
Chapter 5

Finite-dimensional approximation on 4-manifolds

5.1 Construction of the relative Bauer–Furuta invariant

Let .X; t/ be a compact spinc 4-manifold with boundary Y . Take a Riemannian metric
Og of X such that a neighborhood of Y in X is isometric to Y � .�1; 0�. We assume
that the restriction s of t to Y is a torsion spinc structure. Put

E˙X;k ´ H1.X/ �H1.X IZ/ L
2
k.�.S

˙//;

WX;k ´ BX � L
2
k.�

1
CC.X//:

Here, BX D Pic.X/ and S˙ are the spinor bundles on X and �1CC.X/ is the space
of 1-forms on X in double Coulomb gauge. See [23] for the double Coulomb gauge
condition. Note that E˙

X;k
, WX;k are Hilbert bundles over BX . We have the Dirac

operator
DX WE

C

X;k
! E�X;k�1

on X , and as before, we can define the fiberwise norm k � kk on E˙
X;k

for each non-
negative number k. Also we put

EY;k ´ H1.Y / �H1.Y IZ/ L
2
k.S/;

WY;k ´ BY � L
2
k.im d�/ � BY � L

2
k.�

1.Y //:

Here, PY D Pic.Y /.

Proposition 5.1.1. For k; l � 0, there are constants RX;k;RY;l > 0 such that for any
solution x 2 ECX;2 ˚WX;2 to the Seiberg–Witten equations on X and any Seiberg–
Witten trajectory 
 WR�0 ! EY;2 ˚WY;2 with finite energy and with

rY .x/ D 
.0/;

we have
kxkk � RX;k; k
.t/kl � RY;l

for all t 2 R�0. Here, rY stands for the restriction to the boundary Y .

See [23, Section 4] for this proposition.

LetDY be the family of Dirac operators on Y parameterized by BY . Assume that
indDY D 0 in K1.BY /. Choose a spectral system S. As usual, put

Fn D Pn \Qn; Wn D WP;n \WQ;n:

Then Fn, Wn are subbundles of EY;0, WY;0 with finite rank.
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From now on, we assume that k is a half-integer and k > 5 so that we can use the
results in Chapters 2 and 3. We consider the map

SWX;nWE
C

X;k
˚WX;k

!
�
E�X;k�1 � L

2
k�1.�

C.X//
�
� ..Pn ˚WP;n/ \ L

2

k� 12
/ (5.1.1)

defined by

SWX;n. O�; y!/ D .DX O� C �.y!/ O�; F
C

OA
� q. O�/; �PnrY

O�; �WP;nrY y!/:

Here, �Pn , �WP;n are the L2-projection, where we have also written Pn for the total
space of the spectral section Pn. We will take subbundles Un, U 0n of EC

X;k
, E�

X;k�1

with finite rank as follows. The operator

.DX ; �P0rY /WE
C

X;k
! E�X;k�1 ˚ r

�
Y .P0 \ L

2

k� 12
/

is Fredholm. (See [40], [28, Section 17.2] and Section 2.1.) Hence there is a fiberwise
linear operator

pWCm
! E�X;k�1 ˚ r

�
Y .P0 \ L

2

k� 12
/

such that

.DX ; �P0rY /C p W EC
X;k
˚Cm

! E�X;k�1 ˚ r
�
Y .P0 \ L

2

k� 12
/ (5.1.2)

is surjective. Here, Cm D BX �Cm is the trivial bundle over BX .

Lemma 5.1.2. For any n and any subbundle U 0 in E�
X;k�1

, U 0˚ r�YFn and the image
of

.DX ; �PnrY /C pWEC
X;k
˚Cm

! E�X;k�1 ˚ r
�
Y .Pn \ L

2

k� 12
/

are transverse in E�
X;k�1

˚ r�Y .Pn \ L
2

k� 12
/.

Proof. Take any element .x0; y/ from E�
X;k�1

˚ r�Y .Pn \ L
2

k� 12
/. There is .x; v/ 2

EC
X;k
˚Cm such that

..DX ; �P0rY /C p/.x; v/ D .x0; �P0.y//:

Note that
Pn \ .P0/

?
D FCn :

We can write

.DX ; �PnrY C p/.x; v/ D
�
.DX ; .�P0 C �FCn

/rY /C p
�
.x; v/ D .x0; �P0.y/C z/;
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where z D �
F
C
n
.rY x/ 2 F

C
n � Fn. Hence

.x0; y/ D .x0; �P0.y/C z/C .0; �FCn
.y/ � z/

2 im..DX ; �PnrY /C p/C Fn:

Take a sequence of finite-dimensional subbundles U 0n of E�
X;k�1

such that �U 0n !
idE�

X;k�1
strongly as n!1 and put

Un´ ..DX ; �PnrY /C p/�1.U 0n ˚ r
�
YFn/: (5.1.3)

By Lemma 5.1.2, Un are subbundles of EC
X;k
˚Cm. Note that

ŒUn� � ŒU
0
n ˚ r

�
YFn� � ŒC

m� D Œind.DX ; Pn/� 2 K.BX /:

Here, the right-hand side is the index bundle defined in [40, Section 6].
Choose finite-dimensional subbundles

V 0n D BX � V
0
n;0

of BX � L2k�1.�
C.X// with �V 0n ! idBX�L2k�1.�C.X// strongly as n!1 and put

Vn´ .dC; �WP;nrY /
�1.V 0n ˚Wn/ � WX;k :

We consider the maps

SWX;n;p ´ .DX ; d
C/C pC �U 0n˚V 0ncX WUn ˚ Vn ! U 0n ˚ V

0
n;fSWX;n;p ´ .SWX;n;p; �PnrY ; �WP;nrY ; idCm/W

Un ˚ Vn ! U 0n ˚ V
0
n ˚ r

�
Y .Fn ˚Wn/˚Cm;

(5.1.4)

where
cX . O�; y!/ D .�.y!/ O�; F

C

OA0
C q. O�//

for a fixed connection OA0 on X . Fix positive numbers R, R0 with 0� R0 � R. Put

An´ .Bk� 12
.FCn IR/ �BY Bk.F

�
n IR// �BY .Bk� 12

.W Cn IR/ �BY Bk.W
�
n IR//:

Here,Bk� 12 .F
C
n IR/ is the ball in FCn of radiusR with respect toL2

k� 12
, and similarly

forBk.F �n IR/;Bk� 12 .W
C
n IR/,Bk.W

�
n IR/. Note that we take different normsL2

k� 12

and L2
k

for FCn , W Cn and F �n , W �n . By Theorem 2.3.3, for n� 0, An is an isolating
neighborhood of the flow 'n;k� 12 ;k

, for suitable k. For " > 0, we define compact
subsets Kn;1."/, Kn;2."/ of An by

Kn;1."/´
®
y 2 An W 9. O�; v; y!/ 2 Bk.Un ˚ VnIR

0/; . O�; v/ 2 Un � EC
X;k
˚Cm;

y! 2 Vn; k.SWX;n;p; idCm/. O�; v; y!/kk�1 � ";

y D �Pn˚W
�n
�1
rY . O�; y!/

¯
;
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and

Kn;2."/´
®
y 2 An W 9. O�; v; y!/ 2 @Bk.Un ˚ VnIR

0/;

k.SWX;n;p; idCm/. O�; v; y!/kk�1 � ";

y D �Pn˚W
�n
�1
rY . O�; y!/

¯
[.@An \Kn;1."//:

Here,
k.SWX;n;p; idCm/. O�; v; y!/kk�1 D kSWX;n;p. O�; y!/kk�1 C kvk:

We will show that we can find a regular index pair containing .K1;n."/;K2;n."//. See
Appendix A.2 for the definition of a regular index pair.

Proposition 5.1.3. There is an "0 > 0 such that if 0 < " < "0, for n large, we can
find a regular index pair .Nn; Ln/ of inv.AnI'n;k� 12 ;k/ with

Kn;1."/ � Nn � An; Kn;2."/ � Ln:

Proof. We write 'n for 'n;k� 12 ;k . We denote by AŒ0;1/n the set®
y 2 An W 8t 2 Œ0;1/; 'n.y; t/ 2 An

¯
:

By [35, Theorem 4], it is sufficient to prove the following for n large and " small:

(i) if y 2 Kn;1."/ \ A
Œ0;1/
n then we have 'n.y; t/ 62 @An for all t 2 Œ0;1/,

(ii) Kn;2."/ \ A
Œ0;1/
n D ;.

Furthermore, any index pair as constructed by [35, Theorem 4] may be thickened to
give a regular index pair still satisfying the conditions of the proposition. See [47,
Remark 5.4].

Note that for y 2 Kn;1."/ we have

kyCkk� 12
< R (5.1.5)

for all n since the restriction L2
k
.X/! L2

k� 12
.Y / is bounded and R0 � R.

