Chapter 2

Finite-dimensional approximation on 3-manifolds

2.1 Spectral sections

In order to define Seiberg—Witten Floer spectra, we will make use of spectral sections
of a family of Dirac operators introduced by Melrose—Piazza [40]. We will recall
definitions and basic things on spectral sections in this section.
Suppose that we have a closed, oriented (2n — 1)-manifold ¥ and that we have a
fiber bundle
Y —>B

with fiber Y. Here, B is a compact Hausdorff space. Also suppose that we are given
a finite-dimensional vector bundle

F Y — Yy
with metric. We consider an infinite-dimensional vector bundle on B defined by

Y00 = | T(Frly.).
ZEB

Let
Dy: 8Y,oo g 8Y,oo

be a family of first-order elliptic, self-adjoint differential operators. That is, Dy pre-
serves the fibers of €y, and foreach z € B,

DY,z: 8Y,oo,z - SY,oo,z

is a first-order, elliptic, self-adjoint differential operator. Here, &y  ; is the fiber of
8y.00 OVer z.
We assume that for each z € B, there is an open neighborhood U of z such that
we have a trivialization
Fy|yU ~ U x FY,z, (2.1.1)

where Yy is the restriction of the bundle ¥ to U, and we can write
DY,w = DY,z + AY,w

for w € U through the isomorphism Ey,o0,z = Ey,00,w induced by (2.1.1). Here, Ay,
is the operator acting on 8y, 1, induced by a fiberwise linear bundle map Fy |y, —
Fy|y,, which continuously depends on w.
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For k > 0, define the L,zc—inner product on &y, by

Kp1, Dy, |*pa) du.

(b1, d2)i = /y (@1.62) + (| Dy.:

Here, | Dy ;| denotes the absolute value of Dy, defined as in [46, Chapter VIII, §9].
We write &y, for the completions with respect to the L,zc-norm. The operator Dy
extends to a bounded operator

Dyt Sy’k —> gY,k—l-

For w € U, the algebraic operator Ay, extends to a bounded operator 8y —
&y k,w which continuously depends on w with respect to the operator norm, and
Dyw = Dy,; + Ay, as operators 8y k , — &y k—1,,» through the local trivialization
(2.1.1).

We now recall the definition of a spectral section from [40].

Definition 2.1.1 ([40]). A spectral section for Dy: Eyj — Ey r—1 over a compact
base B is a family of self-adjoint projections P: Ey,o — Ey,o so that there is a constant
C > 0 such that the following holds. Suppose that z € B, u € y,00,z, Dy,zU = Au
for some A € R. Then P,u = u if A > C and P,u = 0 if A < —C. Here, a family
is meant to be a continuous family in the L2-operator norm topology, parameterized
by B.

We note that the condition that P be continuous families in the L2-norm topology
is equivalent to P being continuous families in any L,zc—norm topology with k > 0,
using the interaction of P with the spectrum of Dy. Also note that since P is self-
adjoint, P is an orthogonal projection onto its image with respect to the LZ-inner
product. In fact, for ¢1, ¢ € Ey,00,z, We have

(Pp1,(1 = P)pa)o = (¢1, P(1 = P)gpz)o = 0.

Here we have used the fact that P is self-adjoint and P> = P.
Melrose and Piazza proved the following about the existence of a spectral section.

Theorem 2.1.2 ([40, Proposition 1]). There exists a spectral section of Dy if and
only if the index ind Dy is zero in K'(B). Here, ind Dy is the index defined in [6].

Using a spectral section, we can define the Atiyah—Patodi—Singer index for a
family of differential operators on a manifold with boundary. Let X be a compact,
oriented 2n-manifold with boundary Y. Suppose that we have a fiber bundle

X — B

with fiber X, such that the family obtained by taking the boundary of each fiber of X
is Y. Also suppose that we have finite-dimensional vector bundles

FQ,Ff — X
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and that isomorphisms
F)?|y = F)}ly = FY

are given. Define infinite-dimensional vector bundles over B by

€00 = | T(FRlx.). %00 = |J T(Fylx.).
ZEB ZEB

We consider a family of first-order elliptic differential operators
Dx: 6% oo = Ex.00

such that
0

Dy = % + Dy

near the boundary ¥. Here, ¢ is the coordinate of the first component of a neighbor-
hood of ¥ in X which is diffeomorphic to [0, 1] x Y. As before, we assume that for
z € B, there is an open neighborhood U of z and we can write Dy ,, = Dx ; + Ax,»
for w € U through local trivializations of Fy, F)}. Here, Ay, is an algebraic operator
induced by a linear bundle map Fy|x, — Fy|x,, depending on w continuously.

We define Hilbert bundles 8)‘}’ o 8)1( . over B for k > 0 using Dy as before. Note
that ind Dy = 0 in K!(B) because of the cobordism invariance of the index. Hence
there is a spectral section of Dy.

Let (& Yk—1 )2 ., be the subspace spanned by nonpositive eigenvectors of Dy and

p° be the Li , -orthogonal projection onto (Ey ;1 )% - Let us consider the family
-1 :

of operators with the APS boundary condition. That is, we consider the family of
operators

(Dx. p°or): €y — Exy_y ® (Sy,k—%)goo-

Here, r is the restriction to ¥. Note that this family is not continuous because of the
spectral flow of Dy. Hence we cannot use this family to define the index. A spectral
section enables us to avoid this issue. Since our sign convention is different from that
of [40], taking a spectral section of —Dy rather than Dy is more convenient for us.

Proposition 2.1.3. Fix k > 1. Let P be a spectral section of —Dy. We also denote
by P the image of P in Ey,y, which is a Hilbert subbundle. Let wp be the Li_l—
projection onto P N ng—%' Then >

K2

is a continuous family of Fredholm operators and we can define the index ind(Dyx, P)
€ K(B). The index ind(Dx, P) is independent of the choice of k.
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Let P be a spectral section of —Dy. We write P for the image of P in &y, too.
Then we can take other spectral sections Q, R of —Dy such that

Q CPCR.
See our construction of spectral sections in Section 2.4. Define a family of operators
¥y =0DyQ+(1—-R)Dy(1-—R)—(1— Q)P + R(1—P).

We can see that D}, is injective and that P is equal to the subspace spanned by
negative eigenvectors of Dj},. Also we see that the operator A = D}, — Dy is a family
of smoothing operators acting on &y . In fact, the image of A is included in the
subspace spanned by finitely many eigenvectors of Dy .

Take a smooth function f: X — [0, 1] such that

1 forx e[l 1]xY,
flx) = >

0 forxe X\ (0,1]x¥Y).
Define Dy: €y , — &y, _, by

Dy = Dx + fA.
Then

D/ — i + D/

X =3 Y

near ¥ and there is no spectral flow of Dj,. Therefore, the family of operators DY
with the APS boundary condition defines the index ind D € K(B), and

ind D} = ind(Dyx. P).

2.2 Connections on Hilbert bundles

Since we will consider a connection on a Hilbert bundle later, we give the definition
of a connection on a Hilbert bundle.

Let M be a connected, smooth n-manifold and H be a Hilbert space. We write
Aut H and End H for the group of bounded linear isomorphisms H — H and the
ring of bounded operators H — H respectively.

Take a coordinate chart (U, ¢) of M. For a map

f:U— H,
we define the partial derivative %(x) atx € U by

of

axt

(0 = lim = (7 097 (6() + her) — £ ()
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if the limit exists in H . Here, ¢; is the i th standard basis of R”. Fora = («1,...,a,) €
(Zso)", weagiﬁne %x—{: to be (axi,)ot1 (agn )a" f. We say that f is smooth if the

derivatives 5 exist and are continuous on U for all & € (Zx0)".

Let p: & — M be a smooth Hilbert bundle on M with fiber H. By a smooth
Hilbert bundle we mean that for each small open set U in M, we have a local trivial-
ization

Yv:8ly >UxH

such that if ¢': €|y» — U’ x H is another local trivialization with U N U’ # @, we
can write

Yoy (x,v) = (x, g(x)v)
forx e UNU’ andv € H, and g isamap U N U’ — Aut H which is smooth with
respect to the operator norm. We always assume that Hilbert bundles are smooth.
A section s: M — & is said to be smooth if for each local trivialization ¥: & |y —
U x H, the map
Yosly:U —>UxH

is smooth. We denote by I'(&) the space of smooth sections of &.
A connection V on & is defined to be a map

V:T(€) - T(T"M ® 6)
having the following properties:
(i) For any sections s1, 52 € ['(&),
V(s1 + 52) = Vsy + Vso.

(i) For any section s € I'(&), vector fields X1, X, € I'(TM) and smooth func-
tions f1, f» € C*°(M),

Vaxi+ x5 = [iVx s + f2Vx,s.
(iii) For any section s € I'(€) and function f € C*°(M),
V(fs)=df ®s+ fVs.
We define a connection V on the dual Hilbert bundle &* by
(Vxa)(s) := X(a(s)) —a(Vxs).
Here,s € I'(8), 0 € T'(€%), X e I'(TM).

For connections V1, V, on Hilbert bundles &1, &, over M, we define connections
Vi® Va2, Vi®Vyo0n & @ &, € ® & by
(V1 ® V2)(s1 @ 52) = (Vis1) ® (Vas2),
(V1 ® V2) (51 ® 52) 1= (V151) ® 52 + 51 ® (V252).
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Write Q! (M ; &) for the space of i-forms on M with values in &:
Q(M;8):=T(AN'T*M ® &).
For a connection V on &, we have the exterior derivative
dv: Q' (M:; &) - QTN (M 6)
defined by
dv(ns) = (dn)s +n A (Vs),
dv(m + n2) = dvm + dvna.

Here, s € ['(8),n € QI(M), n1,n2 € QLM E).
We will make an assumption on the smoothness of V. Take a local trivialization
Y:8ly — U x H. We can write

UVxs = X(¥s) + o(X)(¥s) 2.2.1)

fors e '(E|y)and X e ['(T'U). Here, foreach x € U and X € T, U, w(X) is a linear
map H — H . The assumption is that w(X) is bounded and the map w: 7T U — End H
is smooth with respect to the operator norm. In particular, for a compact set K in U,
the restriction w(X)|x is a Lipschitz continuous map K — End H.

Under the above assumption, for any smooth curve c: [—¢, ] — U and e € & (),
where ¢ > 0, we have a unique smooth section s of & along ¢ which solves the
ordinary differential equation in the Hilbert space:

d d
ZY6O) +o(5-0)Ws0) =0. 5O =e.

