (1) + e M1 (1) + e M), (6.3.23)

where (1) II; contains the difference of one of the elements in the enhanced data sets &
and E y, (ii) II; contains the terms with the high frequency projection 1# =Id—ny
onto the frequencies {|n| Z N}, and (iii) II3 consists of the rest, which contains at least
one of the differences 6 Xy, Yy, or SRy (other than thosein Z = §Zy + Zn). As
for the first two terms on the right-hand side of (6.3.23), we can proceed as in (5.5.9)
with (6.3.3), (6.3.4), (6.3.5), (6.3.8), and (6.3.19), and obtain

le™ M + e MM [lysary < C(T)(k + N~°)(R® + K3) (6.3.24)

for any 6Z € B and some small § > 0. Before we proceed to study the last term
e *1I5(¢), let us make a preliminary computation. By the fractional Leibniz rule
(Lemma 2.1.3 (1)) and Sobolev’s inequality, we have

_1 _1 _1
VY272l 3 < VY272 fllen gl + 1 2 (V)22 gl
_1 _1
S I3 71 5 IV ~Hgll s, (6.3.25)
provided that % + % = % with 1 < ry,r < oo,

3 1 sp— 1
> — — — and !
8 ry 3

1
7’2'

IS

3
> - — (6.3.26)
8
This condition is easily satisfied by taking s; < % < 53 both sufficiently close to %
and r; = rp = 3. By (6.3.13), (6.3.25), and Lemma 2.1.3 (i), we have

||e_“I((X1 + Y1+ E)X2+ Y, + E0>)HYS2(T)

< -’ ”e—mW)sz—%((xl +Y, +Eo)(Xo+ Yo + EO))”LH"L%
T X

1 _1 1.
= COOMUVITTEX g + V)72l + (V)72 Bollge)

= oo

L

_ _1 _1
+ e VY22 allyy + (V)72 Bollege, ).

~oo

x (Jle™ (V)*174 X, |

wioe

8 13
L1

=

(6.3.27)
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provided that s; < % < 5, are both sufficiently close to % Compare this with (5.5.8).
Then, from (6.3.10), (6.3.12), and (6.3.27) with (6.3.3), (6.3.4), (6.3.8), and (6.3.19),

a slight modification of (5.5.9) yields
le™* M3 lys> 7y < C(T)A™* (R4||52N||z§1 52537y + K3) (6.3.28)

forany 6Zx € B;.
Finally, we study the third equation in (6.3.16). As in (6.3.20) and (6.3.23), we
can write

e MW (8Xy, 8YN, 8RNI (1) = e MM (1) + e T (1) + e M T (1), (6.3.29)

where (i) III; contains the difference of one of the elements in the enhanced data sets
Z and Ep, (i1) I, contains the terms with the high frequency projection nﬁ =
Id —7n onto the frequencies {|n| =2 N}, and (iii) IlI3 consists of the rest, which
contains at least one of the differences §Xy, §Yn, or Ry (other than those in
Z = 6Zn + Zn). Proceeding as in (5.5.10) with (6.3.3), (6.3.4), (6.3.5), (6.3.8),
and (6.3.19), we have

le™ ML + e MMl 3 405 < C(T) (ke + N Ko(R* + K3)  (6.3.30)

for any §Z € B; and some small § > 0. As for the last term on the right-hand side
of (6.3.29), let us fist consider the terms with the random operator Jg g . By (6.3.8)
and (6.3.9), we have

le™3e.0 (X1 + Y1+ E0) (1) — ¢ *3g.0 (X2 + Y2 + Eo) ()] 13 25

= Kol[e ™ e (™' (X1 + Y1 = X2 = 12)| 3
L2([0.1:L3)

= CDA Ko(lle™ (X1 = Xo)lpgo g1 + €™ (Y1 = V2) | oo r12)

3
LT

for some 6 > 0. The other terms can be estimated in a similar manner and thus we
obtain

le™ M3l sz = CDA™ Ko(RUSZ ll sy + Kg)  (6:331)

for any 6Zx € Bj.
Hence, putting (6.3.21), (6.3.22), (6.3.24), (6.3.28), (6.3.30), and (6.3.31) together,
we obtain

|I\_I)(SZN) ”zil 9253 (1) =< C(T, Ko, R)/\_e ||8ZN ”Zil’sz’%(T)
+ C(T, Ko, R)(k + N7%) (6.3.32)
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forany §Zx € By, where U is as in (6.3.18). By a similar computation, we also obtain
the difference estimate:

[96ZY) = $GZ) | 3125 1

< C(T.Ko. RN 8ZYy) = 82| gr12a g (6.3.33)

for any SZI(\}), SZI(\?) € B;. We now introduce small » = r(7, A) > 0 such that, in
view of (6.3.7), we have

||SZN||Zsl»s2,s3(T) - eAT”(gZN”zil $2:53 () < eATr <1 (6.3.34)

for any §Zy € B}, where B} C Z3"#"3(T) is the closed ball of radius r (with

respect to the Z;'*>**3(T)-norm) centered at the origin. From (6.3.34), we see that

both (6.3.32), (6.3.33) hold on Bf. Therefore, by choosing large A=A(T, Ko, R) > 1,
small k = (T, Ko, R) > 0, and large Ng = No(T, Ko, R) € N, we conclude that U is
a contraction on B} for any N > Ny. Hence, there exists a unique solution §Zy € B}
to the fixed point problem §Zy = U(8Zy). We need to check that by setting Z =
8ZN + Zn, Z satisfies the Duhamel formulation (5.5.2) of the full system (5.2.27)
with the zero initial data and the enhanced data set & = E (1o, ;). From (6.3.16)
and (6.3.14), we have

Z=8Zy+Zy = V(SZy) + PN (ZN)
= ®(BZy + Zy) = B(2).
where ® N = (P1,n, P2 v, D3,n). This shows that Z indeed satisfies the Duhamel
formulation (5.5.2) with the zero initial data and the enhanced data set E = E (iig, w2).
Lastly, we point out that from (6.3.8) and (6.3.19), we have K9 = K + 1 and R =
Co + 1 and thus the parameters A, x, and Ny depend on T, K, and Cy.

As for the second claim in this proposition, we write Zy = Z — (Z — Zy) and
study the system for §Zy = Z — Zp:

§Zy = UV (Zy)
where UV = (\I’N,‘Ifév,\llév) and lIJ]N, j =1,2,3,is given by
WY (8Xn, YN, 5%N)
=Q;(X. Y R)—Djn(X —6XN.Y —8YN. R —5RN).

Here, we view Z = (X, Y, Z), Ey, and E as given source terms. By a slight modi-
fication of the computation presented above, we obtain

PN GZn) 5192937y < C(T. Ko, RIAT IS Z || 515253
+ C(T, Ko, R)(k + N7%) (6.3.35)
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and
|¥N 6z - IV 62 P) ||zj‘ 253 1)

< C(T.Ko. RN 8ZYy) = 82| gr12a g

for any 6Z n, SZ](\}), SZI(\?) € Bj. This shows that there exists a solution
Zy =Z—8Zy = 9(2) - VN ($Zy) = N (Zn)
to the truncated system (6.3.2) on [0, T']. Furthermore, from equation (6.3.35) with
A = AT, Ko, R) > 1, we have
1Z = ZNlzs1s253ry < WY GZNgs1s2-3 7
< C(T, Ko, R)e*T (k + N7%) — 0,
as N — oo and « — 0. This proves (6.3.6). This concludes the proof of Proposi-

tion 6.3.1. n

Next, we prove that the solution (X, Yy, R ) to the truncated system (6.3.2)
has a uniform bound with a large probability. The proof is based on the invariance
of the truncated Gibbs measure py under the truncated hyperbolic ®3-model (6.1.2)
(Lemma 6.2.3) and a discrete Gronwall argument.

Proposition 6.3.2. Let T > 0. Then, given any 6 > 0, there exists Co = Co(T,5) > 1
such that
pn @ Po(|(Xw, Y, Rw) | zs1:52.53(r) > Co) <6, (6.3.36)

uniformly in N € N, where (Xy, Yy, Ry) is the solution to the truncated sys-
tem (6.3.2) on [0, T]| with the truncated enhanced data set (g, w3) in (6.1.10).

Proof. Let (uy,d;u) = ®N (¢)(iig, w>) be a global solution to (6.1.2) constructed in
Lemma 6.2.3, where ®V (¢)(iig, w>) is as in (6.2.8). Then, by the invariance of the
truncated Gibbs measure oy (Lemma 6.2.3), we have

/ F(®N (1) (i, 02))d (B ® P)(iig. w2) = / F(io)dpn(io)  (63.37)

for any bounded continuous function F : €71%0(T3) x €=190(T3) - Randr e R,.
By Minkowski’s integral inequality, (6.3.37), (1.3.2), and Proposition 6.2.4, we have,
for any finite p > 1,

T
/O M Gonan )2 (0)]d

L? on®P
fi.on (PN ®F2)

T
< /0 ||M(:(77Nu0)23)”L50 w2(5N®]P’2)dt

< C(T, p) < o0, (6.3.38)
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forany 0 <7 < T and p > 1, uniformly in N € N. By defining
VN i=uny — 1,
we see that vy satisfies the equation
(0249 + 1 = Aoy = onn(:(eyun)?:) — M (:(wvun)?: ) vun
with the zero initial data, or equivalently

_ " i sin(@ —OIVD)
vn (1) —/O e ™

x (omn (:(myun)?:) — M(:(myun)®:)myun)(@)dt’.