First, we will prove that (i) holds for n large and " small. Assume that this is not
true. Then there is a sequence "n ! 0 such that after passing to a subsequence, we
have yn 2 An, . O�n; vn; y!n/ 2 Bk.Un ˚ VnIR0/, tn 2 Œ0;1/ with

yn D �Pn˚WP;nrY .
O�n; y!n/;

kSWX;n;p. O�n; !n/k
2
k�1 C kvnk

2
� "2n;

'n.yn; Œ0;1// � An;

'n.yn; tn/ 2 @An:
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Note that vn ! 0. Let


n D .�n; !n/W Œ0;1/! Fn ˚Wn

be the approximate Seiberg–Witten trajectory defined by


n.t/ D 'n.yn; t /:

After passing to a subsequence, one of the following holds for all n:

(a) �Cn .tn/ 2 Sk� 12
.FCn IR/,

(b) ��n .tn/ 2 Sk.F
�
n IR/,

(c) !Cn .tn/ 2 Sk� 12
.W Cn IR/,

(d) !�n .tn/ 2 Sk.W
�
n IR/.

Note that in cases (a) and (c), we have tn > 0 because of (5.1.5).
As in the proof of Theorem 2.3.3, we can show that there is a Seiberg–Witten

trajectory

 D .�; !/W Œ0;1/! EY;k� 32 ;k�1

˚WY;k� 32 ;k�1

such that after passing to a subsequence, 
n converges to 
 uniformly in L2
k� 32

on
each compact set in Œ0;1/. Also, after passing to a subsequence, . O�n; y!n/ converges
to a solution . O�; y!/ to the Seiberg–Witten equations on X uniformly in L2

k�1
on each

compact set in the interior of X . We have

rY . O�; y!/ D 
.0/:

Assume that case (a) happens for all n. As mentioned, tn > 0. Hence we have

d

dt

ˇ̌̌
tDtn
k�Cn .t/k

2

k� 12
D 0:

As in Lemma 2.7.2, we can show that there is C > 0 such that k�Cn .tn/kk < C for
all n. After passing to a subsequence, tn ! t1 2 R�0 or tn !1. First assume that
tn ! t1. By the Rellich lemma, �Cn .tn/ converges in L2

k� 12
strongly. This implies

that
k�C.t1/kk� 12

D R;

which contradicts Proposition 5.1.1.
Next we consider the case tn !1. Let


n D .�n; !n/W Œ�tn;1/! Fn ˚Wn

be the approximate Seiberg–Witten trajectory defined by


n.t/´ 'n.yn; t C tn/:



Finite-dimensional approximation on 4-manifolds 100

As before, we can show that there is a Seiberg–Witten trajectory


 WR! EY;k� 32 ;k�1
˚WY;k� 32 ;k�1

such that after passing to a subsequence, 
n converges to 
 uniformly in L2
k� 32

on
each compact set in R. As before we can show that the sequence k�Cn .0/kk is bounded
and hence �Cn .0/ converges to �C.0/ inL2

k� 12
strongly. Therefore k�C.0/kk� 12 DR,

which contradicts Proposition 2.3.2. Thus (a) cannot happen.
Let us consider the case when (b) holds for all n. We have

d

dt

ˇ̌̌
tDtn
k��n .t/k

2
k � 0:

As in the proof of Lemma 2.7.3,

0 �
d

dt

ˇ̌̌
tDtn
k��n .t/k

2
k

� �hD0��n .tn/; �
�
n .tn/ik � CR

2
k��n .tn/kkC 12

� CR2

D k��n .tn/k
2

kC 12
� CR2k��n .tn/kkC 12

� CR2:

This implies that the sequence k��n .tn/kkC 12 is bounded and there is a subsequence
such that ��n .tn/ converges in L2

k
strongly. We have a contradiction as before.

In the case when (c) or (d) holds for all n, we have a contradiction similarly. We
have proved that (i) holds for n large and " small.

Next we will prove that (ii) holds for n large and " small. If this is not true, there
is a sequence "n ! 0 such that after passing to a subsequence, one of the following
cases holds for all n:

(a) We have . O�n; vn; y!n/ 2 @Bk.Un ˚ VnIR0/, yn 2 A
Œ0;1/
n with

kSWX;n;p. O�n; y!n/kk�1 C kvnk � "n; yn D �Pn˚WP;nrY .
O�n; y!n/:

(b) We have . O�n; vn; y!n/ 2 Bk.Un ˚ VnIR0/, yn 2 @An \ A
Œ0;1/
n with

kSWX;n;p. O�n; y!n/kk�1 C kvnk � "n; yn D �Pn˚WP;nrY .
O�n; y!n/:

First we consider the case (a). Let


n D .�n; !n/W Œ0;1/! Fn ˚Wn

be the approximate Seiberg–Witten trajectory defined by


n.t/ D 'n.yn; t /:
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As before, there is a Seiberg–Witten trajectory


 D .�; !/W Œ0;1/! EY;k� 32 ;k�1
˚WY;k� 32 ;k�1

such that after passing to a subsequence, 
n converges to 
 uniformly in L2
k� 32

on

each compact set in Œ0;1/. Also, there is a solution . O�; y!/ to the Seiberg–Witten
equations onX such that after passing to a subsequence, . O�n; y!n/ converges to . O�; y!/
in L2

k�1
on each compact set in the interior of X . We have

rY . O�; y!/ D .�.0/; !.0//:

Since yn 2 An, we have

ky�n kk D k.�
�
n .0/; !