We call s a parallel section of & along ¢ or a horizontal lift of c. See [18] for the
existence and uniqueness of solutions to the equation.

Take x € U and let x!, ..., x" be local coordinates around x. Fori = 1,...,n,
let ¢; be a smooth curve [—e&, ] — U such that
dCi 0
(0)=x, —(0) = -,
i(0) O =5

For e € &,, we define the horizontal component (7,8)y of T.& to be the sub-
space spanned by {dsi(%)}ﬁl’m,n. Here, s; is the parallel section of & along c;
with s;(0) = e. We can show that (7, &) g is independent of the choice of the local
coordinates x!, ..., x™. The connection V defines a decomposition

T =(T&)y ® p*é6.
Note that we have a natural isomorphism

(T8)y =~ p*TM.
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As usual, there is a unique 2-form Fy € Q2(M;End &) such that
dvodyn=Fy A7
for n € Q¥ (M &). We can write
YFy =do+ow Ao

on U, where w is the 1-form with values in End H in (2.2.1). We call Fy the curvature
of V. We say that V is flat if Fy = 0.
We can associate a flat connection to a representation

p:m (M) — Aut(H)
in the usual way. Let & be the Hilbert bundle on M defined by
€:=M x, H,

where M is the universal cover of M. A smooth section s: M — & corresponds to a
smooth map §: M — H such that

$(y - x) = p(y)s(x)
forx € M, y € w1 (M). Taking the exterior derivative, we have
ds(y - x) = p(y) ds(x)

and hence d§ descends to a section of T*M ® &, which we denote by Vs. We can
show that the map
V:T(E) - T(T*"M ® &)

is a flat connection on &.

2.3 Notation and main statements

Let Y be a connected, closed, oriented 3-manifold and take a Riemannian metric g
and spin® structure s with ¢;(s) torsion on Y. We denote the spinor bundle over Y
by S. Fix a spin® connection 49 on Y with F4, = 0. For a 1-form a € Q1(Y), we
write D, for the Dirac operator D4, i, Which acts on the space C*°(S) of smooth
sections of S. The family {D,},c g1 (y) parameterized by the harmonic 1-forms on ¥
induces an operator D acting on the vector bundle

oo = H'(Y) X1 (y,2) C(S)
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over the Picard torus Pic(Y) = H'(Y;R)/H'(Y;Z). The action of H'(Y;Z) is
defined by

h(a,$) = (a = h,upp)

forhe HY(Y;Z),a € #'(Y), ¢ € C®(S), where uy, is the harmonic gauge trans-
formation Y — U(1) with —iu;l duyp = hin #'(Y).
For k € R, define a Hilbert bundle on Pic(Y) by

&k = H'(Y) Xp1(y.z) L7 (S).
For k > 1, the operator D on &, extends to a bounded operator
D: &, — &r_;.
We have a canonical flat connection V on & corresponding to the representation

mi(B) = H'(Y;Z) — Aut(L;(S)).

hl—)Mh,

where B = Pic(Y), Aut(Li(S)) is the group of bounded linear automorphisms on
LZ(S). See Section 2.2.
A smooth section s: B — & can be considered to be a smooth map

5:#(Y) — Li(S)

such that
S(a—h) =ups(a)

for h € im(H'(Y;Z) — #'(Y)). The covariant derivative Vs corresponds to the
usual exterior derivative d § of §.
Denote by (-, )4k the L,zc—inner product with respect to D,:

(b1, 02)ak = (D1, 02)0 + (| Dal* 1., | Dal*$2)o,

where (-, -)o is the L?(Y)-inner product. Here we write | D,| for the absolute value
of the Dirac operator D,, defined using the spectral theorem (see e.g. [46, Chap-
ter VIII, §9]). Then the family {(-, )a.k}qege1(v) Of Li-inner products induces a
fiberwise inner product (-, -); on &g. To see this, take sections s1, s2: B — & and
heim(H'(Y;Z) — H'(Y)). Let §1,5: H'(Y) — L7 (S) be the maps correspond-
ing to s1, 52. Note that

S5i(a—h) = upSi(a), Dg—p = upDauy".
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Therefore,

(§1(a —h). 52(a — 1)) aznk
= (S1(a — h),52(a —1))o + (| Da—n|*51(a — h), | Da—pn|¥52(a — h))o
= (uaf1(a). upS2(a))o + ((un|Dal*uy Yunsi (@), (up| Daluy Hupsa(a))o
= (upS1(@), und2(a))o + (un| Dal*51(a), un|Dal¥52(a))o
= (51(a). 52(@))a-

This implies that the family {(-, )4,k }qege1(y) descends to a fiberwise inner product
(-,)x on &x. We write || - || for the fiberwise norm on & induced by (-, -)«.
The flat connection V, with respect to k = 0, defines a decomposition

T& = p*TB @ p*&, (2.3.1)

where p: &y — B is the projection, p*TB is the horizontal component and p*&g
is the vertical component. See Section 2.2. Note that the flat connection V is not
compatible with the inner product (-, -)x on & for k > 0.

Put

We = B x L (imd™),

where d*:i Q?(Y) — iQ!(Y) is the adjoint of the exterior derivative. We consider
Wi to be a trivial Hilbert bundle on B. The Seiberg—Witten equations on ¥ x R are
equations for y = (¢,a,w):R — LZ(S) x H'(Y) x LZ(imd*), written as

d

d_‘f = —Da¢(t) —c1(y(1)),

da

E — _Xu(d). (2.3.2)
d

_d(;) =—xdw—c(y(t)).

The terms X g (¢), c1(y(t)), c2(y(¢)) are defined by

4@) = (99"~ JI9Pid) € Q')
Xu(@) =q(p)g € H'(Y), (2.3.3)
00) = (o) ~ EGO)B),
2(/0) = T+ (4G )

where p is the Clifford multiplication which defines an isomorphism

T*Y @ C — sl(S),
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q(¢) g is the harmonic component of g(¢), Tima+ is the L2-projection on ‘W and
£(¢) is the function ¥ — R satisfying

dE@) = imma (@()). /Y £(¢) vol = 0,

The equations (2.3.2) do not correspond to the Seiberg—Witten equations in Cou-
lomb gauge in ¥ x R (that is, solutions of the equations are not Seiberg—Witten
trajectories in Coulomb gauge). Instead, we use the pseudo-temporal gauge of [32,
Definition 5.2.1] (see also [35, Section 3]). The correspondence between solutions
of (2.3.2) and the Seiberg—Witten equations modulo gauge is given by [32, Proposi-
tion 5.4.2]. Note that Lidman—Manolescu work in the setting of 51 = 0; however, the
argument is local in the configuration space and passes over without change to the
by > 0 case. We will, however, call solutions of (2.3.2) Seiberg—Witten trajectories.

The equations descend to equations for y = (¢, w): R — & & Wy:

d
(d_‘i’(t))V = —D¢(t) — c1(y(1)).
d¢
(570),, = —Xu @), (234)

d
d_C;)(t) = —xdw(t) —ca(y(?)).

Here, (é—‘f)v, (‘i,—qtb) y are the vertical component and horizontal component of i—‘f
respectively, and we have suppressed the subscript from D.
Assume that the family index of the family of Dirac operators D over Pic(Y)
vanishes, that is,
ind D =0 e K'(B).

Then we can choose a spectral section Py of —D, and using Py, we can define a
self-adjoint (with respect to the L2) operator

A1 C®(S) — C2(S)

such that the image of A is included in a subspace spanned by finitely many eigen-
vectors of D, and so that ker(D + A) = 0. Put D’ = D + A. The L?-closure of
the subspace spanned by the negative eigenvectors of D’ is exactly the image of Py,
acting on L? (see [40] and Section 2.1 for all of these assertions). In the future, for a
spectral section P, we will also often write P to refer to the image of P. We have a
decomposition

Eoo = EL D EL,

where 6% and & are the subbundles of & spanned by positive eigenvectors and
negative eigenvectors of D’.
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For positive numbers k4, k_ and 51, 52 € C°(S), we define an inner product
($1,52)aky k_ DY

(s1.52)a g,k = (IDLI+sT DL+ s Yo + (1D 1557, |DL =55 )0, (2.3.5)

where s5; = sJ?L +s; and s;r € &L, s; € & Note that we do not need the term
(s1.52)0. since the kernel of D}, is zero. We call this inner product the Li+ & -inner
product.

As before, the family {{-, )4k, k_}qsez1(y) induces a fiberwise inner product
on € and we denote by & the completion of E with respect to the norm
I Moy k-

On the space imd* N Q!(Y), we define an inner product (-, Vg ke DY

(1. 02)k, ko = (| xd o] | xd ol ) + (| xd[*~oT .| *d*~w5)o.
+

where w; = a)]?L + w7 and a)]+ is in the subspace spanned by positive eigenvectors
of the operator *d and w; is in the negative one. We denote by Wy, x_ the com-
pletion of the vector bundle B x imd* over B with respect to || - [|x, x_. We will

use the L2 ,,-horm in Chapter 5 to define the relative Bauer—Furuta invariant. See
-1,

Remark 5.1.4 for the reason why we use the Lz_1 ,,~horm.
2
We recall the definition of finite-type trajectories (from e.g. [35, Definition 1]).
Definition 2.3.1. A Seiberg—Witten trajectory y(¢) = (¢(t),a(t), w(t)) is finite-type
if CSD(y(¢t)) and ||¢(?)||co are bounded functions of ¢, where CSD is the Chern—
Simons—Dirac functional.

The following is a direct consequence of a standard argument in Seiberg—Witten
theory; see e.g. [35, Proposition 1].

Proposition 2.3.2. For positive numbers ki, k_ > 0, there is a positive constant
Ry, k_ > 0 such that for any finite-type solution y:R — & x W, 10 (2.3.4), we
have

Iy O lley k- < Ry ke
forallt € R.

Write SO(D)Z, for the span of eigenvectors of D with eigenvalue in (b’, b], as a
space over #!(Y) (note that it will not usually be a bundle). For a spectral section P
of D, we also write P for the image of the projection P. By Theorem 2.4.1 below,
we can take sequences of smooth spectral sections Py, Q,, of —D, D, respectively,
such that

(Eo(D)35™ € Py C (60(D))255",

2.3.6
(E(DDT , C O C (Eo(DNE._. (230
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with
Mn,— + 10 < pn,4+ < pln,+ + 10 < ppt1,—,
Anti4+ <Ay ——10< A, — <Ay 4+ — 10,
Pn+ — Pn,— <8,
An+ — Ay — <§.