Thus, we have
t . Y V
low (1) | y—eco < /0 ( (UTffH)

+ HM(i(ﬂNMN)Zi)(I')

o G (v ()
WX_S,OO

sin((¢ — 1)[V]) Jar

V] e

for any ¢ > 0. Then, by using Minkowski’s integral inequality, (6.3.37), and Proposi-
tion 6.2.4 once again, we have

anun(t')

Hlow () lly—e-c= |

</ (

Lgo.wz (6N ®P2)
sin(z[V])

WJTN(3(7TNMO)23)

L§0!w2 (PN ®P2; Wy ™)
sin(z[V])
vl

+ HM(i(ﬂNuo)zi) TNUQ

)dr

p 4 . —&,00
Lﬁo.a)Z(pN®P2’Wx )

< C(T, p) < (6.3.39)

forany0 <t <T, p>1,and ¢ > 0, uniformly in N € N.
We rewrite the system (6.3.2) as

(07 + 9+ 1—A) Xy =207n(oNQ TN) — M(:(Tvun)*:) TN,
(07 + 0, +1—A)Yy
=onn(vn(XN + YN +0YN) +2(Ry + YNO TN +U§N)
+2(Xy + Yy +0YN)O 1y) (6.3.40)
— M(:(myun)®:)(Xn + Yy + oY),
Ry =203 (Xn + Yn +0YN)O 1w +2038 o (Xn + Yv +0VYy)

- fo MC: (oyun ) )@Yy 0. £)d1,
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where we used (5.2.16) (with the frequency truncations and extra o’s in appropriate
places) and vy =o'+ Xy + Yy so the right-hand side is linear in (Xn, Yn, Rp).
Let § > 0. In view of Proposition 6.2.4, we choose K = K(T,8) > 1 such that

- Y a )
pn @ Pa ([ Ew (o, w2) [ xs. > K) < 3 (6.3.41)
uniformly in N € N. We also define L(¢) by
L) =1+ oy @) ll=eco + [M(:(rnun)?:) (@) (6.3.42)

In view of (6.3.38) and (6.3.39), we choose L1 = L1(T,8) > 1 such that
- 8
PN ® P2(||L||L3T > L) < 3 (6.3.43)

In the following, we work on the set
|| EN(ﬁo,wz)Hx? < K and ”L”L% < Lj. (6.3.44)

By applying Lemma 5.3.1 with (5.5.1) and Lemma 2.1.2 to (6.3.40) and using
(5.5.3), (6.3.42), and (6.3.44), we have

T
Xulern < [ (v vl
0 X

+ M (yun)? ) @) - | TN([)”H;l_l)d[
T
< K/ L(t)dt. (6.3.45)
0
Since s, < 1, we can choose sufficiently small ¢ > 0 such that Lemma 2.1.3 (ii)
yields
lon (Xn + YN + Y W)l 21
< lonllwzellXn + YN + Y llae
< lowllwgeee (I XNl gst + YN 52 + I1E N Gio, @2) [l xs.)-
Hence, by (6.3.40), Lemma 5.3.1 with (5.5.1), Lemma 2.1.2 (see also (5.5.9)),
(6.3.42), and (6.3.44), we have
T
YN Ilys2(r) < /0 (low () (Xn (@) + YN (1) + YN O o
HIRN O + YOO TN + 07 Ol s
HIXN @) + YN (@) + YN D) TN D)l s

+ | M(: (myun)?:)(@)|
< [Xn () + YN (1) + 0 N ()] 521 )d
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T
<C(DK>+ K / L1 + 1 Xl + 1Vallys)d
0

+/OT ||SftN(t)||H;3dt. (6.3.46)
Fix 0 < 7 < 1 and set
L‘IIk = L9(1I;), where I} = [kt, (k + )7].
By a computation analogous to that in (5.5.10), we obtain
||5RN||L§k a3 S ||§é§)’N (XN +YN+0YN)O 1w ”L?kH,‘?

