Chapter 4

Computation

In this chapter we provide a sample of calculations of the Seiberg—Witten Floer homo-
topy type.

4.1 Seiberg—Witten Floer homotopy type in reducible case

We will need the following lemma.

Lemma 4.1.1. Let o: M x R — M be a smooth flow on a smooth manifold M and
N be a compact submanifold (with corners) of M with dim M = dim N. Assume that
the following conditions are satisfied:

(1) ON = Ly U L_, where Ly, L_ are compact submanifolds (with corners) of
8N Wlth L+ NL_ = 8L+ = 8L_

(2) For x € int(L), there is € > 0 such that ¢(x,t) € int(N) fort € (0, ¢).
(3) Forx € L_, there is ¢ > 0 such that ¢(x,t) & N fort € (0, ¢).

Then N is an isolating neighborhood and (N, L_) is an index pair of inv(N). (See
[14] for a similar statement.)

Proof. By conditions (2) and (3), we have inv(N) C int(N). It is easy to see that
L_ is an exit set from the three conditions. Also, condition (3) implies that L_ is
positively invariant in V. ]

Fix a spin® 3-manifold (Y, ¢), along with a spectral system &, which we will
usually suppress from the notation. Let k1, k_ > 5 be half-integers with |k, —k_| <
%, k = min{k4,k_} and

Dn =§0n,k+,k_:(Fn W) xR—>F, &W,

be the flow induced by the Seiberg—Witten equations.
Fix R > 0. Put

An(R) := (Bi, (F,": R) xB Bi_(F; : R)) xp (Bi, (W,": R) xg Bx_(W, : R)).

Let I, — B = Pic(Y) be the parameterized Conley index of inv(A,(R), ¢5).

Theorem 4.1.2. Assume that the following conditions are satisfied:
(1) ker(D: 8 — Ex) = 0.
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(2) All solutions to the Seiberg—Witten equations (2.3.4) with finite energy are
reducible.

Let © be a spectral system such that Py = E(D)° .. Then for all n >> 0 we have

F,ew,”
I = Sg" "

as an S'-equivariant space, with the obvious projection to B. Hence the Seiberg—
Witten Floer parameterized homotopy type is given by

_n2 _p4
SWF(Y,s,[6]) = =§ "R~ g9

in PSWg1 g. Here, D} = rank Fy,, D,; = rank W,~ and PSWg\ p is the category
defined in Definition A.1.9.

If the spin® structure is self-conjugate, the Pin(2)-Seiberg—Witten Floer parame-
terized homotopy type is given by

SWFIA (v, 5, [@]) = S3

in PSWpin(z)’B.
To prove this, we need the following.

Proposition 4.1.3. Assume that all solutions to (2.3.4) with finite energy are redu-
cible. For any ¢ > 0, there is no such that for n > ny we have

inv(A,(R)) C A,(e).

Proof. Put
50 1= max{[$ e, : (¢, @) € inv(4,(R))}.

Let
Yn = ($n,wn): R — A, (R)

be approximate Seiberg—Witten trajectories with

I#;5 0) Iy = 8n.

Then we have J
+ (41112

— t =0.

|l Iz,

As we have seen before, after passing to a subsequence, y, converges to a Seiberg—
Witten trajectory y with finite energy. By assumption, y is reducible and we can write
y = (0, w). As in Lemma 2.7.2, we can show that there is a constant C > 0 such that
lo:F (0)]] ky+4 < C forall n. By the Rellich lemma, ¢,5 (0) converges to 0 in LZ.

Therefore 8, — 0.
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Similarly,
max{[|¢~ [lx_ : (¢, ®) € inv(4,(R))},
max{[lo™ [, : (¢, w) € inv(A4,(R))}.
max{[|o” ||x_ : (¢, ) € inv(4,(R))}
gotoOasn — 0. |

Proof of Theorem 4.1.2. Fix a small positive number & with 2 < & and choose n >
0. By the proposition,
inv(A,(R)) C A, (e).