(2.3.7)

Here, § > 0 is a positive constant independent of n, and a smooth spectral section
means a spectral section which depends smoothly on the base space B.
We define a finite rank subbundle F}, in &, by

F,=P,N 0y
Define a connection Vf, on F}, by

VF,

n

=7F,V,
where ', is the L]2€+ «_-brojection on Fj,. The connection V, defines a decompo-
sition

TF, = (TFn)H,VFn e (TF,)y = P*TB 5} p*Fn. (2.3.8)

A calculation shows that the horizontal component (73 F,) g,v r, Of TFy at ¢ € Fy
is given by

{(v, (VorE,)$) v € TuB} C (p*TB & p*&)g = TpEo. (2.3.9)

Here, a = p(¢) € B.
Let W, be the finite-dimensional subbundle of the Hilbert bundle ‘W spanned by
the eigenvectors of the operator *d whose eigenvalues are in the interval (A, —, ity +]:

Wo = (Wit = B x Li(imd*);"*.
Fix a positive number R’ with R’ > 100R; +.k_ and a smooth function
X: 8k+,k_ @ Wk+,k_ - [07 1]

with compact support such that x(¢, w) = 1 if ||[(¢, ®)llx, k_ < R'. We consider
the following equations for y = (¢, w): R — F, & W,,, which we call the finite-
dimensional approximation of (2.3.4):

d
(F0), =~ Txamr)90) + 7, (DOO) + e1(re))}:
deo _
(570), = ~xXu@@). (23.10)

d
d_(;)(t) = —X{*da)(t) + JTWncz(J/(l))}~
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Here, (%)V, (%) g are the vertical component and the horizontal component with
respect to the fixed decomposition (2.3.1) rather than (2.3.8). It follows from (2.3.9)
that the right-hand side of (2.3.10) is a tangent vector on F; & W,,. Hence, equations
(2.3.10) define a flow

$n = §0n,k+,k_:(Fn ® Wu) XR — Fy & Wy.

(This flow depends on k4, k_ because nr, does.)
We have decompositions

F,=FfeoF , W,=Wrew,

where F,", Wt are the positive eigenvalue components of D’, xd, and F, , W, are
the negative eigenvalue components. In the remainder of Chapter 2, we will prove the
following.

Theorem 2.3.3. Let k., k_ be half-integers (that is, k4, k_ € %Z )withky, k_ > 5
and with |ky —k_| < % Fix a positive number R with Ry < R < ILOR/, where
Ry, k_ is the constant of Proposition 2.3.2. Then

(Br, (F,": R) xg Bx_(F,[: R)) xp (B, (W, : R) xg Bx_(W, : R))

is an isolating neighborhood of the flow ¢y ., k_ for n > 0. Here, By (Fni; R) are
the disk bundle of F;F of radius R in Lii and By, (F,t; R) xg Bx_(F,; R) is the
fiberwise product. Similarly for By (WE; R).

The general strategy to prove Theorem 2.3.3 is as follows: once we have The-
orem 2.4.1 in hand, we must control the gradient term (Vx,, 7w, )¢ (f) appearing in
the approximate Seiberg—Witten equations (2.3.10); a number of bounds for this are
obtained in Sections 2.5 and 2.6. The proof proper is in Section 2.7, where Theo-
rem 2.3.3 follows from establishing that, for sufficiently large approximations, the
linear term in the approximate Seiberg—Witten equations (2.3.10) tends to dominate
the other terms with respect to appropriate norms.

We also note that the total space B, r appearing in Theorem 2.3.3 is an ex-space
over B = Pic(Y) in the sense of Appendix A.1, with projection given by restricting
p: 8 — B to B, g, and with a section sp: Pic(Y) — B, g given by the zero-section.

2.4 Construction of spectral sections

We will prove the following.

Theorem 2.4.1. Assume that ind D = 0 in K'(B). Take a sequence i, of positive
numbers [, <K nt1, where b, — 00 as n — oo. There is a sequence of spectral
sections Py of —D with the following properties:
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(i) We have
y §
Eo(D)n. C P, C Eo(D)Hntd,
where § is a positive constant independent of n.

(i1) We can write
Pus1=Pa® (S, 1),

where { fl(n), e, ,Eln)} is a frame of P;- (where P;- is the L*-orthogonal
complement of P, inside of P,1). In particular,

Pn+1 gpnea(grn»

where C'™ is the trivial vector bundle over B.
Before we start proving Theorem 2.4.1, we will show the following.

Proposition 2.4.2. Take any nonnegative numbers k, 1. Let P, be a sequence of spec-
tral sections of —D having property (i) of Theorem 2.4.1. Let 7w,: & — P, N &y be
the Li—projection.
(1) The commutators
[D, 7n]: Eco = Eoo
extend to bounded operators

[D, m,]: 86 — &

and we have
||[D,7Tn]28] — 8[” < C,

where C is a positive constant independent of n. Moreover, for any [ > 0,
e>0with0 < e <|,

sup||[Da. 7n.al: L7 (S) = LI_o(S)| — 0

aeB
asn — oQ.

(2) The operator my: Eoo — Exo extends to a bounded operator & — &; for
each nonnegative real number |. Moreover, there is a positive constant C
independent of n such that

||7Tn: & — 81” < C.
Proof. Take a € B and let {e;}; be an orthonormal basis of L?(S) with
Daej =nje;j,

where n; € R.
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Let P, 4 be the fiber of P, over a. Take ¢ € Eo N Py . We can write

¢ = Z cjej,

where ¢; € C. Note that
Z cjej € Eoo N Pyy, Z cjej € Eoo N Py g.
nj <Hn Wn<nj <pn+38

We have

[Dav ﬂn,a](p = (Dann,a - nn,aD)(p

= E ﬂjcjej — TTn,a E r]jcjej

nj <tn+8 nj <tn=+38

=(=ma) D nicje

Mn<n;<pn+6

=(1- ﬂn,a){ Z (nj — mn)cjej + pn Z cje.i}

Mn<nj<pn+d Hn<nj<pn+38

= Y = (I— ey, (24.1)
Mn<nj <pn+8

Since

Ty =k + 7 pynE (DYt
for j with u, < n; <, + 6, we have
(1— ”n,a)ej € 80(Da)ﬁﬁ+8-

Hence we can write

(I—mwa)e; = Y. apep (2.4.2)
Mn<np=<pn+38

for j with u, < nj < u, + 8. Here, aj, € C. Since
1
(0 =@ Ly = Ll =1, llejllx = (1 + In; )2,
we have

10— maeilz = > leyplP A+ 11,%) < (1 + [1;1%).
Wn<np<tin+8
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For j with 1, < 1; < ptn + 6,

1
Z lojp|* = Z lojp |2 (1 + |Up|2k)m
Mn<np<pn+8 Mn<np<pn+8 Tp
Gy
= 5 (o 1 9% > e+ )
Hn Mn<np=<pn+38
_ G A+ [0 )
T4 (pn + 8)%*
< (y, (2.4.3)
where C is a positive constant independent of j, n.
By (2.4.1), (2.4.2) and (2.4.3),
[[Da. ”n,a]d’ulz = Z Z nj — fn|*(1 + |77p|21)|cj|2|05jp|2
Wn<nj<pn+8 wn<np=<in+8
L+ |np ¥
< ) o WPl Plespl? - —— 5

1+ .21
Mn<nj <in+8 pn<np=<itn+6 |n] |

e X asiPigl( X ek

Mn<nj<pn+8 Mn<np=<ftn+8§

<G Y (T PhleP

M <nj <ptn+8

2
=< Gslloll}.
Here, C,, C3 > 0 are positive constants independent of n, ¢, a. Also we have

||[Da77Tn,a]¢||[2_8

= X S = P PO Pla,
Mn<nj <in+8 n<np=<iin+8
_ 1+ |n,|2¢—2
=8 Y Yo PGPl sy
1+ [n;[2¢=*

Un<nj<pn+8 wn<np<un+§

=G Z I+ |77j|2(l_6))|cj|2( Z |0‘jp|2)

M <nj <ptn+6 Mn<np=<pn-+8

<Cs Y (1P

Mn<nj<ftn+8

< Co(pn® + 1,25 19117

Here, C4, Cs, Cg are positive constants independent of n, ¢, a.
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On the other hand, consider ¢ € £ N P,f, X where PnJ‘, X is the Li-orthogonal
complement of P, 4, N LZ(S) in L7 (S). We can write

¢ = Z cjej-
nj>MKn
Note that
Z cjejeéiooﬂP,*j;, Z cjejeEiooﬂP,ig.
nj>Mn+8 Mn<nj<pn+8
We have

[Da, nn,a]d’ = Tn,a Z njcje;
Hn<mj<pn+8§

znn,a( Z (nj — mn)cjej + in Z c,-e,-)

Mn<nj <itn+8 Mn<nj <itn+8

= Z (Mj — Kn)CjmTn €.

M <nj <pn+6

As before, using this equality, we can show that

”[Davﬂn,a](p”l = C7||¢||l’ ”[Da,ﬂn,a]‘p”l—s = CSM;8”¢”1

for some positive constants C7, Cg independent of n, ¢, a.
Therefore [D,, 7, 4] extend to bounded maps Ll2 — le with

||[Da’ nn,a]: le - L12|| < Cy,
for some constant Cy independent of n, a. Also

sup [[Da, 7tna): L7 (S) = L_(S)[| = 0

aeB

as n — oo. We have proved (1).
We will prove (2). It is easy to see that if i, < n; < u, + 8, we have

+6
TTpej € (gl)ﬁz .
So we can write
Tp€j = Z Qjp€p.
Un<np=<tn+8
Because the operator norm of 7,: L7 — L7 is 1 and [|e;[|7 =1 + In;|?*, we have

2k 2 2 2k 2k
|14n] Yo el YD g PA A+ ) < 1+ g P
Mn<np<pn-+8 Mn<np=<pn+38
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Therefore, for j with w, <n; <, + 96,

1 12k
Yol < ™ _ e, 2.4.4)

2k —
Un<np<pn+8 |

Here, Cy > 0 is a constant independent of n, j. Take ¢ € &,. We can write

¢ = chej+ Z cjej + Z cje;-

nj =Hn Mn<n; <pn+8 Hn+8<n;
Then
T = E cjej + E Cjljpep.
nj <Mn Mn<nj<pn+8
Mn<np<tn-+8

Hence we obtain

2 2 21 2 2 2/

Il = D 1P+ P+ lej 1 lejp I7(1 + [np]™)
nj <Hn Mn<1j <pn=+8
Un<np<pn+8

<o X 6P+ 0l Xl Plal)

nj <in Un<nj <ptn+8
Hn<fp=<pn+38

sau T loPa+mP sl X lof)
nj<Wn Mn<nj <itn+8
= C12||¢n||12,

where we have used (2.4.4) and C;g, C11, C15 are constant independent of #n. There-
fore ||m,: L} — L7|| < Cia. n

To prove Theorem 2.4.1, we need the following theorem and lemma.