+ 138 0 (X + Ty + 0V g s

T
—}—/ IM(:(myun)?:)(t)| - ”AN(I’t/)”L§([tf,T];H;§3)dt/
0
<C(MK*(K + | Xnllxs1(ry + YN lys2 (+1)0)

T
+K / L(t)dt. (6.3.47)
0

Given 0 <t < T, let k«(t) be the largest integer such that k«(¢)r < ¢. Then, from
(6.3.46) and (6.3.47), we have

1YNllys2@) < 1YW lys2 (s ) +1)7)
k() ,
< C(T)K*+ C(T)K? Z t3(1+ IL@ 3 )1+ X8 @) lxs1 (1))
k=0 k
ke@)
+ CKT Z T§||L(l)||L;k
k=0
k()

2
+CK? 30 (U4 L@ g YW sz @enyo- (6.3.48)
k=0

Now, choose t = (K, L1) = ©(T, §) > 0 sufficiently small such that
C:K2t3L; < 1. (6.3.49)
In view of (6.3.38) and (6.3.39), and define L, = L,(7,§) > 1 such that

kx(T)
- 1 8
PN & Pz(kz_o T3 (1 + ||L(t)||L3k) > L2) < 3 (6.3.50)
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In the following, we work on the set

k«(T)

Z f%(l + IIL(t)IIL;k) < L,. (6.3.51)
k=0

It follows from (6.3.48) with (6.3.44), (6.3.45), (6.3.49), and (6.3.51) that

1YWl ys2 (ks (0)+ 1))
ki (£)—1

2
< C(T)K*LiL; + C4K? Z T3 ||L(l)||L§k 1YWl ys2 (k+1)0)-
k=0

By applying the discrete Gronwall inequality with (6.3.51), we then obtain

1YNllys2¢) < 1YW lys2 (s ) +1)7)

ks()—1
§C(T)K4L1L2exp(c41<2 > r%||L(t)||L%)
k
k=0
< C(T)K*LyLsexp(C4K>L,). (6.3.52)

Therefore, from (6.3.45) and (6.3.52), we have
I X llxsicry + 1Ya lys2ery < C(T)KLy + C(T)K*Ly Ly exp(C4K?L»).
Together with (6.3.47), we then obtain
(XN, YN RN) | zs152.53(7) = Cs(T, K, Ly, L)
under the conditions (6.3.44) and (6.3.51). Hence, by choosing Cy = Co(T,8) > 0
in (6.3.36) such that Cy > Cs(T, K, Ly, L), we have
pN ® P, ({”(XN’ YN, Rw)llzs15253¢m) > Co} N {”EN(T}O,CUZ)HX? <K}

k+(T)

N {||L||L3% < Ll}ﬂ{ Z r%||L(t)||L?k < Lz}) =0. (6.3.53)

k=0
Finally, the bound (6.3.36) follows from (6.3.41), (6.3.43) (6.3.50), and (6.3.53). =

Given a map S from a measure space (X, i) to a space Y, we use Sz to denote
the image measure (the pushforward) of © under S. Fix 7" > 0 and we set

VN = (EN)#(ﬁN ®P;) and v = E#(,B@ P,), (6.3.54)

where we view E y = E n (i, ;) in (6.1.10) and E = E (1o, ;) in (6.1.11) as maps
1
from #H~275(T3) x Q5 to X7 defined in (5.5.3). In view of the weak convergence
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of py ® P, to p ® P, (Theorem 1.2.1 (i)) and the p ® P-almost sure convergence
of En (U, w2) to E(lig, w2) (Corollary 6.2.6), we see that vy converges weakly
to v. Indeed, given a bounded continuous function F : X% — R, by the dominated
convergence theorem, we have

‘/F(E)dv;v —/F(E)dv

- ‘ / F(En (. 02))d(By ® Py) — / F(E(iio. 02))d(7 ® P2)

< ||F||Loo‘/ 1d ((pn ® P2) — (,5®P2))‘

+ ‘/(F(EN(iio,wz)) — F(E(iho, 2)))d(5 ® P2)

— 0,

as N — oo.

Next, we prove that vy = (En)#(on ® P2) converges to v = E4(p @ P») in
the Wasserstein-1 metric. We view this problem as of Kantorovich’s mass optimal
transport problem and study the dual problem under the Kantorovich duality, using
the Boué-Dupuis variational formula. This proposition plays a crucial role in the
proof of almost sure global well-posedness and invariance of the Gibbs measure p
presented at the end of this chapter.

Proposition 6.3.3. Fix T > 0. Then, there exists a sequence {pN}NeN of probab-
ility measures on X7, x X%, with the first and second marginals v and vy on X7,
respectively, namely,

/ dpy(EY, E?) = dv(EY) and / dpn (B, E?) = dvy(E?),
E2eXt EleXs
(6.3.55)

=

such that
. —~1 —~2 —~1l =2
min(| 2" = E2|lxs., dpw (81, 82) — 0,
X5 x X5
as N — oco. Namely, the total transportation cost associated to py tends to 0 as
N — oo.

