
Appendix A

Absolute continuity with respect to the shifted measure

A.1 Preliminary lemmas

In this appendix, we prove that the ˆ33-measure � in the weakly nonlinear regime
(j� j � 1), constructed in Theorem 1.2.1 (i), is absolutely continuous with respect
to the shifted measure Law.Y.1/C �Z.1/CW.1//, where Y is as in (3.1.2), Z is
defined as the limit of the antiderivative of PZN in (3.2.3) asN !1, and the auxiliary
process W is defined by
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for some small " > 0. For the proof, we construct a drift as in the discussion in [4, Sec-
tion 3]. See also [54, Appendix C]. The coercive term W is introduced to guarantee
global existence of a drift on the time interval Œ0; 1�. See Lemma A.1.2 below. We
closely follow the presentation in Appendix C of our previous work [54].

First, we recall the following general lemma, giving a criterion for absolute con-
tinuity. See [54, Lemma C.1] for the proof.

Lemma A.1.1. Let �n and �n be probability measures on a Polish spaceX . Suppose
that �n and �n converge weakly to � and �, respectively. Furthermore, suppose that
for every " > 0, there exist ı."/ > 0 and �."/ > 0 with ı."/, �."/! 0 as "! 0 such
that for every continuous function F W X ! R with 0 < infF � F � 1 satisfying

�n.¹F � "º/ � 1 � ı."/

for any n � n0.F /, we have
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Then, � is absolutely continuous with respect to �.

By regarding PZN in (3.2.3) and W in (A.1.1) as functions of Y , we write them as

PZN .Y /.t/ D .1 ��/�1 W Y 2N .t/ W;
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(A.1.2)

and we set PZN .Y / D �N PZN .Y /. Then, from (A.1.2), we have

PZN .Y C‚/ � PZN .Y / D .1 ��/
�1�N .2‚NYN C‚

2
N /; (A.1.3)
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where ‚N D �N‚. We also define WN .Y /.t/ by

WN .Y /.t/ D .1 ��/
�1�N
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Next, we state a lemma on the construction of a drift ‚.

Lemma A.1.2. Let � 2 R and P‡ 2 L2.Œ0; 1�IH 1.T3//. Then, given any N 2 N, the
Cauchy problem for ‚:´

P‚C �.1 ��/�1�N .2‚NYN C‚
2
N /C

PWN .Y C‚/ � P‡ D 0

‚.0/ D 0
(A.1.5)

is almost surely globally well-posed on the time interval Œ0; 1� such that a solution
‚ belongs to C.Œ0; 1�IH 1.T3//. Moreover, if k P‡k2

L2.Œ0;��IH1x /
�M for some M > 0

and for some stopping time � 2 Œ0; 1�, then, for any 1 � p < 1, there exists C D
C.M;p/ > 0 such that
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where C.M;p/ is independent of N 2 N.

A.2 Absolute continuity

In this section, we prove the absolute continuity of the ˆ33-measure � with respect
to Law.Y.1/C �Z.1/CW.1// by assuming Lemma A.1.2. We present the proof of
Lemma A.1.2 at the end of this appendix. For simplicity, we use the same shorthand
notations as in Chapters 3 and 4, for instance, Y D Y.1/, ZD Z.1/, W DW.1/, and
WN D WN .1/.

Given L� 1, let ı.L/ and R.L/ satisfy ı.L/! 0 and R.L/!1 as L!1,
which will be specified later. In view of Lemma A.1.1, it suffices to show that if
G W C�100.T3/! R is a bounded continuous function with G > 0 and

P
�
¹G.Y C �ZN CWN / � Lº

�
� 1 � ı.L/; (A.2.1)

then we have
lim sup
N!1

Z
exp.�G.u//d�N .u/ � exp.�R.L//; (A.2.2)

where �N denotes the truncated ˆ33-measure defined in (1.2.11). Here, think of
Law.Y C �ZN CWN / as the measure �N , weakly converging to � D Law.Y C
�ZCW/.
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By the Boué–Dupuis variational formula (Lemma 3.1.1) and the change of vari-
ables (3.2.4), we have
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where yR˘N is as in (3.2.25). We proceed as in Section 3.2, using Lemmas 3.2.2
and 3.2.3 with Lemma 3.1.2, (3.2.17), and the smallness of j� j. See (3.2.9), (3.2.16),
and (3.2.19). Thus, we have
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for some constant C1 > 0. For P‡N 2 H1
a, let ‚N be the solution to (A.1.5) with P‡

replaced by P‡N . For any M > 0, define the stopping time �M as
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�
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where C.M; 2/ is the constant appearing in (A.1.6) with p D 2. Let

‚NM .t/ WD ‚
N .min.t; �M //: (A.2.5)

From (3.1.2), we have Y.0/ D 0, while ZN .0/ D 0 by definition. Then, from the
change of variables (3.2.4) with ‚.0/ D 0, we see that ‡N .0/ D 0. We also have
WN .0/D 0 from (A.1.4). Then, substituting (A.1.3) into (A.1.5) and integrating from
t D 0 to 1 gives