Theorem 2.4.3 ([4, Theorem 1*]). Let W be a closed, spin manifold of odd dimen-
sion. Then there is Cyx > 0 such that each interval of length C, contains an eigen-
value of D4. Here, A is a connection on a complex vector bundle V over W and
Dg:CR (S V) — C®(S ® V) is the twisted Dirac operator.

Assume that ind D = 0. By [40], we have a spectral section Py of —D. By [40,
Lemma 8], using Py, we can construct a smoothing operator A: & — &, whose
image is included in the space spanned by finitely many eigenvectors of D such that
ker D' = 0 and

&o(D")2 s, = Po,
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where D’ = D + A. Moreover, there is vy >> 0 such that A = 0 on &y(D)_t3 and
€o (D)7 - From the construction of A in the proof of [40, Lemma 8], it is easy to see
that for A <« 0 and u > 0,

Eo(D)oo = E0(D) . (D) = Eo(D)T,  Eo(D)y = Eo(DY.
Lemma 2.4.4. There is a constant § > 0 such that for any i > 0 and a,a’ € B,
dim E(D,)4 < dim Eo(D/, )T’
Proof. Put
M = max{||V,D": L*(S) - L*S)|| : v € TB, |v|| = 1}.

Take a smooth path {a,}fzo in B from a to a’ with || %a, || = 1. Here, £ is the length
of the path. Since B is compact, we may assume that there is a constant C > 0
independent of a, a’ such that £ < C. Put

I={tel0,€]:Vs <t dim&(D,), < dim& (D, )y M}.

Note that 0 € [ and that I is closed in [0, £] by the continuity of the eigenvalues of
D;, . It is sufficient to prove that sup I = ¢.
Put ¢y = sup / and assume that 7y < £. Choose 74 € (tg, £] with

ty —fy < 1.
Let vi(?),..., vm(?) be the eigenvalues of D, with
0 <vi(te) << vm(to) < pu+teM

such that v; (¢) are continuous in ¢ € [to, #4+] and dim 8(sz,0 o oM _ 1 Note that

to € I since I is closed in [0, £] and that
dim &o(D))y <m

by the definition of 7. Let v’ be the smallest eigenvalue of D"lto with v/ > v, (tp). We
may assume that
Mty —tg) K V' — vy (to). (2.4.5)

By [22, Theorem 4.10, p.291], we have
dist(v; (), E(D;ZO)) < M(t —t9)

for ¢t € [tg, t+]. Here, Z(D;to) is the set of eigenvalues of D(’HO. It follows from this
inequality and (2.4.5) that

0 <v(t) Svm(to) + M(t —to) < u+ Mt
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fort € [to,t+] and j € {1,...,m}. This implies that
dim &y(D)y < m < dim & (D, o+ ™M
fort € [ty, t4+]. This is a contradiction and we obtain ¢y = £. ]

Proof of Theorem 2.4.1. For some p >> 0, to construct a spectral section P between
&(D)" and 8(D)‘_/“2,L08, it is sufficient to find a frame { fi, ..., f;} in SO(D’)SLH
such that

Eo(D") C span{ fi..... fp} C Eo(D)ET?, (2.4.6)

because the direct sum &¢(D’)° ., @ span{fi,..., fr} is a spectral section between
8o(D)" oo and Eo(D)"2.

Put d = dim B. Fix an integer N with N > d. By Theorem 2.4.3, there is §¢p > 0
such that

dim(&o(D)))kt% > N (2.4.7)
foralla € B and i € R. By Lemma 2.4.4, we may assume that
dim E(D.,)47% < dim &9(D.)4 < dim Eo(D’,, )% (2.4.8)

foralla,a’ € B and u € R with u > .
Fix a positive number § with § > 108y. Take u € R with u > 0. For j €{0,1,...,
d}, choose positive numbers

,u,<aj_<bj_<c_<c+<a]7L<b;r<,u,+8
such that
— - + +
bj+1<aj, bj <aj,

by <c¢” — 280, T 4280 < a;r.
Take a CW complex structure of B such that for each j-dimensional cell e there are
real numbers 11~ (e), T (e) such that u ™~ (e), T (e) are spectral gaps of D/, fora € e
with

aj

<p~(e)<b;, af <put(e)<bi.

Choose a 0-dimensional cell ey (= 1 pt) and po € (c~,c™), and then put r :=
dim (D}, )o°-

Lemma 2.4.5. For any cell e and a € e, we have

dim (D)Y@ + N < r < dim (D)L © — N.
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Proof. Because g + 280 < ™ (e), by (2.4.7) and (2.4.8), we have

dim € (D)1 @ > dim &(D],)1o+0

= dim Eo(D)4O T + dim €y (D)0 2%

o+8o
> dim 80(D;O)g° +N
=r+ N.
Hence n
r < dim& (D)4 @ — N.
The proof of the inequality dim SO(D;){)‘_(“’) + N <rissimilar. [

By Lemma 2.4.5, for each 0-dimensional cell e, we can take a frame (meaning a
+
linearly independent collection) { f1, ..., fr} of &¢(DL)y © Such that

_ +
oD @ C (fi..... f) C (DL .

Assume that we have a frame {fi,..., f;} in E(D’)§° on the (j — 1)-dimen-
sional skeleton of B such that

_ +
Eo(DL)Y © C (frar- s fra) C E(DLY

for each cell e withdime < j — 1 anda € e.
Take a cell ¢’ of B with dime’ = j. Note that SO(D’)Gﬁ(e/), SO(D’)gi(e/) are
vector bundles over e’. We denote by % the bundle

U {frames of rank r in SO(D;)/(;“JF(‘?/)}

ace’

over e’.

Note that u*(e) < ut(e’) for any cell e with dime < j — 1. Hence the frame
{f1...., fr} defines a section of F on the boundary de’.

We have a homeomorphism

Fa = GL(m;C)/GL(m —r;C),
where a € ¢/, ¥, is the fiber of ¥ over a and m = dim & (Dt’l)gﬁ(e/). By Lemma 2.4.5,
m = dim & (D) > r + N.

Because N > d, we have
mm—r > d.
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By the homotopy exact sequence,

wi(GL(m;C)/GL(m —r;C)) =0

fori =0,1,...,d. Therefore we can extend { f1, ..., f;} to a frame in 80(D’)g+(8/)
over ¢’. We will denote the extended frame on e’ by the same notation { f1, ..., f}.
We will modify { f1,..., fr} on the interior Inte’ of e’ to get a frame {f,.... f}
such that

— 7 “+ (.
E(DYy (S ) C oDy
on ¢’. Since u~(e’) < u~(e), on de’ we have
Eo(DYY ) c &o(DYY @ Cspan{ fi..... [}
As mentioned before, E(D’)y “©) and &y(D’ )y "€ are vector bundles over ¢’.

Let

+(e (e
p:&o(DYy |, — (D)

e/
be the orthogonal projection.

Lemma 2.4.6. We can perturb f1, ..., f; slightly on Inte’ such that

Eo(DVY ) = p((firoo s S))

on e'. Here, Int e’ is the interior of ¢'.

Proof. We may suppose that

Eo(Dy |, = x (€ ®C"), Eo(DYy

o = e’ x (C" @ {0}).
For each a € e/, we can write

ﬁ’a = gj,ll @ g]/',a’

where
7

ga€C" gi,eC".
Note that

c" = p((fl,a, EEEE fr,a))

if and only if the (n X r)-matrix (1,4 . . . grq) is of rank . Let M be the set of (n x r)-
complex matrices, which is naturally a smooth manifold of dimension 2nr. We denote
by R; the set of (n x r)-matrices of rank /. Then R; is a smooth submanifold of M
of codimension 2(n — [)(r — ). If | <n — 1 we have

codimr(R; C M) =2(n—1)(r—1)>2(r—n+1)>2(N +1) > d.
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Here we have used
n = dim SO(D;)g_(e/) <r—N.

See Lemma 2.4.5. So we can slightly perturb (g ... g,) on Inte’ such that for all
aceandl €{0,1,...,n—1},

(&1,.a---8ra) ZR;.

Hence the rank of (g1,4 ... &ra) i8 n. Therefore C* = p({f1.4,--., fr.a)) for all
a € ¢’. We can assume that the perturbation is small enough such that after the per-
turbation, f1,..., f; is still linearly independent. ]

By this lemma, we may suppose that

&0y = p((fiv o fr))
one’. Fora € ¢, define F,: C" — 80(Dé)g+(e/) by
Fs(er,...oer) =c1fia+ -+ crfra
We have
€(D,)y = im(po Fo).

Put
K := | ker(po F,).

ace’

Then K is a subbundle of the trivial bundle C” on e’. We have the orthogonal decom-
position

C"=KoKt
We define
F:Cr - (D)),
by
F'=Flg+ poFlg..
Then

gD |, cimF'.
Lemma 2.4.7. The following statements hold:
(1) F = F' onde'.

(2) The map F’ is injective on ¢’.
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Proof. (1) Take a € de’. It is sufficient to show that F,|gx1 = F|g 1. Recall that
&o(D)L ) cim F,.
Since im Fy|kx, C (SO(Dé)g_(e/))J- and dim SO(Dg)g_(e/) = dim K-, we have
im(Falg1) = (D)) .

Therefore, for v € K-, F)(v) = pF,(v) = F,(v).

(2) Suppose that
F'(v,v)=0

forv € K,v' € K+. Then
F(v) + pF(') = 0.

So we have
pF() + pF(v') = 0.

Since v € K = ker p o F and p? = p,
pF(') =0.