Remark 6.3.4. In view of the weak convergence of the truncated Gibbs measure gy
to p (Theorem 1.2.1) and the almost sure convergence of the truncated enhanced
data set Ey to E with respect to p ® P, (Corollary 6.2.6), it suffices to define
pv = (E, En)#(p ® P,). In the following, however, we present the full proof of
Proposition 6.3.3, using the Kantorovich duality and the variational approach since

we believe that such an argument is of general interest.
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Proof of Proposition 6.3.3. Define a cost function ¢(E', £%) on X2 x XZ. by setting
c(E', 8% = min(|E' — E?xz., 1).
Then, define the Lipschitz norm for a function F : X7 — R by

F(E!) = F(22)

c(E1, E?)

|FllLip =  sup

Note that || F'||Lip < 1 implies that F is bounded and Lipschitz continuous. From the
Kantorovich duality (the Kantorovich—Rubinstein theorem [78, Theorem 1.14]), we
have

inf / c(B', 2%dp(E!, E?
pel(v,vy) X2 x XL

= sup (/ F(E)duN(E)—/F(E)dv(E)), (6.3.56)

| FlLp=<1

where I'(v, vy) is the set of probability measures on X7 x X7 with the first and
second marginals v and vy on X%, respectively.
For a function F with || F ||, < 1, let

G:=F—infF + 1.

Then, we have

/F(E)va(E)—/F(E)dv(E):/G(E)va(E)—/G(E)dv(E). (6.3.57)

Note that |G ||Lip = || FllLip < 1 and 1 < G < 2. Moreover, the mean value theorem
yields that
1 1 -1
S oeYTeeY (6.3.58)
e x—y

for any x, y € [1, e] with x # y. Set {a}+ = max(a, 0) for any a € R. By (6.3.57)
and (6.3.58), we obtain

/F(E)va(E)—/F(E)dv(E)

< {—log(/ G(E)du(E)) +1og(/ G(E)duN(E))} (6.3.59)
+

forany N € N.
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Finally, define H =log G. Then, from (6.3.58) and 1 <G <2, we have || H ||Ljp < 1.
Hence, it follows from (6.3.56), (6.3.57), and (6.3.59) that

inf / c(E',E?)dp(E!, 8%
pel(vvn) Jxe x x5

< sup {—log(/ exp(H(E))dv(E)) —|—log(/ exp(H(E))va(E))} .
Ve i

Our goal is to show that the right-hand side tends 0 as N — oo. Since || H ||Lip <1, H
is bounded and Lipschitz continuous. Then, by the weak convergence of {vy } yeN tO
v, it suffices to show that

limsup sup sup {—log(/ exp(H(E))de(E))
N—oo 0<H=<1 M>N
1 H llLip <1

+ log(/ exp(H(E))va(E))} <0. (6.3.60)
+
From (6.3.54), (6.1.1), and (6.3.58) with 0 < H < 1, we have

{—log(/ exp(H(E))de(E)) + log(/ exp(H(E))a’vN(E))}

+

= {—log(/// exp(H (En (o, 2)))dpym (Mo)dﬂo(ul)dpz(wz))

i log( [JJ ot @ Gio.onnipn (uo)duo<u1)dﬂ>z(wz>)}

+

< {— /// exp(H (E 31 G0, 2)))dpas (w0)djto (1) d P (@)
+f exp(H(ENmo,wz)))de(uo)duo<u1)dﬂ>z(wz>}+
< // _{— / exp(H (S a1 (fio. ©2)))dpa (o)
+ [ exp(H(EN(ao,m)))de(uo)} :|duo(u1)dP2(w2)
+

< /f :{—log( [ exp(H(EM(ﬁo,wz)))dpM(uo))

+ log (/ exp(H (E y (tio, w2)))dpn (uo)) }

}dﬂo(ul)dﬂ”z(wz)-
(6.3.61)

+

In the following, we study the integrand of the (11, w,)-integral. Thus, we fix
u1 and w, and write E y (Uo, w2) = En(Ug, U1, w2) as En(ug) for simplicity of
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notation. By the Boué-Dupuis variational formula (Lemma 3.1.1) with the change of
variables (3.2.4), we have

- log( [ et Eastuondon (w)) T log( [ et @ oo (uo))

= inf ]E|:—H(EM(Y +TM 4 63m)) + Ry (Y +TM +634)