Put
Lu,—(e) = (B, (F, 1) xp Sk_(F,; ;) xp (Be, (W,":¢) xg Be_ (W, 3 ¢))
\J(Be (F;:6) x5 Bi_(F;:€)) xB (Biy (W,"58) xB St (W, 3 ),
L4 (8) = (Sk, (F,;F;€) xg Bi_(F, :€)) xp (B, (W, :¢) xp Bx_ (W, ;€))
B (F, 1) xB Bi_(F; :€)) xB (Sky (W5 6) x Bi_ (W, :¢)).
Then we have

04,(¢) = Ln,—(e) U Ly + (o),

Ln~() N L4 () = ILn—(6) = ILn 4 (o).
We will show that the pair (A, (¢), L,,—(€)) is an index pair. It is enough to check
that A, (), Ly, —(€), Ln,+(¢) satisty conditions (2), (3) in Lemma 4.1.1. We consider

the case when k. € %Z \ Z.
Take an approximate Seiberg—Witten trajectory

Yy =(¢.0):(=8,8) > F, & W,

for a small positive number §.
Assume that

I+ Ok, = e.
We have
1d 1d | N
St ol Ol = 57| _ (DI 2170 0). |DI 210 (1)o

= ((Vxy |DIF+2)¢4(0), |DIF+26(0))o
+ (D[ +26(0), (Vxyy IDF+72)p™ (0))o

d
F (V7806 O, + (22 0. 47(0)

dt ki
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Note that
IXa @)l = llg(p)sell < Ce.

Hence we have

(Vi | DT3¢t (0), |DIF+2 6 (0)o| < Ce*
(D427 (0), (Vxy, | DIF+ %) (0) |<c

{(Vx )P (0). 91 (0), | < Ce*

by Proposition 2.5.5 and Lemma 2.5.8. Recall that 7+ = 1 — 7p,, where p, is the
L?-projection onto Py. We have

d
<d—¢t’<0>,<zs+<0>)k+ = ~{(Vxyy E,)$(0). ™+ )k, — (75, DH(0). ™ (0))i

— (F,c1(y(0)), 6T (01,

and

(Ve 7E,)$(0). ¢+ ()i, =0,
(7, DP(0), 6™ ()i, = (DP(0). ¢ (), = C&*,
(r,c1(7(0)), 6T ()i, | < C&>.

Here we have used Lemma 2.5.11 for the first equality. Therefore

d
yri ||¢+(z)||k <-Ce®+Ce <o.

Assume that

¢~ Ok =

A similar calculation shows that

d —
ELOW o2 >o.

Similarly, if o™ (0)|x, = & then %\t:0||w+(t)||i+ <0, and if [0~ (0)[|x_ =
then %{tzonw_(t)”i_ > 0. From these, it is easy to see that conditions (2), (3) in
Lemma 4.1.1 are satisfied and we can apply Lemma 4.1.1 to conclude that the pair
(A, (g), Ly(e)) is an index pair.

Therefore we have

Iy = An(e) Upy L () = Spm &7, .
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4.2 Examples

Example 4.2.1. Suppose that ¥ has a positive scalar curvature metric. Then the con-
ditions of Theorem 4.1.2 are satisfied.

Example 4.2.2. Let Y be a nontrivial flat torus bundle over S! which is not the
Hantzsche—Wendt manifold. Then Y has a flat metric and b;(Y) = 1. Take a torsion
spin® structure s of Y. All solutions to the unperturbed Seiberg—Witten equations on
Y are reducible solutions (A4, 0) with F4 = 0. Also, all finite energy solutions to the
unperturbed Seiberg—Witten equations on ¥ x R are the reducible solutions (7 4,0),
where A are the flat spin® connections on Y and 7y:Y x R — Y is the projection.
Hence condition (2) of Theorem 4.1.2 is satisfied.