Because p o F is an isomorphism on K+, we have

v = 0.
Hence
F() =0,
which implies that v = 0 because F is injective. |
Put
flai=Fyler)..... f = Fyler)
fora € e’. Here, ey, . .., e, is the standard basis of C". Then the frame { f/,.... f}

of &o(D')gy € on ¢ , which is an extension of the frame on de’, has the property
that ., o
8Dy C{fi. S C D,

We have obtained a frame f1,..., f, satisfying (2.4.6). Putting
P =60(D") 0 & (f1..... fr).
we obtain a spectral section with
8o(D)*, C P C Eo(D)" 3,

where § > 0 is a constant independent of L.
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Take another pos1t1ve number ji with u < fi. Domg this procedure one more
time, we get a frame {fl, .. fs} of PN &(D )th such that

8o(D)oy C P ® (fi..... f5) C E(D) .

Repeating this, we get a sequence of spectral sections satisfying the conditions of
Theorem 2.4.1. ]

We will state a Pin(2)-equivariant version of Theorem 2.4.1. If s is a self-conju-
gate spin® structure of Y, we have an action of Pin(2) on &. The action is induced
by the action of Pin(2) on #'(Y) x lec (S), which is an extension of the S!-action,
defined by

j(a7 ¢) = (_av .]¢)

The Dirac operator D is Pin(2)-equivariant and we have the index
ind D € KQ'(B).

Here, KO' (B) is the quaternionic K -theory defined in [19], which is used in [33].

Theorem 2.4.8. If s is a self-conjugate spin® structure of Y and ind D = 0 in
KQ'(B), then we have a sequence P, of Pin(2)-equivariant spectral sections having
the properties of Theorem 2.4.1.

Proof. We will show an outline of the proof. Since ind D = 0 in KQ'(B), it fol-
lows from the arguments in [33, Section 1] that the family D of Dirac operators is
Pin(2)-equivariantly homotopic to a constant family. Hence we can apply the proof
of [40, Proposition 1] to show that there exists a Pin(2)-equivariant spectral section
Py of —D.

Choose a CW complex structure of B such that for each cell e, (—1) - e is also a
cell. Note that

;i (Sp(m)/Sp(m —r)) =0
fori =1,...,d, provided that m,m — r > d. Hence for ;£ > 0, we can construct a

Pin(2)-equivariant frame fi, ..., f, of Py with

€o(D")y C {(fi,..., fr) C Eo(DHAT?

as in the proof of Theorem 2.4.1. Here, § is the positive constant from the proof of
Theorem 2.4.1. Then

Po® (f1..-.. fr)

is a Pin(2)-equivariant spectral section between &o(D)" ., and SO(D)’“L . Repeating
this construction, we obtain the desired sequence Py,. [
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2.5 Derivative of projections

Let D: &y — &1 be the original Dirac operator. Recall that we have a canonical flat
connection V on &. See Section 2.3. Note that fora € B, v € T,B = #'(Y), we

have J J
VyD = 7 t=0Da+tv = 11 t=O(Da +1p(v)) = p(v).
Here, p(v) is the Clifford multiplication. Since v is a harmonic (and hence smooth)
1-form, we have ||v|x < oo for any k > 0. Therefore V, D is a bounded operator
from L7 (S) to LZ(S) for each k > 0.
Take 1 € R. We write 72 for the L?-projection on (D)~ Similarly, 7}’ is
the L2-projection on SO(D)f . We have the following proposition.

Proposition 2.5.1. Fix a € B. Let {¢;}?° __ be an L*-orthonormal basis of L*(S)
such that
Dgei = nie;.

Here, n; are the eigenvalues of Dg. Take A, i € R with A < . Suppose that A, p are
not eigenvalues of Dy. Forv € T,B = J1(Y),
((Vorr))eisej)o

M ifni<A<n <pord<mn <p<n;,

ni —nj
= { (p(v)ei,ej)o iny <h<mi<porh<m<m<n (2.5.1)
nj —Ni
0 otherwise,
and (p)er. e;)
v)e;,e; .
WPREREI0 iy < < i,
ni —1n;j
w . . _ . .
(Vyrh)eisei)o = 4 (P()ei.ej)o i <<, (2.5.2)
nj—mni
0 otherwise.

Here, p(v) is the Clifford multiplication by v.

Proof. Since the connection V is induced by the trivial connection on F'(Y) x
C>(S), to compute V,r}’, Vymts, we can do computations over #!(Y) where
we have the canonical trivialization, and the covariant derivative is equal to the usual
exterior derivative.

Take a loop Fff in C defined by

Ffz{x—is:)&fxfu}u{pb—{—iy:—efyfs}
U{x—l—is:kfxfu}U{k—Fiy:—sfyfs}
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for some & > 0. We orient F/’f counterclockwise. We will show that for ¢ € C°(S),
)i = 57 [ o= D0

See also [22, Chapter 11, Section 4]. We can write

00
E Ci€j

i=—00
for some ¢; € C with
o0
Y e+ i) < o0
i=—00

for any k > 0. For z € C which is not an eigenvalue of D,, the operator z — D, is

invertible and
o0

(c=Da)7'¢= D - ii,,. ei. (2.5.3)

i=—00

Note that the sum in (2.5.3) converges uniformly on F”“ in the Lz—norm forany k > 0
since

Z=Mni

<leil (zeT})

if || > 0. Hence, by the residue formula,

g IR IRCLE

[e9)

1 .
Z 2—(/ “ dZ)ei
i oo CTTLNJTH 2~ T

A<mi<p

= (ﬂa)%d)'

Here we have used the fact that we are allowed to take the term-by-term integration
because of the uniform convergence.
Take v € T, B = #'(Y). Then, by the above formula for 7}, we have

(Yo} e = —% Jp 6= D otz = oy
=37 / (z = Do)~ p(v)(z =)' ei dz

= a7 Ju w7 = Do ot
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Therefore

(ortreseslo =~ [, G =700, G = Do) el
= i Jy 0 e G ) ez

= _('O(U;% /r‘j( (z — m)_l(z — ;7J~)_1 dz.

From this, we obtain the formula (2.5.1) for {(V, Jri‘)ei ,€j)0.

Note that since p(v) defines a bounded operator L? — L2, we can see that the
operators (7)Y, (Ta)2oo defined by the right-hand side of (2.5.1) and (2.5.2) are
bounded from L? to L?. Moreover, for each compact set K in #1(Y), (Ta)éf con-
verges to (T;)" o on K uniformly as A — —oo. We have

td
(rasen)f(e o = (e eo = [ Folmareneivedods

:/(; ((ana—l—svei)’ej)OdS
t
- /0 (Tass)“(ei). e} ds.

Taking the limit as A — —oo, we obtain

((na—l—tv)lioo(ei)’ ej)O - ((na)ﬁooei)o = /(; ((Ta-i-sv)lioo(ei)’ ej)O ds.
Therefore

(Vo ereg)o = |

We have obtained (2.5.2). [ ]

=0((77a+zu)’ic>0(ei),ej)o = ((Ta)2 oo (i) €))o.

Corollary 2.5.2. Suppose that u is not an eigenvalue of D,. Then for each v € TB
and nonnegative k,
Vorh oo Li(S) = Lz, ((S)

is a bounded operator. Moreover, if || > 2, o < k and if there is no eigenvalue of
Dy in the interval [0 — =%, u + u=%), forv € T, B with ||v] < 1,

[Vyrhog : LE(S) — Li_,(S)| < C.

Here, C > 0 is a constant independent of v, (. Similar statements hold for an)’f ,
an;jo
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Proof. Let e;, n; be as in Proposition 2.5.1. Take v € T, B = #!(Y). Put
pij = (p(v)ei, ej)o.

Take ¢ = ), cie; € C*°(S) with ||¢]|x = 1. Since p(v) is a bounded operator from
Li to lec we have

(1 + |’7j|2k) <(y,

lp()9 Iz =

2 2
Saime], = X einy
i, kel

where C; > 0 is a constant independent of ¢.
By Proposition 2.5.1, we have

I(Vorr )bl 11

ni<p<n; W 1 n;<u<n; nj k+1
2
¢ipi ¢i pii
S5 3P OE- LA FIREUPE o) b oy LTH FTRUMIERCE
<y i< T nj<i | p=n; 1

Note that there is a constant C, > 0 independent of i, j such that

1+ |nj |2k+2

o =G0+ In; %)
j i

fori, j withn; < pu <n; orn; < p < n;. Hence

2
(1+n;1%%) < C1Cs.

I(Vort )gI2,, < G Y ‘ ey
J i

Therefore V, 7", extends to a bounded operator L} — L7 ‘1
Next assume that there is no eigenvalue of D, in the interval [0 — ™%, u + pn™%].
Take v € T, B with ||v|| = 1. Itiseasy to see thatif n; < u <njorn; <u < we
have
L+ Iy P2
Ini —njl?
where C3 > 0 is independent of 7, j. It follows from this and Proposition 2.5.1 that

< C3(1 + n;[%),

.72 2
I|VU7TEOO'Lk e Lk—a“ E C4,
where C4 > 0 is a constant independent of y and v. |

Lemma 2.5.3. Fix positive numbers o, B witha +3 < Banda € #'(Y). Foru € R
with || >> 0, there exists ' € (0 — || ™%, i + || ~%] such that there is no eigenvalue
of Dg in the interval (W' — || ™8, ' + ||~
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Proof. Suppose that the statement is not true. Then there is a sequence w, with
|i4n| — oo such that for any i’ € (n — [tn|™%, ttn + |n| %] there is an eigenvalue
of Dy in (' — |pn|™®, 1 + |tn|~#]. Therefore, for each integer m with 1 < m <
|in P2, there is an eigenvalue of D, in the interval (w, + (m — 1)|pn| ™, ptn +
m|itn|#]. This implies that

dlm(SO(Da))Mn:‘;ﬁh o — |Mn|ﬂ_a -

On the other hand, by the Weyl law,

dim(€ (Dg)) 0 < C | .