TMcH)
1 ! M 2
o3 [ (z>||,,;dz}

— inf E[—H(EN(Y + TV +638) + RY(Y + YN +03n)
TN ecH]}

1o
+ 5[ ||TN(t)||iI]dt} +log Zy —log Zn, (6.3.62)
0 X
where IQX, is as in (3.2.25). Given § > 0, let IN be an almost optimizer, namely,

inf E[—H(EN(Y + YV +03w))
TN ecH]}

~ 1o
+ RY(Y + YN +03n8) + Ef ||TN(z)||§I]dz]
0 X
= B[ -HEN + 1" +030)
Do N 1 bos N 2
tRyY + X7 +03n) + 5 | 1L Ol dt| =6
0 X
Then, by choosing Y™ = Y/ and the Lipschitz continuity of H, we have

~inf ]E|:—H(EM(Y + Y™ 4+ 03u))
TMeH)]

~ | I
R+ T o3+ [T O]
0 X

— inf E[—H(EN(Y + YV +03w))
TN eH]}

- 1 rt .
+ RG(Y + YN +03n) + 5/ ||TN(t)||12qldt}
0 X
<S§+E[HENY +X" +038) — HEMY + XV +03u))
+ Ry (Y + XY +03u) — RY(Y + XY +03w)]
<S8+ [HlLp-E[I1EM (Y + XY +03x5) — Ex(Y + XN + 034 llz |
+E[RG (Y + XN +03m) — Ry (Y + XV +03m)]. (6.3.63)
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Proceeding as in Section 3.3 with 0 < H < 1, we have (3.3.16). Then, using the
computations from (3.3.7) to (3.3.18) we obtain

E[Ry (Y + XN +03m) — Ry(Y + XV +03n)] = 0, (6.3.64)

as M > N — oo. We also note that as a consequence of (3.3.16) with (3.2.16) and
Lemma 3.1.2, we have
E[IXM)2,] < 1. (6.3.65)

uniformly in N € N.
Moreover, by slightly modifying (part of) the proof of Proposition 6.2.4, we can
show that

E[|En( + XV +035) —En(¥ + XV + 031y ] > 0. (6:3.66)

as M > N — oo. Here, we only consider the contribution from §é’@ The other
terms in the truncated enhanced data sets can be handled in a similar manner. With
the notations (6.2.18) and (6.2.19) (recall that we suppress the dependence on u; and
w,), we have
S + XN 403 - 38 o 1Y + XN 4 03w
=SU o1 + XN 4+ 03m). 1(0(3m — 33))]
+3% o103y —3n). 1 (¥ + XV +638)]
+ (Yol + XV +03M) =38 o1 (¥ + XN +03))
=: 14+ 1+ I (6.3.67)

It follows from (6.2.28), (6.2.29), and (6.2.32) together with Remark 5.4.2 that there
exists small 5o > 0 such that

I, + 12500,

<OV —yorme + 1T gt + 13w e 3 — Bat e
LW,
< C(T)N~% (|| + XY 1 + 13w )?
= oo —%—s.oo 1 H! N ||w1l—¢&.00
LW,
+ N%|35 = 3m 5 1-ec0 (6.3.68)

and
E[N%|3y — 3mll%1—coe] = O, (6.3.69)

as M > N — oo. From (6.2.16) and (6.2.18), we have

§g,@ (V1. 2] (w) = I(”N(KO(UL TNY1)) @ (TN ¥2).
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Hence, when we consider the difference in III, we see that one of the factors comes
with wps — 7, from which we can gain a small negative power of N. Hence, by
repeating the calculation above with this observation, we obtain

RGN O BN 1769))] PP
SNy I+ 13N le)’ (63.70)
LW,

X

forany M > N > 1. Lastly, from (6.2.35) and (6.2.23), there exists § > 0 such that
138 0 1M1 =38 o 1M g,y = N R (Your,02) (6.3.71)

forany M > N > 1, where, in view of (6.2.36), E[E(Y,ul,a)z)] < C(uy,wy) < 00
for almost every u; and w;. Therefore, from (6.3.67), (6.3.68), (6.3.69), (6.3.70),
and (6.3.71) with the bound (6.3.65), we obtain

E[|3 oy + 7 + 03] =58 oIV + X + 030 010 | = O

asM > N — oo.
Note that {Zx } neN is a convergent sequence and § > 0 was arbitrary. Hence, it
follows from (6.3.62), (6.3.63), (6.3.64), and (6.3.66) that

limsup sup  sup {—log(/ exp(H(EM(uo,ul,wz)))dpM(uo))
N—oo 0<H<1 M>N
I H llLip=s1

+log(/ eXP(H(EN(UOaul,wZ)))dPN(UO))} <0,
+
(6.3.72)

for almost every u; and w,, where the supremum in H was trivially dropped in
the last step of (6.3.63). Therefore, (6.3.60) follows from (6.3.61) and (6.3.72) with
Fatou’s lemma. This concludes the proof of Proposition 6.3.3. ]

Finally, we present the proof of Theorem 1.3.2.

