Chapter 4

Computation

In this chapter we provide a sample of calculations of the Seiberg–Witten Floer homotopy type.

4.1 Seiberg–Witten Floer homotopy type in reducible case

We will need the following lemma.

Lemma 4.1.1. Let $\varphi: M \times \mathbb{R} \to M$ be a smooth flow on a smooth manifold M and N be a compact submanifold (with corners) of M with dim $M = \dim N$. Assume that the following conditions are satisfied:

- (1) $\partial N = L_+ \cup L_-$, where L_+ , L_- are compact submanifolds (with corners) of ∂N with $L_+ \cap L_- = \partial L_+ = \partial L_-$.
- (2) For $x \in int(L_+)$, there is $\varepsilon > 0$ such that $\varphi(x, t) \in int(N)$ for $t \in (0, \varepsilon)$.
- (3) For $x \in L_{-}$, there is $\varepsilon > 0$ such that $\varphi(x, t) \notin N$ for $t \in (0, \varepsilon)$.

Then N is an isolating neighborhood and (N, L_{-}) is an index pair of inv(N). (See [14] for a similar statement.)

Proof. By conditions (2) and (3), we have $inv(N) \subset int(N)$. It is easy to see that L_{-} is an exit set from the three conditions. Also, condition (3) implies that L_{-} is positively invariant in N.

Fix a spin^c 3-manifold (Y, \mathfrak{s}) , along with a spectral system \mathfrak{S} , which we will usually suppress from the notation. Let $k_+, k_- > 5$ be half-integers with $|k_+ - k_-| \le \frac{1}{2}, k = \min\{k_+, k_-\}$ and

$$\varphi_n = \varphi_{n,k_+,k_-} \colon (F_n \oplus W_n) \times \mathbb{R} \to F_n \oplus W_n$$

be the flow induced by the Seiberg-Witten equations.

Fix $R \gg 0$. Put

$$A_n(R) := (B_{k_+}(F_n^+; R) \times_B B_{k_-}(F_n^-; R)) \times_B (B_{k_+}(W_n^+; R) \times_B B_{k_-}(W_n^-; R)).$$

Let $I_n \to B = \operatorname{Pic}(Y)$ be the parameterized Conley index of $\operatorname{inv}(A_n(R), \varphi_n)$.

Theorem 4.1.2. Assume that the following conditions are satisfied:

(1) $\ker(D: \mathcal{E}_{\infty} \to \mathcal{E}_{\infty}) = 0.$

(2) All solutions to the Seiberg–Witten equations (2.3.4) with finite energy are reducible.

Let \mathfrak{S} be a spectral system such that $P_0 = \mathfrak{E}_0(D)^0_{-\infty}$. Then for all $n \gg 0$ we have

$$I_n \cong S_B^{F_n^- \oplus W_n^-},$$

as an S^1 -equivariant space, with the obvious projection to B. Hence the Seiberg– Witten Floer parameterized homotopy type is given by

$$\mathcal{SWF}(Y,\mathfrak{s},[\mathfrak{S}]) \cong \Sigma_B^{\mathbb{C}^{-D_n^2} \oplus \mathbb{R}^{-D_n^4}} I_n \cong S_B^0$$

in $PSW_{S^1,B}$. Here, $D_n^2 = \operatorname{rank} F_n$, $D_n^4 = \operatorname{rank} W_n^-$ and $PSW_{S^1,B}$ is the category defined in Definition A.1.9.

If the spin^c structure is self-conjugate, the Pin(2)-Seiberg–Witten Floer parameterized homotopy type is given by

$$SW\mathcal{F}^{\operatorname{Pin}(2)}(Y,\mathfrak{s},[\mathfrak{S}])\cong S^0_B$$

in $PSW_{Pin(2),B}$.

To prove this, we need the following.

Proposition 4.1.3. Assume that all solutions to (2.3.4) with finite energy are reducible. For any $\varepsilon > 0$, there is n_0 such that for $n > n_0$ we have

$$\operatorname{inv}(A_n(R)) \subset A_n(\varepsilon).$$

Proof. Put

$$\delta_n := \max\{\|\phi^+\|_{k_+} : (\phi, \omega) \in \operatorname{inv}(A_n(R))\}.$$

Let

$$\gamma_n = (\phi_n, \omega_n) \colon \mathbb{R} \to A_n(R)$$

be approximate Seiberg-Witten trajectories with

$$\|\phi_n^+(0)\|_{k_+} = \delta_n.$$

Then we have

$$\left. \frac{d}{dt} \right|_{t=0} \|\phi_n^+(t)\|_{k_+}^2 = 0.$$

As we have seen before, after passing to a subsequence, γ_n converges to a Seiberg–Witten trajectory γ with finite energy. By assumption, γ is reducible and we can write $\gamma = (0, \omega)$. As in Lemma 2.7.2, we can show that there is a constant C > 0 such that $\|\phi_n^+(0)\|_{k_++\frac{1}{2}} < C$ for all *n*. By the Rellich lemma, $\phi_n^+(0)$ converges to 0 in L_k^2 . Therefore $\delta_n \to 0$.

