
Chapter 4

Computation

In this chapter we provide a sample of calculations of the Seiberg–Witten Floer homo-
topy type.

4.1 Seiberg–Witten Floer homotopy type in reducible case

We will need the following lemma.

Lemma 4.1.1. Let 'WM � R! M be a smooth flow on a smooth manifold M and
N be a compact submanifold (with corners) ofM with dimM D dimN . Assume that
the following conditions are satisfied:

(1) @N D LC [L�, where LC, L� are compact submanifolds (with corners) of
@N with LC \ L� D @LC D @L�.

(2) For x 2 int.LC/, there is " > 0 such that '.x; t/ 2 int.N / for t 2 .0; "/.

(3) For x 2 L�, there is " > 0 such that '.x; t/ 62 N for t 2 .0; "/.

Then N is an isolating neighborhood and .N; L�/ is an index pair of inv.N /. (See
[14] for a similar statement.)

Proof. By conditions (2) and (3), we have inv.N / � int.N /. It is easy to see that
L� is an exit set from the three conditions. Also, condition (3) implies that L� is
positively invariant in N .

Fix a spinc 3-manifold .Y; s/, along with a spectral system S, which we will
usually suppress from the notation. Let kC; k� > 5 be half-integers with jkC � k�j �
1
2

, k D min¹kC; k�º and

'n D 'n;kC;k� W .Fn ˚Wn/ �R! Fn ˚Wn

be the flow induced by the Seiberg–Witten equations.
Fix R� 0. Put

An.R/´ .BkC.F
C
n IR/ �B Bk�.F

�
n IR// �B .BkC.W

C
n IR/ �B Bk�.W

�
n IR//:

Let In ! B D Pic.Y / be the parameterized Conley index of inv.An.R/; 'n/.

Theorem 4.1.2. Assume that the following conditions are satisfied:

(1) ker.DWE1 ! E1/ D 0.



Computation 88

(2) All solutions to the Seiberg–Witten equations (2.3.4) with finite energy are
reducible.

Let S be a spectral system such that P0 D E0.D/
0
�1. Then for all n� 0 we have

In Š S
F�n ˚W

�
n

B ;

as an S1-equivariant space, with the obvious projection to B . Hence the Seiberg–
Witten Floer parameterized homotopy type is given by

�WF .Y; s; ŒS�/ Š †C�D
2
n˚R�D

4
n

B In Š S
0
B

in PSWS1;B . Here, D2
n D rank Fn, D4

n D rankW �n and PSWS1;B is the category
defined in Definition A.1.9.

If the spinc structure is self-conjugate, the Pin.2/-Seiberg–Witten Floer parame-
terized homotopy type is given by

�WF Pin.2/.Y; s; ŒS�/ Š S0B

in PSWPin.2/;B .

To prove this, we need the following.

Proposition 4.1.3. Assume that all solutions to (2.3.4) with finite energy are redu-
cible. For any " > 0, there is n0 such that for n > n0 we have

inv.An.R// � An."/:

Proof. Put
ın´ max

®
k�CkkC W .�; !/ 2 inv.An.R//

¯
:

Let

n D .�n; !n/WR! An.R/

be approximate Seiberg–Witten trajectories with

k�Cn .0/kkC D ın:

Then we have
d

dt

ˇ̌̌
tD0
k�Cn .t/k

2
kC
D 0:

As we have seen before, after passing to a subsequence, 
n converges to a Seiberg–
Witten trajectory 
 with finite energy. By assumption, 
 is reducible and we can write

 D .0; !/. As in Lemma 2.7.2, we can show that there is a constant C > 0 such that
k�Cn .0/kkCC 12

< C for all n. By the Rellich lemma, �Cn .0/ converges to 0 in L2
k

.
Therefore ın ! 0.
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Similarly,

max
®
k��kk� W .�; !/ 2 inv.An.R//

¯
;

max
®
k!CkkC W .�; !/ 2 inv.An.R//

¯
;

max
®
k!�kk� W .�; !/ 2 inv.An.R//

¯
go to 0 as n! 0.