Proof of Theorem 1.3.2. We break the proof into two parts.

Part 1. We first prove almost sure global well-posedness of the hyperbolic @g—model.
Asin [5,9,19], it suffices to prove “almost” almost sure global well-posedness. More
precisely, 1t suffices to prove that given any T > 0 and small § > 0, there exists
Srs CH™ 375(T3) x Qo with f ® P»(2¢5) < & such that for each (iig, w2) € T4,
the solution (X, Y, R) to (5.2.27), with the zero initial data and the enhanced data
E(tig, w) in (6.1.11), exists on the time interval [0, T'].
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We assume this “almost” almost sure global well-posedness claim for the moment.
Denote by (Xy, Yn, R y) the solution to the truncated system (6.3.2) with the trun-
cated enhanced data E y (#io, @) in (6.1.10) and set

upy (g, w2) = (o, w2) + oYy (o, w2) + Xy + YN, (6.3.73)

which is the solution to the truncated hyperbolic @g—model (6.1.2) with the initial
data (up, d;upN)|r=0 = g = (ug,u1) and the noise § = £(w,). Here, we used the
uniqueness of the solution u y to (6.1.2); see Remark 6.2.2. Then, we conclude from
Corollary 6.2.6 (on the almost sure convergence of Ey (g, w) to E(ilg, )) and
the second part of Proposition 6.3.1 that (1, d;u N ) (o, w2) in (6.3.73) converges to
(u, d,u) (g, w2) in C([0, T]; =2~ (T3)) for each (iig, w2) € 1.5, where u(iig, w2)
is defined by

u(ﬁo, W) = T(ﬁo,a)z) + OY(l_io, w)+X+Y. (6.3.74)

Now, we define
o0 o0
Y= U ﬂ Ezj,z—jk—l.
k=1j=1

Then, we have p ® P,(X) = 1 and, for each (i, w;) € X, the solution (uy, d,uy)
(1o, wy) to the truncated hyperbolic Cbg-model (6.1.2) converges to (u, d;u) (o, )
in (6.3.74) in C(R4; =3¢ (T3)) (endowed with the compact-open topology in
time). This proves the almost sure global well-posedness claim in Theorem 1.3.2,
assuming “almost” almost sure global well-posedness.

We now prove “almost” almost sure global well-posedness. Fix 7" > 0 and small
8 >0.Given E = (By,..., 8¢) € X5, let Z(E) = (X, Y, RN)(E) be the solution
to (5.2.27) with the zero initial data and the enhanced data set given by &, namely,
E; replacing the jth element in (5.2.28). Note that E here denotes a general element
in X' and is not associated with any specific (o, w2) € Je=2=¢ (T3) x Q5. Similarly,
given N e Nand E € X7,let Zy(E) = (Xn.Yn, RN )(E) be the solution to (6.3.2)
with the enhanced data set &, namely, 2; replacing the jth element of Z y (iio, @)
in (6.1.10).

Given Cy > 0, define the set ¢, C X7 such that, for each E € X¢,, the solution
Z(E) to (5.2.27), with the zero initial data and the enhanced data E, exists on the time
interval [0, 7], satisfying the bound

IZ(E) | zs1-s2.53(7) < Co + 1. (6.3.75)
Let N € N. Given K, Cy > 0, we set
ANk,.Co =B € X7 |Elxz < K N ZN(E)zs1:52:53(r) < Co}  (6.3.76)
and

Bnk,co ={(E.B) e XF x X5 |8 — E'|lxz. <k, B € An,k,co}. (6.3.77)

£
T
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where k > 0 is a small number to be chosen later. Then, from the stability result (the
first claim in Proposition 6.3.1) with (6.3.75), (6.3.76), and (6.3.77), there exists small
k(T, K, Cy) € (0,1) and Ny = No(T, K, Cyp) € N such that

ECO X X% D BN,K,CO (6.3.78)

forany N > Nj.
Let Co = Co(T,8) > 1 be as in Proposition 6.3.2 and let py, N € N, be as in
Proposition 6.3.3. Then, from (6.3.54), (6.3.55), and (6.3.78), we have

b ® P2(E(iig, w2) € Zc,)
Z/IEEZCO(E’ E/)de(E, E/)
> flgN_K,CO(E, =)dpn (B, &)
= 57— ¢ =/ ol