Similarly,

$$\max\{\|\phi^-\|_{k-}: (\phi, \omega) \in \operatorname{inv}(A_n(R))\},\\ \max\{\|\omega^+\|_{k+}: (\phi, \omega) \in \operatorname{inv}(A_n(R))\},\\ \max\{\|\omega^-\|_{k-}: (\phi, \omega) \in \operatorname{inv}(A_n(R))\}\}$$

go to 0 as $n \to 0$.

Proof of Theorem 4.1.2. Fix a small positive number ε with $\varepsilon^2 \ll \varepsilon$ and choose $n \gg 0$. By the proposition,

$$\operatorname{inv}(A_n(R)) \subset A_n(\varepsilon).$$

Put

$$L_{n,-}(\varepsilon) = (B_{k_+}(F_n^+;\varepsilon) \times_B S_{k_-}(F_n^-;\varepsilon)) \times_B (B_{k_+}(W_n^+;\varepsilon) \times_B B_{k_-}(W_n^-;\varepsilon))$$
$$\bigcup (B_{k_+}(F_n^+;\varepsilon) \times_B B_{k_-}(F_n^-;\varepsilon)) \times_B (B_{k_+}(W_n^+;\varepsilon) \times_B S_{k_-}(W_n^-;\varepsilon)),$$
$$L_{n,+}(\varepsilon) = (S_{k_+}(F_n^+;\varepsilon) \times_B B_{k_-}(F_n^-;\varepsilon)) \times_B (B_{k_+}(W_n^+;\varepsilon) \times_B B_{k_-}(W_n^-;\varepsilon))$$
$$\bigcup (B_{k_+}(F_n^+;\varepsilon) \times_B B_{k_-}(F_n^-;\varepsilon)) \times_B (S_{k_+}(W_n^+;\varepsilon) \times_B B_{k_-}(W_n^-;\varepsilon)).$$

Then we have

$$\partial A_n(\varepsilon) = L_{n,-}(\varepsilon) \cup L_{n,+}(\varepsilon),$$

$$L_{n,-}(\varepsilon) \cap L_{n,+}(\varepsilon) = \partial L_{n,-}(\varepsilon) = \partial L_{n,+}(\varepsilon).$$

We will show that the pair $(A_n(\varepsilon), L_{n,-}(\varepsilon))$ is an index pair. It is enough to check that $A_n(\varepsilon), L_{n,-}(\varepsilon), L_{n,+}(\varepsilon)$ satisfy conditions (2), (3) in Lemma 4.1.1. We consider the case when $k_+ \in \frac{1}{2}\mathbb{Z} \setminus \mathbb{Z}$.

Take an approximate Seiberg-Witten trajectory

$$\gamma = (\phi, \omega) : (-\delta, \delta) \to F_n \oplus W_n$$

for a small positive number δ .

Assume that

$$\|\phi^+(0)\|_{k_+} = \varepsilon.$$

We have

$$\begin{aligned} \frac{1}{2} \frac{d}{dt} \Big|_{t=0} \|\phi^+(t)\|_{k_+} &= \frac{1}{2} \frac{d}{dt} \Big|_{t=0} \langle |D|^{k_+ + \frac{1}{2}} \pi^+ \phi(t), |D|^{k_+ - \frac{1}{2}} \pi^+ \phi(t) \rangle_0 \\ &= \langle (\nabla_{X_H} |D|^{k_+ + \frac{1}{2}}) \phi^+(0), |D|^{k_+ - \frac{1}{2}} \phi^+(0) \rangle_0 \\ &+ \langle |D|^{k_+ + \frac{1}{2}} \phi^+(0), (\nabla_{X_H} |D|^{k_+ - \frac{1}{2}}) \phi^+(0) \rangle_0 \\ &+ \langle (\nabla_{X_H} \pi^+) \phi(0), \phi^+(0) \rangle_{k_+} + \left\langle \frac{d\phi}{dt}(0), \phi^+(0) \right\rangle_{k_+}. \end{aligned}$$