�
n .0//kk � R:

Hence, after passing to subsequence, .��n .0/; !
�
n .0// converges to .��.0/; !�.0// in

L2
k� 12

.Y / strongly. By the standard elliptic estimate, we have

k O�n � O�kL2
k
.X/

� C
�
k O�n � O�kL2.X/ C kDX . O�n � O�/kL2

k�1
.X/ C k�

�
n .0/ � �

�.0/kL2
k� 1

2

.Y /

�
:

From the condition that

kSWX;n;p. O�n; y!n/kk�1 C kvnk � "n;

we have

kDX . O�n � O�/kk�1 � C.kcX . O�n; y!n/ � cX . O�; y!/kk�1 C "n/:

Since cX . O�n; y!n/ converges to cX . O�; y!/ in L2
k�1

strongly, O�n converges to O� in L2
k

strongly.
Similarly, y!n converges to y! in L2

k
strongly. Hence,

k. O�; y!/kk D R
0:

This contradicts Proposition 5.1.1, so case (a) cannot happen.
Next we consider case (b). Let

yn D .�n; !n/:

After passing to a subsequence, ��n 2 Sk.F
�
n IR/ for all n, or !�n 2 Sk.W

�
n IR/ for

all n. Note that the cases �Cn 2 Sk� 12 .F
C
n IR/, !

C
n 2 Sk� 12

.W Cn IR/ do not happen
because of (5.1.5).
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We consider the case ��n 2 Sk.F
�
n IR/. Put


n.t/ D .�n.t/; !n.t// D 'n.yn; t /

for t � 0. As in the proof of Lemma 2.7.3,

0 �
d

dt

ˇ̌̌
tD0
k��n .t/k

2
k

� k��n k
2

kC 12
� CR2k��n kkC 12

� CR2:

Therefore the sequence k��n kkC 12 is bounded. By the Rellich lemma, ��n converges
to �� in L2

k
strongly and hence

k��kk D R;

which contradicts Proposition 5.1.1. Similarly, if !�n 2 Sk.W
�
n I R/ for all n, we

obtain a contradiction. We have proved that (ii) holds for n large and " small.

Remark 5.1.4. To get (5.1.5), we used the L2
k� 12

-norm on the positive component.
On the other hand, in the case (ii)-(a), we used the condition that k��n .0/kk is bounded
(rather than k��n .0/kk� 12 ) to have that ��n .0/ converges to ��.0/ in L2

k� 12
. This is

why we used the L2
k

-norm on the negative component to define Kn;1."/, Kn;2."/.
In the case where b1.Y / D 0, we can use the L2

k� 12
-norm on both of the positive

and negative component. See the proofs of [35, Proposition 6] and [23, Lemma 4.4].
In those proofs, to get the L2

k� 12
-convergence of ��n .0/, the following identity was

used:

eD��n .1/ � �
�
n .0/ D

Z 1

0

d

dt
.etD���n.t// dt: (5.1.6)

In the case where b1.Y / > 0, we have

d

dt
.etD���n.t// D e

tD.D CrXHD/�
��n.t/C e

tD.rXH�
�/�n.t/

� etD��¹.�nD CrXH�Fn/�n.t/C q.�n.t//º:

Since .rXH�Fn/�n.t/ does not converge in L2
k� 12

, we cannot deduce that ��n .0/
converges in L2

k� 12
from (5.1.6).

For n large and " small, let .Nn; Ln/ be a regular index pair of inv.'n; An/ with

K1;n."/ � Nn; K2;n."/ � Ln:
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Put

S
Un˚Vn
BX

´

[
a2BX

B..Un ˚ Vn/aIR/=S..Un ˚ Vn/aIR/;

S
U 0n˚V

0
n˚Cm

BX
´

[
a2BX

B..U 0n ˚ V
0
n ˚Cm/aI "/=S..U

0
n ˚ V

0
n ˚Cm/aI "/;

which are sphere bundles over BX , and let In be the Conley index:

In´ Nn [pBY jLn
BY :

Here, pBY WNn ! BY is the projection. We obtain a map

BF Œn�.X; t/WS
Un˚Vn
BX

! S
U 0n˚V

0
n˚Cm

BX
^BX r

�
Y In (5.1.7)

defined by

BF Œn�.X; t/.Œ O�; v; y!�/

D

´
ŒSWX;n;p. O�; v; y!/; v� ^ Œ�Pn˚WP;nrY .