We have obtained a contradiction. [

Corollary 2.5.4. For i € R with |u| > 0, there is ' € [, u + 1], such that for
v e TBwith|v| =1,

Vo L2(S) — L2_,(S)| < C.
Here, C > 0 is a constant independent of v, j1. Similar statements hold for 7 3°, Jrf .
Proof. This is a direct consequence of Corollary 2.5.2 and Lemma 2.5.3. |

Proposition 2.5.5. Take a nonnegative real number m and a smooth spectral section
P of —D with

(&0(D))5, C P C (Eo(D)E.
Let wp be the L*-projection onto P. Then for each v € TB, Vymp is a bounded
operator from L2,(S) to Lm+l(S)‘

Proof. We can take an open covering {U; }lN: , of B such that there are real numbers
Ai, vi with A; < u—, 4 < v;, which are not eigenvalues of D, for a € U;. Also we
may assume that for each i, we have a trivialization

Eolu; = Uy x LX(S)

such that the flat connection V is equal to the exterior derivative d through this triv-
ialization. Also for each i, we have smooth L?-orthonormal frames fits..os fir, of
the normal bundle of (80)£’§O|Ui in P|y,. We can write

ri
A.
mp =rllo+ ) [ ® fi

=1

over U;. We have

Ti
Vorrp = Vo, + > (Vo £ ® fin + £ ® Vi i)
=1
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By Corollary 2.5.2, V%, is a bounded operator from L2, to L2, +1- Also we have
Vo fia = Vo) fi) = (Vorr)!) frg + 750 (Vo fi)-

Since f; ;(b) € C*(S) for b € U;, and an;':i is a bounded operator L2, — L2 .,
we have

Vy fi1(b) € C(S)
for b € U;. Also we have
1@ = [{fiasd)ol < lPllo

for ¢ € C°°(S). Therefore

ri
S ALV fit L — L2y,
=1

is bounded.
Take ¢ € C°°(S). We have

(va:[)(d)) = <¢, vai,l)o-
Note that V,, f; ;(b) € C*°(S) for b € U;. Hence
1(Vo £ ® i) @) lm+1 = [(Vo 7))+ fialmr1 < Clidllo.

Therefore

ri
Zvvfij ® fia: Ly = Lo
=1

is bounded. n

Corollary 2.5.6. Suppose thatind D = 0 in K'(B) and let Py be a spectral section
of —D. Then there is a family of smoothing operators A acting on &g such that the
kernel of D' = D + A is trivial and

PO = 8O(D/)O—oo
Moreover, for each positive number k and v € TB,
VyD': L7 (S) — L3 (S)

is bounded.
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Proof. The operator A is obtained as follows. (See the proof of [40, Lemma 8].) We
can take smooth spectral sections Q, R of D and a positive number s with

(60)5, C Po C (60) oo, (60)I2 C QO C(E0) %, (60) oo C R C(60)%,.
Put
D' =nrgDrg —snp,(1—mo) + (1 —nr)D(1 — r) + s(1 — wp,) 7R,

where 7p,, g, R are the L>-projections. Then ker D’ = 0. The operator A is given
by
A=D"-D.

The image of A is included in the subspace spanned by finitely many eigenvectors of
D. By Proposition 2.5.10, Vymp,, Vymg, Vymr are bounded operators from Li (S)
to Li +1(S). Note that V,, D is the Clifford multiplication of the harmonic 1-form v.

Hence V, D is a bounded operator L? :(S) — L2 (S). Therefore V, D’ is a bounded
operator from L7 to LZ. n

Proposition 2.5.7. The statements of Proposition 2.5.1, Corollary 2.5.2 and Corol-
lary 2.5.4 hold for the perturbed Dirac operator D’, replacing p(v) with V,D’.

Proof. By Corollary 2.5.6, for any nonnegative number k,
V,D': Lk(S) — L2 «(S)

is bounded and we can do the same computations as those done for the original Dirac
operator D. |

Lemma 2.5.8. For a positive integer k, a positive number | with | > k — 1 and
v € T, B, the expression
Vol D'|*:L} — L7,

is bounded.
Proof. Note that
D' = (DY (1 = 7py) + (D)D" p,.
Here, mp, is the L?-projection on Py. We have
Vo(D)¥ = (V, D) (D) ' 4+ D'(V,D')(D')*"2 ... + (D')"1v, D',

which implies that V,,(D’)* is a bounded operator L — L?
Also Vy7p, is a bounded operator L7 — L?

7—k+1 Dy Corollary 2.5.6.

741 by Proposmon 2.5.5. |
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Remark 2.5.9. So far the authors have not been able to prove Lemma 2.5.8 in the
case when k is not an integer, though there is an explicit formula

k k
ID'1F =" {nlF ;.
J
Here, m; is the projection onto the jth eigenspace which can be written as

/ (z— D) ldz.

2711

Suppose that ind D = 0 in K!(B) and fix a spectral section Py and recall the
definition of the L2 e e -inner product (-,+) _ defined by using the perturbed Dirac
operator D' = D + A of Corollary 2.5.6. (See (2.3.5).) Let & x_ be the completion
of & with respect to (-, )k, k_-

We will prove a generalization of Proposition 2.5.5.

Proposition 2.5.10. Take nonnegative half-integers k., k— and a smooth spectral
section P of —D with

(0)ls C P C (80) .

Let wp be the Li K -projection on P. Then for each nonnegative real number m,
v € TB, Vyrp is a bounded operator from L2,(S) to L2 mi1(S).

Proof. Let U;, A;, v; be as in the proof of Proposition 2.5.5 and f;1,..., fi,,; are

smooth L,ZC+ ¢ -orthonormal frames of the normal bundle of (80)£’§O|Ui in P. We
can write

ri
mp Znﬁgo+2fij’}®ﬂ,z
I=1

on U;. Here,

15(@) = (mpyd. 1D fido + (1 = wpy)e. 1 D1 fi1)o.

Py is the fixed spectral section used to define the L/,zC _-horm, and 7p is the L2-
projection onto Py. We have

Ti
Vorrp = Vo, + > (Vo 5 ® fin + [ ® Vi i)
=1

As stated in the proof of Proposition 2.5.5, V,7* and 1 ® Vy fi, are bounded

operators from L2 to L2 ;.
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For ¢ € C*°(S),

(Vo 5D @) = (Vorpy)¢, D17 fit)o + (pyd, (Yol D'IP57) findo
+ (7P ID'1P*= (Vo fi))o — (Vorpy)d. |D' 1%+ fi)o
+ (1= 7p), (Vo | D'1%4) fi1)o
+ (1 — 7p,) ¢, | D' |2k+ (Vo fi))o-

Note that 2k are nonnegative integers. By Proposition 2.5.5 and Lemma 2.5.8,

”(vvf:l ® fi,l)(¢)”m+1 = ||(vvf:l)(¢) : fi,l m+1 = C||¢||O

Hence V, /% ® fi,; are bounded operators from L2 to L2 .. L]

Lemma 2.5.11. Let V be a connection on & +.k_ (which is not necessarily the flat
connection defined in Section 2.3). Let F be a subbundle in &, j_ of finite rank and
TE: 8k+,k_ — F be the L,zch k_—projection. Forae B, ¢,y € Fyandv € T, B, we
have

(Vorp)ep. ¥ )iy e = 0.

Similarly, for ¢’ , ' € F;-, we have
(Vorp)d', ¥ )iy ke = 0.

Proof. Since

TFTF = F,

we have

(Vomp)mp + np(Vynp) = Vynp.

Hence

(Vortp)gp + np (Vorrp)$ = (Vyrrp)g.
Here we have used mr¢ = ¢. Therefore
nr(Vymrp)p =0,

which implies that
(Vortp), ¥)kp ke = 0.

The proof of the other equality is similar. |
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2.6 Weighted Sobolev space

Assume that ind D = 0 and fix a spectral section Py of —D. Let D’ = D + A be the
perturbed Dirac operator as in Corollary 2.5.6.
From now on, for k > 0, we consider the norm defined by

g1l = 11D *4llo.

Note that this norm is equivalent to the original Li-norm since ker D’ = 0. That is,
there is a constant C > 1 such that

CA+1DM¢llo < 11D Fgllo < CI(1 + [DIF)glo.

Hence we can apply Corollary 2.5.2, Corollary 2.5.4, Proposition 2.5.7 to the Sobolev
norms with respect to D’.
Let P,, O, be spectral sections of —D, D with

(Eo(D)2& C Pu C (E0(D))E,
(Eo(D))3> . C On C(E0(D))F _.
We may suppose that

Mn—+10 < pp 4 < plpt1,- — 10,
Anti4++10 < Ap— <Ay 4 — 10,
Mn,+ — Un,— < 8, Anﬁ_ — An,— <6

for some positive number § independent of n. See Theorem 2.4.1. By the definition
of D’ = D + A in the proof of Corollary 2.5.6, we have

Eo(D)!nE = go(D")nE,
Eo(D)T . =Eo(D)T |

for n > 0. Fix half-integers k,k_ > 5. Put { = min{k,k_}. Let wp,, 7o, be the
Li+’ _-brojections on Py, Q. By Proposition 2.5.10, we can assume that for each
n, there is C, > 0 such that for v € TB with |v| <1,

Define a finite-dimensional subbundle F;, of &, by
Fo =Py Qn C (803

We will next introduce weighted Sobolev spaces. Take positive numbers &, with

1
Chen < —, (2.6.2)
n
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where C,, are the constants from (2.6.1). Fix a smooth function
w:R — R
with

0<w(x) <1 forall x € R,

w(x) = &, ifx €[An——3.An+ + 3] U [n,— — 3, n,+ + 3] for some n.
Take a € #'(Y). Let {e;}; be an orthonormal basis of L?(S) with
Dyej = njej.

where 7; are the eigenvalues of D/.
For a positive number k and ¢ = Zj cjej € C*°(S), we define a weighted
Sobolev norm ||¢ || k.w by

2
akw ‘= (ZIC;IZIWIZ"w(m)z)

J

I

Denote by LZ & (S) the completion of C*°(S) with respect to || - ||4,k,w- The family
Ul llak,w taeger (vy of norms induces a fiberwise norm || - [[¢,,, on Ec. We denote the
completion of &, with respect to || - ||x,w by &k, . Note that

@lliw < @]l

Proposition 2.6.1. Let k., k_ be half-integers with ki, k— > 5 and put { =
min{k,k_}. Then

.72 2
sup ||anpn.Lk+,k7 — Ly 5,1 —0.
veB(TB;1)

A similar statement holds for mg,,.