> 1—/1{||E—E'||x‘_;>x}dmv(~,u) /IAN'K!CO(H )dpn(E, E)
1L o

> 11— [ min(l2 - &'l Ddpu (E.2)

—pn ® P,({En (g, w3) € AN k.c,})

1

>1— —/min(||E — &'llxs. )dpy (B, E) - 25, (6.3.79)
K

where the last step follows from Proposition 6.2.4 by choosing K = K(§) > 1,
together with Proposition 6.3.2. By Proposition 6.3.3, we have

%/min(HE—E’I\,Hx?,l)de(E,E’N)—)O, (6.3.80)
as N — oo. Therefore, we conclude from (6.3.79) and (6.3.80) that
p® Pr(E (g, w) € B¢,) > 1 —26.
This proves “almost” almost sure global well-posedness with
Srs = (0. 02) € #72H(T%) x @z : Eilo. 2) € Ty,

and hence almost sure global well-posedness of the hyperbolic @g—model, namely,
the unique limit u = u(iig, w,) in (6.3.74) exists globally in time almost surely with
respect to p ® P,.

Part 2. Next, we prove invariance of the Gibbs measure p = p ® 1o under the limit-
ing hyperbolic Cbg—dynamics. In the following, we prove

[ F(®(0)(Fio. 02))d(F ® Py) o, 02) = f Fio)d 3(iio) 63.81)
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for any bounded Lipschitz functional F : € 199(T3) x €~190(T3) - R and ¢ €
R, where ®(iig, w,) is the limit of the solution (uy, d;un) = DY (iio, w») to the
truncated hyperbolic ®3-model defined in (6.2.8).

As in Part 1, we use the notation (X, Y, R) = (X, Y, R)(E), etc. Also, let py,
N € N, be as in Proposition 6.3.3. Then, by the decomposition (6.3.1) (also for N =
00), (6.3.54), (6.3.55), and the invariance of py under the truncated hyperbolic <I>§-
model (6.1.2) (Lemma 6.2.3), we have

| F@©in.02)d(G @ P)(io. 02
- [ Fem@)dmE.2)
— [ F@¥iEnden(E.2)
+ [[F@w@) - FeYoE)ldm E.2)
— [ FGdpn o) + [[F@©@) - F@¥O)E)]don(E. ).
By the weak convergence of py to p, we have
Jim [ F@odayGio) = [ Fiiod i)
Hence, since F is bounded and Lipschitz, (6.3.81) is reduced to showing that
[ min(190)(E) = & ()& lle-0.e-10. 1)dpn (8. E) 0. (6382)

as N — oo.
As in (6.2.8), we write

O(1)(8) = (®1(1)(B), D2(1)(E)) and @V (1)(E') = (@] (1)(E")., 87 (1)(E").
where E = (81,...,E¢) and E' = (E], ..., Ef) (see also (6.1.10) and (6.1.11)).
With the decomposition as in (6.3.1), we have

Q1(1)(E) = E1 +0E3 + X(E) + Y(B),

q)N =/ — =/ =/ X =/ Y ol (6383)
1 (D(E) Bl +0E3+ XnN(E") +YN(E),

and ®,(1)(E) = 3,P1(¢)(E) and &Y (t)(E') = 9,DY (t)(E’) are given by term-
by-term differentiation of the terms on the right-hand sides of (6.3.83). From the
definition (5.5.3) of the X7-norm, we clearly have

I(E1 + 083)(1) = (E] + 0 ES)(1)[e-100
+1(0:81 +00,83)(1) = (0, E} + 00, E5)(1)[le-100 S [|E — &l oxz .
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Hence, in view of (5.2.31) with (5.5.1), (6.3.82) is reduced to showing that
/min(||Z(E) — ZN (BN zs152:53(1), l)de(E, E) — 0, (6.3.84)

as N — oo, where Z(E) = (X,Y,R)(E) and ZN(E') = (Xn, YN, RN)(E') asin
Part 1.

It follows from the second part of Proposition 6.3.1 (withx = ||E — E/|| xz.) and
Proposition 6.3.3 that

/mm(”Z(E) — ZN(E/)||Z-Y1s~Y2~A"3(T), 1)de(E, E,)
< AT, Ellxz.. 1 Z(B) | zs1 5253 (1)
X /min(||E — Bl xs + N8, 1)dpn(E,E) — 0,

as N — oo. This proves (6.3.84) and therefore, we conclude (6.3.81), which proves
invariance of the Gibbs measure p under the limiting hyperbolic <I>§—model. ]