O�; y!/� if (5.1.8) holds;

�a otherwise:

Here, a D pBX .
O�; y!/, �a denotes the base point of the sphere S .U

0
n˚V

0
n˚Cm/a and

we have the following condition:

kSWX;n;p. O�; v; y!/k
2
k�1 C kvk

2
� ";

�Pn˚WP;nrY .
O�; y!/ 2 Kn;1."/:

(5.1.8)

We refer to the map BFn.X; t/ as the (relative, nth) pre-Bauer–Furuta invariant of
.X; t/, to emphasize that it is not yet an invariant of the construction (rather, its stable
homotopy equivalence class will turn out to be an invariant).

An alternative version of this relative Bauer–Furuta invariant is obtained instead
by considering the map of BY spaces:

BF Œn�.X; t/WS
Un˚Vn
BX

! S
U 0n˚V

0
n˚Cm

BX
^BY Nn=BYLn;

where SUn˚VnBX
is a BY space using rY , and where Nn=BLn is the fiberwise quotient.

5.2 Well-definedness of the relative Bauer–Furuta invariant

We next consider how the construction of the relative Bauer–Furuta invariant in
(5.1.7) depends on the choices involved. This is very similar to Chapter 3, so we
will abbreviate many of the arguments.
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First, we address the perturbation p.

Lemma 5.2.1. Let p1 be a perturbation for which (5.1.2) is surjective. Let q be a lin-
ear operator Cm2 ! E�

X;k�1
˚ r�Y .P0 \ L

2

k� 12
/. Let Un.p/, respectively Un.pC q/

be the bundles defined as in (5.1.3) with respect to the perturbations p, respectively
pCq. Let BF Œn�;p.X; t/, respectively BF Œn�;pCq.X; t/, be the maps defined in (5.1.7)
with respect to the perturbations p and pC q. Then there is the following commuta-
tive diagram:

†Cm2S
Un.p/˚Vn
BX

S
U 0n˚V

0
n˚Cm˚Cm2

BX
^BY In

S
Un.pCq/˚Vn
BX

S
U 0n˚V

0
n˚Cm˚Cm2

BX
^BY In:

†Cm2BF Œn�;p

BF Œn�;pCq

Moreover, a choice of mapLWCm2! EC
X;k
˚Cm so that ..DX ;�P0rY /C p/ ıLD q

determines the vertical arrows in the diagram.

Proof. Such a choice of L as at the end of the statement exists for any such p, q, by
surjectivity of (5.1.2). We show how to define maps as in the commutative diagram
in terms of such L. Of course, if q D 0, this is obvious, with L D 0.

More generally, we have the following commutative diagram:

EC
X;k
˚Cm ˚Cm2 E�

X;k�1
˚ r�Y .P0 \ L

2

k� 12
/

EC
X;k
˚Cm ˚Cm2 E�

X;k�1
˚ r�Y .P0 \ L

2

k� 12
/;

QL id (5.2.1)

where QL is the identity on EC
X;k
˚Cm, andL˚ idCm2 on Cm2 . The horizontal arrows

are .DX ; �P0rY /˚ p˚ 0 and .DX ; �P0rY /˚ p˚ q, respectively.
Comparing with the definition of the Seiberg–Witten map (5.1.1), we see that

there is a commutative diagram analogous to (5.2.1), but with the maps fSWX;n;p (and
similarly for q) from (5.1.4) along the horizontal arrows.

The definition of BF Œn�.X; t/ then gives the commutative diagram in the lemma
statement.

As in Chapter 3, the proof of well-definedness is related to the definition of a
families invariant. Let F be a family of (metrized, spinc) 4-manifolds with boundary,
over a base B , with fiber .X; t/, and let G be the boundary family (naturally over
the base B), where we write @.X; t/ D .Y; s/. See Section 3.2 for family of spinc

manifolds. Assume that we have fixed a sequence of good spectral sections Pn, Qn
on the boundary family.
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Assume also that we have fixed a sequence of good spectral sections WP;n, WQ;n
of �d of the boundary family, and assume WP;0 is the orthogonal complement
of WQ;0.

As at the beginning of the section, we now have bundles E˙
F ;k

and WF ;k , where
the fibers over b 2 B (with associated 4-manifold .X; t/) are

E˙F ;k;b ´ H1.Fb/ �H1.X IZ/ L
2
k.�.S

˙
b //;

WF ;k;b ´ Pic.Fb/ � L2k.�
1
CC.Fb//:

Furthermore, the space of sections L2
k�1

.�C.F // now defines a bundle over B as
well, with fiber L2

k�1
.�C.Fb//, the L2

k�1
-self-dual 2-forms on the fiber.