Proof of Theorem 4.1.2. Fix a small positive number " with "2 � " and choose n�
0. By the proposition,

inv.An.R// � An."/:

Put

Ln;�."/ D .BkC.F
C
n I "/ �B Sk�.F

�
n I "// �B .BkC.W

C
n I "/ �B Bk�.W

�
n I "//[

.BkC.F
C
n I "/ �B Bk�.F

�
n I "// �B .BkC.W

C
n I "/ �B Sk�.W

�
n I "//;

Ln;C."/ D .SkC.F
C
n I "/ �B Bk�.F

�
n I "// �B .BkC.W

C
n I "/ �B Bk�.W

�
n I "//[

.BkC.F
C
n I "/ �B Bk�.F

�
n I "// �B .SkC.W

C
n I "/ �B Bk�.W

�
n I "//:

Then we have

@An."/ D Ln;�."/ [ Ln;C."/;

Ln;�."/ \ Ln;C."/ D @Ln;�."/ D @Ln;C."/:

We will show that the pair .An."/; Ln;�."// is an index pair. It is enough to check
that An."/, Ln;�."/, Ln;C."/ satisfy conditions (2), (3) in Lemma 4.1.1. We consider
the case when kC 2 1

2
Z n Z.

Take an approximate Seiberg–Witten trajectory


 D .�; !/W .�ı; ı/! Fn ˚Wn

for a small positive number ı.
Assume that

k�C.0/kkC D ":

We have

1

2

d

dt

ˇ̌̌
tD0
k�C.t/kkC D

1

2

d

dt

ˇ̌̌
tD0
hjDjkCC

1
2�C�.t/; jDjkC�

1
2�C�.t/i0

D h.rXH jDj
kCC

1
2 /�C.0/; jDjkC�

1
2�C.0/i0

C hjDjkCC
1
2�C.0/; .rXH jDj

kC�
1
2 /�C.0/i0

C h.rXH�
C/�.0/; �C.0/ikC C

Dd�
dt
.0/; �C.0/

E
kC
:
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Note that

kXH .�/k D kq.�/Hk � C"
2:

Hence we have ˇ̌
h.rXH jDj

kCC
1
2 /�C.0/; jDjkC�

1
2�C.0/i0

ˇ̌
� C"4;ˇ̌

hjDjkCC
1
2�C.0/; .rXH jDj

kC�
1
2 /�C.0/i0

ˇ̌
� C"4;ˇ̌

h.rXH�
C/�.0/; �C.0/ikC

ˇ̌
� C"4;

by Proposition 2.5.5 and Lemma 2.5.8. Recall that �C D 1 � �P0 , where �P0 is the
L2-projection onto P0. We haveDd�

dt
.0/; �C.0/

E
kC
D �h.rXH�Fn/�.0/; �

C.0/ikC � h�FnD�.0/; �
C.0/ikC

� h�Fnc1.
.0//; �
C.0/ikC

and

h.rXH�Fn/�.0/; �
C.0/ikC D 0;

h�FnD�.0/; �
C.0/ikC D hD�.0/; �

C.0/ikC � C"
2;

jh�Fnc1.
.0//; �
C.0/ikC j � C"

3:

Here we have used Lemma 2.5.11 for the first equality. Therefore

d

dt

ˇ̌̌
tD0
k�C.t/k2kC � �C"

2
C C"3 < 0:

Assume that

k��.0/kk� D ":

A similar calculation shows that

d

dt

ˇ̌̌
tD0
k��.t/k2k� > 0:

Similarly, if k!C.0/kkC D " then d
dt

ˇ̌
tD0
k!C.t/k2

kC
< 0, and if k!�.0/kk� D "

then d
dt

ˇ̌
tD0
k!�.t/k2

k�
> 0. From these, it is easy to see that conditions (2), (3) in

Lemma 4.1.1 are satisfied and we can apply Lemma 4.1.1 to conclude that the pair
.An."/; Ln."// is an index pair.

Therefore we have

In D An."/ [pB Ln;�."/ Š S
F�n ˚W

�
n

B :
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4.2 Examples

Example 4.2.1. Suppose that Y has a positive scalar curvature metric. Then the con-
ditions of Theorem 4.1.2 are satisfied.

Example 4.2.2. Let Y be a nontrivial flat torus bundle over S1 which is not the
Hantzsche–Wendt manifold. Then Y has a flat metric and b1.Y / D 1. Take a torsion
spinc structure s of Y . All solutions to the unperturbed Seiberg–Witten equations on
Y are reducible solutions .A; 0/ with FA D 0. Also, all finite energy solutions to the
unperturbed Seiberg–Witten equations on Y �R are the reducible solutions .��YA;0/,
where A are the flat spinc connections on Y and �Y W Y � R! Y is the projection.
Hence condition (2) of Theorem 4.1.2 is satisfied.