By [28, Lemma 37.4.1], if s is not the torsion spin€ structure corresponding to the
2-plane field tangent to the fibers, condition (1) of Theorem 4.1.2 is satisfied.

We consider the sphere bundle of a complex line bundle over a surface . We will
make use of results from [42,44] and [24, Section 8].

Let ¥ be a closed, oriented surface of genus g and p: Ny — ¥ be the complex
line bundle on X of degree d. We will consider the sphere bundle Y = S(Ny). We
have

H*(Y:Z) = 7% & (Z/dZ).

The direct summand Z/d7Z corresponds to the image
Pic' (2)/Z[N4] 2> Pic' (V) 25 H2(Y:7Z),

where Pic’ (X) is the set of isomorphism classes of topological complex line bundles
on X.
Fix a torsion spin® structure 5. We consider a metric

grr =(n®* ®gs

on Y for r > 0. Here, in € i 2'(Y) is a constant-curvature connection 1-form of
S(Ng). Following [42,44], we take the connection V9 on TY which is trivial in the
fiber direction and is equal to the pullback of the Levi-Civita connection on ¥ on
kern. Fora € #¢1(Y), let D, 4 be the Dirac operator induced by V°. We have

Dr,a = Da + 87’7

where §, = %rd. See [42, Section 5.1] and [44, Section 2.1]. The family {D; 4}, 01 (v)
induces an operator

D;:8s = Eo.
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We consider the perturbed Seiberg—Witten equations for y = (¢, ): R — o X
imd*:

d
(d_‘i’(t))H = —D, (1) — 1 (y (1)),
d¢
(E(t))V = —Xu(p(1)). @.2.1)

99 1) = —x dott) ~ e2ty (1)
These equations are the gradient flow equation of the perturbed Chern—Simons—Dirac
functional
CSD; (¢, w) = CSD(¢p, ) + &, [1p]|7»-
The term &, ||¢||i2 is a tame perturbation. See [28, p. 171]. We can apply Theorem
2.3.3 to the perturbed Seiberg—Witten equations (4.2.1).
The following is a direct consequence of [42, Corollary 5.17 and Theorem 5.19].
See also [44, Section 3.2] and [24, Proposition 8.1, Section 8.2].

Proposition 4.2.3. Let so be the spin® structure of Y with spinor bundle S =
,D"‘KE1 @ C. Denote by Ly the flat complex line bundle on Y with ¢; = g mod d
in Tor H*(Y; Z). Put 34 := S0 ® Lg. Assume that 0 < g < d. Then for q € {g,
g+ 1,...,d — 1}, all critical points of the functional CSD, associated with s, are
reducible and nondegenerate.

Note that this proposition implies that ker D, = 0 and hence we have a natural
spectral section Py of D,:
Py = (80(Dr))0—oo‘
The following proposition is proved in [24, proof of Theorem 7.5].

Proposition 4.2.4. Under the same assumption as Proposition 4.2.3, any gradient
trajectory of CSD, (that is, a solution to (4.2.1)) with finite energy is reducible.

We can apply the proof of Theorem 4.1.2 to the perturbed Seiberg—Witten equa-
tions (4.2.1) to show the following.

Theorem 4.2.5. Take g € {g, g + 1,...,d — 1}. Let @ be a spectral system with

Py = 80(Dr)(loo. In the above notation, for r small, we have
I, = Spm &,

Therefore we have

SWF(Y.54.[C]) = S§
in PSWg1 . If s is self-conjugate,

SWFNA(y,5,.[6]) = S

in PSWPin(Z),B-
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Dai and the authors [17] computed the Seiberg—Witten Floer stable homotopy
type for almost rational plumbed 3-manifolds which have b; = 0. The computation is
based on surgery exact triangles in [48]. If we establish a surgery exact triangle for the
Seiberg—Witten Floer stable homotopy type SWF (Y, s, ©) defined in this memoir, it
would be possible to compute for more 3-manifolds with ; > 0.