The 4-dimensional Seiberg–Witten equations (5.1.1) now define a fiberwise map:

SWF ;n W E
C

F ;k
˚WF ;k !

�
E�F ;k�1 ˚ L

2
k�1.�

C.F //
�
˚ r�G .Pn ˚WP;n/:

Define Un as in (5.1.3), and Vn similarly. Exactly as before, define An; note
that An is now a fiber bundle over the total space of the fibration Pic.F / ! B , a
fiber of this latter fibration is Pic.Fb/. Define subspaces (themselves spaces over the
total space of Pic.G /! B) Kn;1."/ and Kn;2."/ with fibers Kn;1;b."/ and Kn;2;b."/
according to

Kn;1;b."/´
®
y 2 An W 9. O�; v; y!/ 2 Bk.Un ˚ VnIR

0/; . O�; v/ 2 Un � EC
X;k
˚Cm;

y! 2 Vn; k.SWX;n;p;b; idCm/. O�; v; y!/kk�1 � ";

y D �Pn˚WP;nrGb .
O�; y!/

¯
and

Kn;2;b."/´
®
y 2 An W 9. O�; v; y!/ 2 @Bk.Un ˚ VnIR

0/;

k.SWX;n;p;b; idCm/. Ox; v; y!/kk�1 � ";

y D �Pn˚WP;nrGb .
O�; y!/

¯
[.@An \Kn;1;b."//:

The proof of Proposition 5.1.3 is only changed in this setting according to the
procedure in Chapter 3. In particular, the following proposition also relies on a fam-
ilies version of [35, Theorem 4]; the proof thereof is only notationally different from
that appearing in [35]. A families version of Proposition 5.1.1 is also used; its proof
is a modification of that in [23, Section 4]. We obtain the following proposition.

Proposition 5.2.2. There is an "0 > 0 such that if 0 < " < "0, for n large, we can
find a regular fiberwise index pair .Nn; Ln/ of inv.AnI'n;k;k� 12 / with

Kn;1."/ � Nn � An; Kn;2."/ � Ln:
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Put

S
Un˚Vn
Pic.F / ´

[
a2Pic.F /

B..Un ˚ Vn/aIR/=S..Un ˚ Vn/aIR/;

S
U 0n˚V

0
n˚Cm

Pic.F / ´

[
a2Pic.F /

B..U 0n ˚ V
0
n ˚Cm/aI "/=S..U

0
n ˚ V

0
n ˚Cm/aI "/:

Let
In.G / D Nn [pPic.G /jLn

Pic.G /;

where pPic.G / is the projection to Pic.G / of F �W .
We obtain a fiber-preserving map over Pic.G /:

BF Œn�.F /WS
Un˚Vn
Pic.G / ! S

U 0n˚V
0
n˚Cm

Pic.G / ^Pic.G / In.G /:

Here, SUn˚VnPic.G / and SU
0
n˚V

0
n˚Cm

Pic.G / are spaces over Pic.G / by pushing forward SUn˚VnPic.F /

and SU
0
n˚V

0
n˚Cm

Pic.F / along the restriction map Pic.F /! Pic.G / (see Appendix A.1).
In particular, we obtain that the homotopy class of the map BF Œn�.X; t/ in (5.1.7)

is independent of the metric on X used in its construction. To be more precise, we
have the following lemma.

Lemma 5.2.3. Let .X; t/ be a compact spinc 4-manifold with boundary (admitting a
Floer framing) .Y; s/. Let gt for t 2 Œ0; 1� be a path of metrics on X , along with a
path of perturbations pt with surjectivity in (5.1.2) for all t . There exist good spec-
tral sections Pn;t , Qn;t , WP;n;t , WQ;n;t on the boundary Y , say, forming a spectral
system S. Let In D �WF Œn�.Y; s;S/ denote the family Seiberg–Witten invariant of
the boundary. Let p denote the projection pWBY � I ! BY , where I D Œ0; 1�. Then
there exists a map

BF Œn�;I .X; t/WS
Un˚Vn
BX�I

! S
U 0n˚V

0
n˚Cm

BX�I
^BY �I p

�In:

The map BF Œn�;I .X; t/ is a map respecting the projection on each side to BY � I .
In particular, for a fixed trivialization of the families Un;t , Vn;t , U 0n;t , V

0
n;t and In

over IC, together with a path of perturbations pt , there is an (equivariant) homotopy
equivalence from BF Œn�;0;p0 and BF Œn�;1;p1 which is well defined up to (equivariant)
homotopy.