By [28, Lemma 37.4.1], if s is not the torsion spinc structure corresponding to the
2-plane field tangent to the fibers, condition (1) of Theorem 4.1.2 is satisfied.

We consider the sphere bundle of a complex line bundle over a surface†. We will
make use of results from [42, 44] and [24, Section 8].

Let † be a closed, oriented surface of genus g and pWNd ! † be the complex
line bundle on † of degree d . We will consider the sphere bundle Y D S.Nd /. We
have

H 2.Y IZ/ Š Z2g ˚ .Z=dZ/:

The direct summand Z=dZ corresponds to the image

Pict .†/=ZŒNd �
p�

��! Pict .Y /
c1
�! H 2.Y IZ/;

where Pict .†/ is the set of isomorphism classes of topological complex line bundles
on †.

Fix a torsion spinc structure s. We consider a metric

gY;r D .r�/
˝2
˚ g†

on Y for r > 0. Here, i� 2 i�1.Y / is a constant-curvature connection 1-form of
S.Nd /. Following [42, 44], we take the connection r0 on T Y which is trivial in the
fiber direction and is equal to the pullback of the Levi-Civita connection on † on
ker �. For a 2 H1.Y /, let Dr;a be the Dirac operator induced by r0. We have

Dr;a D Da C ır ;

where ırD12rd . See [42, Section 5.1] and [44, Section 2.1]. The family ¹Dr;aºa2H1.Y /

induces an operator

Dr WE1 ! E1:
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We consider the perturbed Seiberg–Witten equations for 
 D .�; !/WR ! E1 �

im d�: �d�
dt
.t/
�
H
D �Dr�.t/ � c1.
.t//;�d�

dt
.t/
�
V
D �XH .�.t//;

d!

dt
.t/ D � � d!.t/ � c2.
.t//:

(4.2.1)

These equations are the gradient flow equation of the perturbed Chern–Simons–Dirac
functional

CSDr.�; !/ D CSD.�; !/C ırk�k2L2 :

The term ırk�k
2
L2

is a tame perturbation. See [28, p. 171]. We can apply Theorem
2.3.3 to the perturbed Seiberg–Witten equations (4.2.1).

The following is a direct consequence of [42, Corollary 5.17 and Theorem 5.19].
See also [44, Section 3.2] and [24, Proposition 8.1, Section 8.2].

Proposition 4.2.3. Let s0 be the spinc structure of Y with spinor bundle S D
p�K�1† ˚ C. Denote by Lq the flat complex line bundle on Y with c1 � q mod d
in TorH 2.Y IZ/. Put sq ´ s0 ˝ Lq . Assume that 0 < g < d . Then for q 2 ¹g;
g C 1; : : : ; d � 1º, all critical points of the functional CSDr associated with sq are
reducible and nondegenerate.

Note that this proposition implies that kerDr D 0 and hence we have a natural
spectral section P0 of Dr :

P0 D .E0.Dr//
0
�1:

The following proposition is proved in [24, proof of Theorem 7.5].

Proposition 4.2.4. Under the same assumption as Proposition 4.2.3, any gradient
trajectory of CSDr (that is, a solution to (4.2.1)) with finite energy is reducible.

We can apply the proof of Theorem 4.1.2 to the perturbed Seiberg–Witten equa-
tions (4.2.1) to show the following.

Theorem 4.2.5. Take q 2 ¹g; g C 1; : : : ; d � 1º. Let S be a spectral system with
P0 D E0.Dr/

0
�1. In the above notation, for r small, we have

In Š S
F�n ˚W

�
n

B :

Therefore we have
�WF .Y; sq; ŒS�/ Š S

0
B

in PSWS1;B . If s is self-conjugate,

�WF Pin.2/.Y; sq; ŒS�/ Š S
0
B

in PSWPin.2/;B .
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Dai and the authors [17] computed the Seiberg–Witten Floer stable homotopy
type for almost rational plumbed 3-manifolds which have b1 D 0. The computation is
based on surgery exact triangles in [48]. If we establish a surgery exact triangle for the
Seiberg–Witten Floer stable homotopy type �WF .Y; s;S/ defined in this memoir, it
would be possible to compute for more 3-manifolds with b1 > 0.