Y C ‡N C �ZN D Y C‚
N
M C �ZN .Y C‚

N
M /CWN .Y C‚

N
M / (A.2.6)

on the set ¹�M D 1º.
From the definition (A.2.5) with (A.2.4), we have

k P‚NMk
2

L2t .Œ0;1�IH
1
x /
� 2C.M; 2/ (A.2.7)

and thus the Novikov condition is satisfied. Then, Girsanov’s theorem [21, The-
orem 10.14] yields that Law.Y C ‚NM / is absolutely continuous with respect to
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Law.Y /; see (A.2.10) below. Let Q D Q
P‚N
M the probability measure whose Radon–

Nikodym derivative with respect to P is given by the following stochastic exponen-
tial:
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dt
(A.2.8)

such that, under this new measure Q, the process

W
P‚N
M .t/ D W.t/C hri P‚NM .t/ D hri.Y C

P‚NM /.t/

is a cylindrical Wiener process on L2.T3/. By setting

Y
P‚N
M .t/ D hri�1W

P‚N
M .t/;

we have
Y
P‚N
M .t/ D Y.t/C‚NM .t/: (A.2.9)

Moreover, from Cauchy–Schwarz inequality with (A.2.8) and the bound (A.2.7), and
then (A.2.9), we have
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for any measurable set E.
From (A.2.3), (A.2.6), and the non-negativity of G, we have
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Then, using the definition (A.2.4) of the stopping time �M and applying (A.2.10)
and (A.2.1), we have
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In view of (A.1.6) with (A.2.4) and (A.2.5), Markov’s inequality gives
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which yields
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Now, we set M D 20L. Note from (A.2.4) that P .¹�M D 1º/C P .¹�M < 1º/ D 1.
Then, from (A.2.11) and (A.2.12), we obtain
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Therefore, by choosing ı.L/ > 0 such that C 0Lı.L/
1
2 ! 0 as L ! 1, this shows

(A.2.2) with

R.L/ D L

�
1

2
� C 0Lı.L/

1
2

�
� C1 C logZ;

whereZ D limN!1ZN denotes the limit of the partition functions for the truncated
ˆ33-measures �N .

A.3 Proof of Lemma A.1.2

We conclude this appendix by presenting the proof of Lemma A.1.2.
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Proof of Lemma A.1.2. By Lemma 2.1.3 (ii) and Sobolev’s inequality, we have
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for small " > 0. Moreover, from (A.1.1), we have
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Therefore, by studying the integral formulation of (A.1.5), a contraction argument
in L1.Œ0; T �IH 1.T3// for small T > 0 with (A.3.1) and (A.3.2) yields local well-
posedness. Here, the local existence time T depends on k‚.0/kH1 , k P‡kL2

T
H1x

, and
kYN k

L6
T
W
� 1
2
�";1

x

, where the last term is almost surely bounded in view of Lem-

ma 3.1.2 and (2.1.4).
Next, we prove global existence on Œ0; 1� by establishing an a priori bound on the

H 1-norm of a solution. From (A.1.5) with (A.1.4), we have
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The second term on the right-hand side of (A.3.3), coming from W is a coercive term,
allowing us to hide part of the first term on the right-hand side.

From Lemma 2.1.1 and Young’s inequality, we haveˇ̌̌̌Z
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for small " > 0 and some c > 0. We now estimate the second term on the right-hand
side of (A.3.4). By (2.1.3), we have
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for small "; "0 > 0. As for the coercive term, from (3.2.32) and Young’s inequality,
we haveZ
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Therefore, putting (A.3.3), (A.3.4), (A.3.5), and (A.3.6) together we obtain
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By Gronwall’s inequality, we then obtain
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uniformly in 0 � t � 1. The a priori bound (A.3.7) together with Lemma 3.1.2 allows
us to iterate the local well-posedness argument, guaranteeing existence of the solution
‚ on Œ0; 1�.

Lastly, we prove the bound (A.1.6). From (A.3.1), (A.3.2), and (A.3.7), we have
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for some finite q; c0 � 1 and for any 0 � � � 1. Then, using the equation (A.1.5), the
bound (A.1.6) follows from (A.3.8), the bound on P‡ , and the following corollary to
Lemma 3.1.2:
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for any finite p; q � 1, uniformly in N 2 N.

Remark A.3.1. A slight modification of the argument presented above shows that
the tamed ˆ33-measure �ı constructed in Proposition 4.1.1 is absolutely continuous
with respect to the shifted measure Law.Y.1/C �Z.1/CW.1//. In this setting, we
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can use the analysis in Section 4.2 (Step 1 of the proof of Proposition 4.1.1) to arrive
at (A.2.3). The rest of the argument remains unchanged. As a consequence, the � -
finite version x�ı of the ˆ33-measure defined in (4.1.9) is also absolutely continuous
with respect to the shifted measure Law.Y.1/C �Z.1/CW.1// for any ı > 0.