Proof. For A, u € R, let Jri’“ be the L2-projection to (80(D/))%. Take a € B and
v € T, B with ||v|| < 1. By Corollary 2.5.4 and Proposition 2.5.7, for n > 0, we can
take

Vn,— € [n— =2, pn,— = 1], Vnt € [Un 4+ + 1, a4 + 2]
such that

|Vorles L] | — L} 5| < C,

[(VpmyT): L2 | — L2 (|| <C,

Vn,—
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where C > 0 is a constant independent of n. Note that

p, = idg, o p,

— (g~ Vn.+ 00
= (- +m,~ +m, )onp,

_ Vn,—

=n% + n:,’;f omp,.
Hence
Vortp, = Vorls + (Vyrry! Dp, + mort (Vymp,). (2.6.3)

For ¢ > 0, take a positive number 8 with § > é Then for any ¢ € & x_ with
¢llx k. <1, we have

I Plle—r < e.
By Proposition 2.5.1 and Corollary 2.5.4, forn > 0 with § < v, _,
(Vo6 plle—s = (Vo5 ) (P o + 7)1 e—s
1
= +e). (2.6.4)
1B —vn-|

Here, C’ > 0 is independent of n. Similarly,

1

min{[ — v+

(Vo D), dlle—s < C”( oot s) (2.6.5)

for n > 0, where C” > 0 is a constant independent of n. By the definition of the
weighted Sobolev norm || - ||¢,,, and (2.6.2),

1
I (Vo )@l < Cuenll9llicy i < . (2.6.6)
The statement follows from (2.6.3), (2.6.4), (2.6.5), (2.6.6). [ ]
Lemma 2.6.2. Let K be a compact set in ' (Y). There is a norm | - || g.w on

C®°(S) such that for any a € K and ¢ € C*°(S) we have

Ak hw < lIPllakw-

Let L%{,k,w be the completion of C*°(S) with respect to | - ||k xw- For | >k, the
natural map L7 — L%, is injective.

Proof. Take a compact set K in #!(Y) and fix ag € K. Choose a € K. Put

a; = (1 —=1t)ag +ta,
r =llao—al.
§ :=max{|V,D": L> > L?|| : 1 € [0, 1], v € To, H'(Y), |[v]| = 1}.
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Let & be the trivial bundle J'(Y) x L2(S) over J!(Y), which is the pullback of
& by the projection #!(Y) — B. Also take a sequence {A1}72 _ o of real numbers
with

)L] + 7'8 < )'l-i-l-
We will prove that for each [, there is a constant ¢;(a) > 0 such that for ¢ €
éo(D"lo)ij+1 , we have

c@lgllo < 16ra)3 £ Bllo- (2.6.7)

Fix an integer /. We consider the following set:

I ={ref0,1]:Vse[0,1], s <t Jc(s) >0, V¢ € éO(Dézo)i;H’
Ajy1+sré

c(®)llgllo < I(ra,)y  5rs  ¢llo}-

Note that 0 € I. To prove (2.6.7), it is sufficient to show that sup / = 1. Puttyg = sup /
and assume that 7y < 1.
Then take ¢ty € (¢, 1] with |+ — 20| sufficiently small. For ¢ € [tg, £+], let

v1(t), ..., vm(t)

be the eigenvalues of D, which are continuous in ¢ such that

Al —toré < vl(lo), vz(lg), e, l)m(l()) < AH—I + toré,
. ~ Ar41toré
dlmgo(D;t);”J_r;O,,g =m

Take real numbers A_, A4 sufficiently close to A; — #9786, A;+1 + tor§, which are
not eigenvalues of Dy fort € [to, 4], such that

5 ’ At _ & ’ Aly1+tord
SO(DQIO)A— - SO(DHIO)AI—Z()I“S :

By [22, Theorem 4.10, p. 291], for ¢ € [to, t+],
Ar—tré <vi(t),...,vm(t) < Ajpq +1tré

which implies that

5 A 5 Ajy1+trd
&o (D;t)li_ = 80(Dt/lt)/llt;r8

So we have

A A +tré
1(wa )3 bllo = IGma)yo F 15 @llo-

From the equality

d
G305 = 2Re((Vy(ma) ;). Do
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5 A _ré
fort € [tyg,t+] and ¢ € 80(D;t_)kjf;_tt8 " we have

A A +tré
{1=2M(t —t0)}¢llo < Gra )3  bllo = IGra)3 E0rs #llos

where N
M = max{||[Vy(m,)5 : L? > L?| : 1 € [to.14]}

and v = a — ap. Taking 74 sufficiently close to #y, we have
2M|l+ — [0| < 1.

This implies that
tyel

and we get a contradiction. We have obtained (2.6.7).
Take a sufficiently small open neighborhood U; , of a in #'(Y). Then for all
a’ € Uy, we have

1 A +ré+1
Sa@lllo = 1)y 1 gl

5 A . . .
for ¢ € 80(D20)Aj+1. Since K is compact, there exista;,q,...,a;,y, € K such that

K CUpg U+ UUpay,-

Take a small positive number ¢ > 0 such that there are no eigenvalues of D/, in [—e¢, €]
fora € K. Put

¢; =min{c;(az). . ...ci(arn,)}
w(l) := min{|x[*w(x) : x & [~e.el, x € 1. Ao}

For ¢ € C°(S), define

1
2

1 2
9l = { 3 (Fperena) ollo)} 268)
[

Then
Pl kw < 1Pllakw

foralla € K and ¢ € C°°(S). From definition (2.6.8) of || - |k k,w. We have that the
natural map le — Li . 18 injective for [ > k. ]

Proposition 2.6.3. Let W be a closed, oriented, smooth manifold and E be a vector
bundle on W. Let k be a positive number with k > 1, I be a compact interval in R and
I - | be any norm on C*°(E) such that ||¢| < |@|lx—1 for all p € C®(E). Assume
that the natural map LIZ(E) — C®(E) is injective for | > k — 1. Here, C®(E) is
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the completion with respect to the norm || - ||. We consider LIZ(E ) to be a subspace of
C®(E) through this map.

Suppose that we have a sequence y,: I — C°°(E) such that y, are equicontin-
uous in || - || and uniformly bounded in Li. Then after passing to a subsequence, Yy,
converges uniformly in Li_l to a continuous

y:l — L_(E).

Proof. Letqy,q>, ..., be the rational numbers in /. Since y, are uniformly bounded
in Li, it follows from the Rellich lemma and the diagonal argument that there is a
subsequence (i) such that y,;)(¢m,) converges in L,zc_1 (and hencein || - ||)asi — oo
for each m. Since y, are equicontinuous in || - ||, for any ¢ > O and ¢ € I, we can find
gm which is independent of i, with

1Vn) () — Vi) (gm) || < &

So we have, for any ¢,

Y2y (®) = Yu(iy Ol
= ”Vn(i)(t) - Vn(i)(‘Jm)” + ”Vn(i)(‘]m) - )/n(j)(Qm)” + ”)’n(j)(‘Jm) - Vn(j)(t)”
= ”Vn(i)(Qm) - Vn(j)(CIm)” + 2e.

This implies that for each ¢ € I, y,(;(¢) is a Cauchy sequence in | - ||, and hence y, ;)
has a pointwise limit y: I — C*°(E), where C>°(E) is the completion with respect
to[| - |-

Since y, are equicontinuous in || - ||, for any & > 0 there is § > 0 such that for
t,t' € I with |t —t'| < § we have ||y, (t) — yn(t)|| < e. Taking the limit, we have
ly(@) — y(t")]| < &. We can choose finitely many rational numbers ¢1, ..., gy in /
such that for all ¢ € [ there is ¢; with [ € {1,..., N} such that |t — g;| < . If iy is
large enough, for i > ip we have ||,i)(qm) — v(gm)|l < eforallm € {1,..., N}.
Therefore, fori > iy,

172y @) = v O = 17ni) @) — vy (@D + lvnay (@) — v(@D)| + lv(q) — y @)l
< 3e.

Hence y, ;) converges uniformly to y in || - |.

We first show that the limit y defined above in fact lies in L2 . Indeed, for any
fixed t, and any sequence #; — foo in 1, we have that y,, ) (#;) converges in (k — )-
norm, after extracting a subsequence, to some §. However, as above, y,)(%) also
converges in | - [|-norm to y(fs). Recall that L2 | is a subspace of C®°(E), so
§ € C®(E), and we have

Iy (o) = 81 < [l¥ (o) = Yuy @Il + ¥niy (@) — 8|
=< 1Y (to0) = ¥n@y (@Il + 1¥ne) () = 8ll5_s-
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It follows that § = y (o). This establishes that y is defined as a function / — lec_ L

but not that it is continuous, nor that the {y,)} converges pointwise in (k — %)-
norm. Note that, since ||y, (¢)||x < C for a positive constant C independent of n, ¢ by
assumption, we have ||)/(t)||k_% <Cforallr el.

Assume that y,(;) does not converge uniformly in lec—l' Then after passing to a
subsequence, there is &9 > 0 such that for any i we have #; € [ with

1 Vnay () — v () llk=1 = €o.

After passing to a subsequence, #; converges to some fo, € I. Then y,(;)(#;) con-
verges t0 ¥(loo) in || - || Since yy(;y(#;) are uniformly bounded in L2, by the Rellich
lemma, after passing to a subsequence y,(;)(#;) converges to some § in L12<—1; by the
argument to show that y(ts) € lec— 1 above, we see that § = y(fx). Similarly, since

ly @)l - 1= C for all i, after passing to a subsequence, y(¢;) converges to some &’ in
Li_l. Since y(t;) — y(tso) in C®(E), the previous argument gives that §' = y(f0).
Therefore, after passing to a subsequence,

IVny (@) — y(E)llk—1 — 0

as i — oo. This is a contradiction. Thus y, ;) converges to y in Li_l uniformly. Since

the convergence is uniform in lec—l’ y is continuous in Li_l. |
2.7 Proof of Theorem 2.3.3
Take half-integers k4, k— with k4, k— > 5 and with |[ky — k_| < % We put £ =
min{k,k_} and

An i= (Bi, (F,7: R) xp Bi_(F, : R)) xB (B (W,": R) xp Bi_(W,”: R)).
We want to prove that A, are isolating neighborhoods for ¢, x, x_ = ¢n for n large.

If this is not true, after passing to a subsequence,
inv A, N0A, # @
for all n. Then we can take
Yn,0 = (Pn,0, Wn,0) € inv A, N 0A,.