Note that

$$||X_H(\phi)|| = ||q(\phi)_{\mathcal{H}}|| \le C\varepsilon^2.$$

Hence we have

$$\begin{aligned} \left| \langle (\nabla_{X_H} | D |^{k_+ + \frac{1}{2}}) \phi^+(0), | D |^{k_+ - \frac{1}{2}} \phi^+(0) \rangle_0 \right| &\leq C \varepsilon^4, \\ \left| \langle | D |^{k_+ + \frac{1}{2}} \phi^+(0), (\nabla_{X_H} | D |^{k_+ - \frac{1}{2}}) \phi^+(0) \rangle_0 \right| &\leq C \varepsilon^4, \\ \left| \langle (\nabla_{X_H} \pi^+) \phi(0), \phi^+(0) \rangle_{k_+} \right| &\leq C \varepsilon^4, \end{aligned}$$

by Proposition 2.5.5 and Lemma 2.5.8. Recall that $\pi^+ = 1 - \pi_{P_0}$, where π_{P_0} is the L^2 -projection onto P_0 . We have

$$\left\langle \frac{d\phi}{dt}(0), \phi^+(0) \right\rangle_{k_+} = -\langle (\nabla_{X_H} \pi_{F_n})\phi(0), \phi^+(0) \rangle_{k_+} - \langle \pi_{F_n} D\phi(0), \phi^+(0) \rangle_{k_+} - \langle \pi_{F_n} c_1(\gamma(0)), \phi^+(0) \rangle_{k_+}$$

and

$$\langle (\nabla_{X_H} \pi_{F_n}) \phi(0), \phi^+(0) \rangle_{k_+} = 0, \langle \pi_{F_n} D \phi(0), \phi^+(0) \rangle_{k_+} = \langle D \phi(0), \phi^+(0) \rangle_{k_+} \ge C \varepsilon^2, | \langle \pi_{F_n} c_1(\gamma(0)), \phi^+(0) \rangle_{k_+} | \le C \varepsilon^3.$$

Here we have used Lemma 2.5.11 for the first equality. Therefore

$$\frac{d}{dt}\Big|_{t=0} \|\phi^+(t)\|_{k+}^2 \le -C\varepsilon^2 + C\varepsilon^3 < 0.$$

Assume that

$$\|\phi^-(0)\|_{k_-}=\varepsilon.$$

A similar calculation shows that

$$\frac{d}{dt}\Big|_{t=0} \|\phi^-(t)\|_{k_-}^2 > 0.$$

Similarly, if $\|\omega^+(0)\|_{k_+} = \varepsilon$ then $\frac{d}{dt}\Big|_{t=0} \|\omega^+(t)\|_{k_+}^2 < 0$, and if $\|\omega^-(0)\|_{k_-} = \varepsilon$ then $\frac{d}{dt}\Big|_{t=0} \|\omega^-(t)\|_{k_-}^2 > 0$. From these, it is easy to see that conditions (2), (3) in Lemma 4.1.1 are satisfied and we can apply Lemma 4.1.1 to conclude that the pair $(A_n(\varepsilon), L_n(\varepsilon))$ is an index pair.

Therefore we have

$$I_n = A_n(\varepsilon) \cup_{p_B} L_{n,-}(\varepsilon) \cong S_B^{F_n^- \oplus W_n^-}.$$

4.2 Examples

Example 4.2.1. Suppose that Y has a positive scalar curvature metric. Then the conditions of Theorem 4.1.2 are satisfied.

Example 4.2.2. Let *Y* be a nontrivial flat torus bundle over S^1 which is not the Hantzsche–Wendt manifold. Then *Y* has a flat metric and $b_1(Y) = 1$. Take a torsion spin^{*c*} structure \cong of *Y*. All solutions to the unperturbed Seiberg–Witten equations on *Y* are reducible solutions (*A*, 0) with $F_A = 0$. Also, all finite energy solutions to the unperturbed Seiberg–Witten equations on $Y \times \mathbb{R}$ are the reducible solutions (π_Y^*A , 0), where *A* are the flat spin^{*c*} connections on *Y* and $\pi_Y : Y \times \mathbb{R} \to Y$ is the projection. Hence condition (2) of Theorem 4.1.2 is satisfied.

By [28, Lemma 37.4.1], if \mathfrak{s} is not the torsion spin^{*c*} structure corresponding to the 2-plane field tangent to the fibers, condition (1) of Theorem 4.1.2 is satisfied.

We consider the sphere bundle of a complex line bundle over a surface Σ . We will make use of results from [42, 44] and [24, Section 8].

Let Σ be a closed, oriented surface of genus g and $p: N_d \to \Sigma$ be the complex line bundle on Σ of degree d. We will consider the sphere bundle $Y = S(N_d)$. We have

$$H^2(Y;\mathbb{Z})\cong\mathbb{Z}^{2g}\oplus(\mathbb{Z}/d\mathbb{Z}).$$

The direct summand $\mathbb{Z}/d\mathbb{Z}$ corresponds to the image

$$\operatorname{Pic}^{t}(\Sigma)/\mathbb{Z}[N_{d}] \xrightarrow{p^{*}} \operatorname{Pic}^{t}(Y) \xrightarrow{c_{1}} H^{2}(Y;\mathbb{Z}),$$

where $\operatorname{Pic}^{t}(\Sigma)$ is the set of isomorphism classes of topological complex line bundles on Σ .