After passing to a subsequence, we may suppose that one of the following cases holds
for all n:

@) ¢t € Sk, (FFR)
(i1) ¢n_,0 € Sk_(F,; R),
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(iii) o,y € Sk, (W,F:R),
(iv) w, o € Sk_ (W, ; R).
Let yp = (¢n, wn): R — F, & W, be the solution to (2.3.10) with y,(0) = y,0:

A
(“20)),, =~ (V8,00 ) — 2, (DI (0) + €1 0 (1)
debn ~
(T20), = =Xu @), 27.1)
1) = — e don (1) — e, c20n ().
We have

g Oy <R Ny Ollce <R, o Olley <R, oy Ol =R (27.2)
for all # € R. By the Sobolev multiplication theorem,

ller(va@)lle = Cllya @I < CR?,
lle2(va@)lle = Cllya @) = CR?,
IXe@@)lle < Cllya()| < CR?.

Let A C #'(Y) be a fundamental domain of the action of H'(Y;Z) on #'(Y),
which is a bounded set. By the path lifting property of the covering space #!(Y) x
Li+ v (S) = &k, k_, we have a lift

Yn = (d;nvwn):R - ng(Y) X L]2€+,k_(S) X lec+,k_(imd*)

of y, with
pax(Yn(0)) € A. (2.7.3)
By (2.7.1), we have
H (dZ" (t)) . H < CR2. (2.7.4)

Fix T > 0. It follows from (2.7.3) and (2.7.4) that we can take a compact set K7 of
J1(Y) such that for any n and ¢ € [T, T] we have

Py (Vn(1)) € Kr.

Note that % is uniformly bounded on [T, T] in | - ||k, ¢—5,w by (2.7.1),

Proposition 2.6.1 and Lemma 2.6.2, which implies that ¢, are equicontinuous in

2
LKT,Z—S,w
after passing to a subsequence, yy |[—7,7] converges to a map

on [T, T]. The wy, are also equicontinuous in L%_l . By Proposition 2.6.3,

7 = @D, 0 D) [T, T] - 1Y) x L2_(S) x L2_,(imd*)
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uniformly in L%_l. By the diagonal argument, we can show that there is a continuous
map
j=(p.w):R—H'(Y)x L} (S)x L (imd*")

such that, after passing to a subsequence, y, converges to y uniformly in L%_l on
each compact set in R.

Lemma 2.7.1. The limit y is a solution to the Seiberg—Witten equations over Y x R.
Proof. Fix T > 0.Fort € [T, T], we have

‘];n ([) - ‘];n (0)
'd ¢n

S (8)ds

0

= /0 (Vi 77 () + 75 (DFa(t) +c1(Fa () + X (b (s)) ds. (27.5)

We have that pg(7,(t)) € Kr for any n and ¢t € [T, T]. Note that we have no
estimate on (VXH TF,)¢n in any sz.—norm and that we just have control on it in the

auxiliary space L2 K=" . By Proposition 2.6.1 and Lemma 2.6.2,

(Vi 77 )nls) — 0

uniformly in L2 Ko f—sw 38T —> 00. Recall that q%,, Wy converge in L%_l uniformly
on[-T,T]. 1t follows from Proposition 2.4.2 and the inequality

|7F, Dén — Dlle—> = |75, Dn — Dn + D — Dpll¢—>
< |I[7Fps Dlpnlle—2 + | Dpn — DP|l¢—2

that 7, D¢, converges to D¢ uniformly in L2  on [T, T].
Taking the limit with n — oo in (2.7.5), we obtain

50 =30 == [ (D7) + 10D + X @60 ds.
Hence, by the fundamental theorem of calculus,

do . .
1) = (DI + 1(70) ~ Xu @),

A priori, the left-hand side & ar (t) only lives in the auxiliary space L2 How-

Krt—5w"
K l—2.w and the right-hand side is in L2

‘(li—‘f(t) is in L%_z and both sides are equal to each other as elements of L2 -2

ever, since Lﬁ_ is a subspace of 12 =2
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Similarly, we can show that

d
d_cj(t) = —xdw(t) —c2(y(2)).

Therefore y is a solution to the Seiberg—Witten equations (2.3.4) and the ordinary
theory of elliptic regularity shows that ¥ is in C° as a section on any compact set in
Y x (=T, 7). ]

Composing 7: R — H1(Y) x L}_,(S) x Lj_, (imd*) with the projection
FHIY)x L7 [(S) x L}_,(imd*) — E¢—y & Wi—1,
we get a Seiberg—Witten trajectory
ViR —> &1 & Wp_1.
Since ||y(¢)|l¢—1 < Rforallt € R, y has finite energy. By Proposition 2.3.2,

Iy Ollkp k- < Ry ks (2.7.6)

forallt € R.
Assume that case (i) holds for all n. We have

g O)llx, = R.
Lemma 2.7.2. There is a constant C > 0 such that for all n,

" Oy, 1 <C.

Proof. Note that

d

— Tz, =o0.
77 i—ol18n Ol

Let us consider the case when k. € %Z \ Z.

Let 7T be the Li%ki—projection onto 8,;:_’,(7. (That is, 7" = 1 — 7p,.) Then
we have
1d

1d
2dt =

1 1
eI, = 53| _ (D1 a4, 1Dt g 0))o

= (Vi ID'[F++2)g:¥ (0), | D[+~ 2 ¢ (0))o
+ (D' 34(0), (Vi | D'+ 2)h (0))o

g
+Re{(Vi, 790 0). 67 Ok, +Re( 0. 6,7 0)

ki
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Note that k+ + % and k4 — % are integers. By Lemma 2.5.8,
1 1
[((Vxy D'+ 2),f (0), 1D+ 72, (0))o| = Cllg ),y =< CR?,

(1D 3,50, (Y [D'1+ =), (0))o| = Cligy Ol 43 I O,y
< CRI Oy, 11-

By Proposition 2.5.10,

(Vx5 Pn(0), &7 () iy | < 11 (Vi 7 ) n 0) i 1857 (0) iy
< Clign () ly -1l (0)x,
< Clign (0 lellp, 0k,
< CR?.

We have

dn
(0.9 (()))k+
= (Vx50 (0) + 75, (D'$n(0) — Adn(0) + c1(1a (0))). 87 Q) -

By Lemma 2.5.11,

(Y E)Pn(0). dF ()i, = (Vi 7F,)Pn(0). ¢ (0))k, k= 0.
We have
(7F, D' ¢n (0). ¢ (0))ic,. = (D'$n(0), wF, ;7 (0)),
= (D'$n(0). ¢, (0))ic,.
=l O, 4 1-

Since A is a smoothing operator,

(75, Apn (0. &5 (0))iey | < Clign(O)lolin (01, < CR2.
Since D’ is self-adjoint,
(5, €1 (7 (0)). &5 ()i, | = [{e1 (v (0)). 55 (), |
= [{|D'[*+c1(ya(0)). |D'[¥+ ¢, (0))o
= (1D 2 ¢1(ya (0)). | D'+ 365 (0))ol
< ler O, — 1 165 O, 43
< Cller O lelldy O, 4y (€ = minfky k_})
< CR?67 Ol 43
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Therefore
1d
_ _ + 2 At 2 2 + 2
0= 57 t=0||¢n Ol =—lo, (0)||k++% + CR7g, (Ol 41 + CR™.

This inequality implies that the sequence ¢, (0)]| kotd is bounded.
The proof in the case k4 € Z is similar. n

It follows from Lemma 2.7.2 and the Rellich lemma that after passing to a subse-
quence, ¢, (0) converges to ¢ (0) in L,2ch strongly. By the assumption, [|¢, (0)lx_.
= R for all n. Hence,

ly Ol k— = 16T (O)lky k. = R.

This contradicts (2.7.6).
Let us consider case (ii). In this case, we have

¢n O)llk_ = R.

Lemma 2.7.3. There is a constant C > 0 such that for all n,

16 O)l_41 < C.
Proof. Note that
(D'$n(0), 6, )i = =l OV;_, ;-

As in the proof of Lemma 2.7.2, we can show that

d - 2 - 2 20 4+ 2
= t=0||¢n Ol = e, (O)IIk_Jr% —CR%|ldy O)_11 —CR".

This implies that the sequence [|¢, (0)[|,_, ! is bounded. ]

By the Rellich lemma, ¢, (0) converges to ¢~ (0) in Li_ strongly. Hence

Iy Oy k- = o~ O)lk- = R.

We get a contradiction.
In the other cases (iii), (iv) where y, o is in the other components of d4,, we
similarly have a contradiction.

Definition 2.7.4. For this definition we refer to some notions from parameterized
homotopy theory and parameterized Conley index theory; refer to Sections A.l
and A.2, respectively. For notation as in Theorem 2.3.3, let SW# (Y, ) be the
parameterized Conley index of the flow ¢, &, x_ on the isolated invariant set Aj.
We call SWF|,)(Y, s) the pre-Seiberg—Witten Floer invariant of (Y, s) (for short,
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the pre-SWF invariant of (Y, s)). The object SW# (Y, s) is an (equivariant) topo-
logical space, depending on a number of choices (which are not all reflected in its
notation). First, SW¥ (Y, ) depends on the choice of an index pair, but its (equiv-
ariant, parameterized) homotopy type is independent of the choice of index pair —
we will abuse notation and also write SW¥,)(Y, s) for its (equivariant, parameter-
ized) homotopy type. It also depends on a choice of metric on Y, as well as spectral
sections P,, O, and subspaces Wni, as in the preliminaries to Theorem 2.3.3.

The projection used in the parameterized Conley index is from the ex-space B, gr
over Pic(Y), as explained in the discussion after Theorem 2.3.3.

We write § ’W.’F n) (Y. %) to refer to the Conley index with trivial parameterization.
By Lemma A.2.7, v;SWj' mY,s) = SW?'fn](Y s), where v: B — * is the map
collapsing the Picard torus to a point, and v is as defined in Appendix A.1.

If s is a self-conjugate spin structure, the bundle L? L (S) x HUY) x L? ¢ (imd™)
admits a Pin(2)-action extending the S !-action on spinors, by

J(@.v,0) = (jp,—v, —w).

In the event that the spectral sections P,, Q, are preserved by the Pin(2)-action,
then the approximate flow on F,, & W, will be Pin(2)-equivariant, and we define
SWF Pln(2)(Y %) to be the Pin(2)-equivariant parameterized Conley index, so that its

underlymg S1-space is SWF, (Y, s). We similarly define § WwF, i Pln(2)(Y $) (and we

will occasionally write SWF S (Y, ) to distinguish what equivariance is meant).

See Theorem 2.4.8 for the ex1stence of Pin(2)-equivariant spectral sections.