Fix a torsion spin^c structure \mathfrak{s} . We consider a metric

$$g_{Y,r} = (r\eta)^{\otimes 2} \oplus g_{\Sigma}$$

on Y for r > 0. Here, $i\eta \in i\Omega^1(Y)$ is a constant-curvature connection 1-form of $S(N_d)$. Following [42, 44], we take the connection ∇^0 on TY which is trivial in the fiber direction and is equal to the pullback of the Levi-Civita connection on Σ on ker η . For $a \in \mathcal{H}^1(Y)$, let $D_{r,a}$ be the Dirac operator induced by ∇^0 . We have

$$D_{r,a} = D_a + \delta_r,$$

where $\delta_r = \frac{1}{2}rd$. See [42, Section 5.1] and [44, Section 2.1]. The family $\{D_{r,a}\}_{a \in \mathcal{H}^1(Y)}$ induces an operator

$$D_r: \mathcal{E}_{\infty} \to \mathcal{E}_{\infty}.$$

We consider the perturbed Seiberg–Witten equations for $\gamma = (\phi, \omega)$: $\mathbb{R} \to \mathcal{E}_{\infty} \times \operatorname{im} d^*$:

$$\begin{pmatrix} \frac{d\phi}{dt}(t) \end{pmatrix}_{H} = -D_{r}\phi(t) - c_{1}(\gamma(t)), \begin{pmatrix} \frac{d\phi}{dt}(t) \end{pmatrix}_{V} = -X_{H}(\phi(t)),$$

$$\frac{d\omega}{dt}(t) = -*d\omega(t) - c_{2}(\gamma(t)).$$

$$(4.2.1)$$

These equations are the gradient flow equation of the perturbed Chern–Simons–Dirac functional

$$CSD_r(\phi, \omega) = CSD(\phi, \omega) + \delta_r \|\phi\|_{L^2}^2$$

The term $\delta_r \|\phi\|_{L^2}^2$ is a tame perturbation. See [28, p. 171]. We can apply Theorem 2.3.3 to the perturbed Seiberg–Witten equations (4.2.1).

The following is a direct consequence of [42, Corollary 5.17 and Theorem 5.19]. See also [44, Section 3.2] and [24, Proposition 8.1, Section 8.2].

Proposition 4.2.3. Let \mathfrak{s}_0 be the spin^c structure of Y with spinor bundle $\mathbb{S} = p^* K_{\Sigma}^{-1} \oplus \mathbb{C}$. Denote by L_q the flat complex line bundle on Y with $c_1 \equiv q \mod d$ in Tor $H^2(Y; \mathbb{Z})$. Put $\mathfrak{s}_q := \mathfrak{s}_0 \otimes L_q$. Assume that 0 < g < d. Then for $q \in \{g, g+1, \ldots, d-1\}$, all critical points of the functional CSD_r associated with \mathfrak{s}_q are reducible and nondegenerate.

Note that this proposition implies that ker $D_r = 0$ and hence we have a natural spectral section P_0 of D_r :

$$P_0 = (\mathcal{E}_0(D_r))_{-\infty}^0$$

The following proposition is proved in [24, proof of Theorem 7.5].

Proposition 4.2.4. Under the same assumption as Proposition 4.2.3, any gradient trajectory of CSD_r (that is, a solution to (4.2.1)) with finite energy is reducible.

We can apply the proof of Theorem 4.1.2 to the perturbed Seiberg–Witten equations (4.2.1) to show the following.

Theorem 4.2.5. Take $q \in \{g, g + 1, ..., d - 1\}$. Let \mathfrak{S} be a spectral system with $P_0 = \mathcal{E}_0(D_r)^0_{-\infty}$. In the above notation, for r small, we have

$$I_n \cong S_B^{F_n^- \oplus W_n^-}$$

Therefore we have

$$SW\mathcal{F}(Y, \mathfrak{s}_q, [\mathfrak{S}]) \cong S^0_B$$

in $PSW_{S^1,B}$. If \cong is self-conjugate,

$$SW\mathcal{F}^{\operatorname{Pin}(2)}(Y,\mathfrak{s}_q,[\mathfrak{S}])\cong S^0_R$$

in $PSW_{Pin(2),B}$.

Dai and the authors [17] computed the Seiberg–Witten Floer stable homotopy type for almost rational plumbed 3-manifolds which have $b_1 = 0$. The computation is based on surgery exact triangles in [48]. If we establish a surgery exact triangle for the Seiberg–Witten Floer stable homotopy type $SW\mathcal{F}(Y, \mathfrak{s}, \mathfrak{S})$ defined in this memoir, it would be possible to compute for more 3-manifolds with $b_1 > 0$.