Proof. The existence of the spectral sections follows from Chapter 2. Otherwise the
lemma is a restatement of the definition of the families relative Bauer–Furuta invari-
ant. There is no issue in choosing a good spectral section for �d of the boundary
family in this situation, since on Œ0; 1�, each �d may be written as a (small) compact
perturbation of �gd , where g is some fixed metric.
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Further, the homotopy class of BF Œn�.X; t/ does not depend on the Sobolev norm
used in its construction. The proof of the following lemma is analogous to the work
in Section 3.4, and is left to the reader. We state the result for the unparameterized
case; the parameterized case is not substantially different.

Lemma 5.2.4. Let .X; t/ be a compact spinc 4-manifold with boundary (admitting
a Floer framing) .Y; s/. Let U 0n be a sequence of finite-dimensional subbundles of
E�
X;k

for k > 11=2, and V 0n D BX � V
0
n;0 be a sequence of finite-dimensional sub-

bundles of BX � L2k.�
C.X//, where V 0n;0 � L

2
k
.�C.X//, with �U 0n ! idE�

X;k
and

�V 0n ! idBX�L2k.�C.X// strongly. Let BF Œn�;kC1.X/ and BF Œn�;k.X/ be the pre-

Bauer–Furuta invariants defined with respect to theL2
kC1

andL2
k

-norms respectively.
Write I for the interval Œ0; 1�. Then there is a family of maps over the interval,

BF Œn�;I .X; t/WS
Un˚Vn
BX�I

! S
U 0n˚V

0
n˚Cm

BX�I
^BY �I �WF Œn�.Y /I ;

where �WF Œn�.Y /I is the parameterized Conley index coming from the I -family of
flows used in the proof of Proposition 3.4.1. In particular, for the given homotopy
equivalence in Proposition 3.4.1, the maps BF Œn�;k.X; t/ and BF Œn�;kC1.X; t/ are
homotopic by a homotopy well defined up to homotopy.

We next consider the effect of stabilization on BF Œn�. There are two separate
stabilizations: increasing U 0n, V 0n, or increasing Pn, Qn, W ˙n . Fix trivializations of
U 0nC1=U

0
nDCcn and V 0nC1=V

0
nDRdn . Recall the definition of a spectral system from

Definition 3.5.1. By construction, UnC1 is naturally identified with Un ˚ CkQnCcn

for kP;n, kQ;n as in Theorem 3.1.1, using the isomorphism �WPnC1 ! Pn ˚ CkP;n ,
and similarly for kQ;n. Analogously, VnC1 is identified with Vn ˚ RkW;�;nCdn . Let
'nC1;t denote the family of flows as in Theorem 3.1.1, with n chosen large enough.
Recall that there is an induced homotopy equivalence

†
CkQ;n˚RkW;�;n

BY
�WF Œn�.Y /! �WF ŒnC1�.Y /

as in Theorem 3.1.1.
Stabilization of the Bauer–Furuta invariant is as follows. Let c0n D cn C kQ;n and

d 0n D dn C kW;�;n.

Proposition 5.2.5. For appropriate choices of index pairs, there is a homotopy-
commuting square of parameterized spaces, defined by Conley index continuation
maps:

S
Cc
0
n˚Rd

0
n

BX
^BX S

Tn
BX

S
TnC1
BX

S
Cc
0
n˚Rd

0
n˚T 0n˚Cm

BX
�WF Œn�.Y / S

T 0
nC1
˚Cm

BX
^BY �WF ŒnC1�.Y /;

id^BXBF Œn� BF ŒnC1� (5.2.2)
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TnDUn˚ Vn, T 0nDU
0
n˚ V

0
n. In particular, (5.2.2) is a homotopy-commuting square

of (unparameterized) connected simple systems.

Proof. The proof is similar to the proof of Theorem 3.1.1, and we will only roughly
sketch the details. Indeed, the bottom arrow of (5.2.2) is exactly the map defined in
that theorem.

Recall that we have fixed identifications UnC1=Un D CcnCkQ;n To obtain that
(5.2.2) homotopy-commutes, we deform fSWX;nC1;p D

fSWX;nC1;p;0 by a familyfSWX;nC1;p;t , by removing (linearly in t ) the nonlinear terms in SWX;n;p on the
UnC1=Un and VnC1=Vn-factors to a map fSWX;nC1;p;1 which is the sum of maps

H WUnC1=Un ˚ VnC1=Vn ! U 0nC1=U
0
n ˚ V

0
nC1=V

0
n ˚CkQ;n ˚RkW;�;n

and fSWX;n;pWUn ˚ Vn ! U 0n ˚ V
0
n ˚ r

�
Y .Fn ˚Wn/˚Cm:

Here, H is some linear isomorphism (from the linearization of SWX;n).
We define An as before, and require that An is an isolating neighborhood of the

flow 'nC1;t for all t 2 Œ0; 1�.
We then define

Kn;1."/´
®
.y; t/ 2 An � Œ0; 1� W 9. O�; v; y!/ 2 Bk.Un ˚ VnIR

0/;

k.SWX;n;p;t ; idCm/. O�; v; y!/kk�1 � ";

y D �Pn˚WP;nrY .
O�; y!/

¯
and

Kn;2."/´
®
.y; t/ 2 An � Œ0; 1� W 9. O�; v; y!/ 2 @Bk.Un ˚ VnIR

0/;

k.SWX;n;p;t ; idCm/. Ox; v; y!/kk�1 � ";

y D �Pn˚WP;nrY .
O�; y!/

¯
[
�
..@An/ � Œ0; 1�/ \Kn;1."/

�
:

One then establishes the analog of Proposition 5.1.3 for the family of flows 'nC1;t .
Writing I D Œ0; 1�, there results a map

BF ŒnC1�;I .X; t/WS
CcnCkQ;n˚RdnCkW;�;n

BX�I
^BY �I S

Un˚Vn
BX�I

! S
U 0
nC1
˚V 0

nC1
˚Cm

BX�I
^BY �I �WF ŒnC1�.Y /:

At t D 1 this is the composite from first going down in (5.2.2), while for t D 0, this
restricts to BF ŒnC1�. The homotopy commutativity of (5.2.2) follows.

The claim on the well-definedness of the maps in (5.2.2) follows from Theo-
rem A.2.3.
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Proposition 5.2.6. The map BF Œn� is independent of the choice of regular index pair
.Nn; Ln/ with Kn;1."/ � Nn; Kn;2."/ � Ln for n large and " small, up to isomor-
phisms in PSWS1;B .

Proof. We will follow the argument in [23, Appendix]. Take another regular index
pair .N 0n; L

0
n/ with K1;n."/ � N 0n, K2;n."/ � L0n for n large and " small. Let I 0n

denote the parameterized Conley index associated to .N 0n; L
0
n/.

First we consider the case when .Nn; Ln/ � .N 0n; L
0
n/. The map

�nW In ! I 0n

induced by the inclusion is an isomorphism in PSWS1;B by [43, Theorem 6.2] and
the following diagram is commutative:

S
U 0n˚V

0
n˚Cm

BX
^BY In

S
Un˚Vn
BX

S
U 0n˚V

0
n˚Cm

BX
^BY I

0
n:

id^�n

BF Œn�

BF 0Œn�

Next we consider the general case. As shown in [23, p. 1653], we have index pairs
. zNn; QLn/, .Nn;1; Ln;1/, .N 0n;1; L

0
n/ such that

.Nn; Ln/ � .Nn;1; Ln;1/; .N 0n; L
0
n/ � .N

0
n;1; L

0
n;1/;

.Kn;1."/;K2;n."// � . zNn; QLn/ � .Nn;1; Ln;1/ \ .N
0
n;1; L

0
n;1/:

We can assume that . zNn; QLn/, .Nn;1;Ln;1/, .N 0n;1;L
0
n;1/ are all regular by thickening

the exits slightly ([47, Remark 5.4]). The statement follows from the commutative
diagram

.Nn;1; Ln;1/ .N 0n;1; L
0
n;1/

. zNn; QLn/

.Nn; Ln/ .N 0n; L
0
n/:

Recall that we have defined the virtual bundle ind.DX ; P / following equation
(5.1.3). For a normal spectral system P whose nth section isPn, we write ind.DX ;P/,
since ind.DX ; Pn/ and ind.DX ; PnC1/ are canonically identified for all n. For V D
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V1 	 V2 a virtual vector bundle over a base B , we define an element SVB of the
stable-homotopy category PSWB (see Definition A.1.9) by .SV1B ;�V2/, where SV1B is
the sphere bundle associated to V1; the stable-homotopy type of this space does not
depend on a choice of universe.

For V a vector bundle overB , let ThVB denote the Thom space of V ; we will abuse
notation and also write ThVB for the suspension spectrum of ThVB . Write ker.DX ;P/
for the kernel of the map in (5.1.2), which depends on the perturbation p.

For topological spaces W , Z, a map class from W to Z will refer to a homo-
topy class W ! Z, up to self-homotopy-equivalence of W , Z. We can now prove
Theorem 1.3.1 from the introduction, which we restate as follows.

Corollary 5.2.7. Fix a Floer framing P on Y . There is a well-defined (parameterized,
equivariant, stable) map class

BF .X; t/WS
ind.DX ;P/
Pic.X/ ! �WF .Y;P/:

For a choice of perturbation p as in (5.1.2), there is a well-defined (equivariant,
unparameterized) weak map of spectra:

BFp.X; t/WThker.DX ;P/
Pic.X/ ! †CmSWFu.Y;P/:

Moreover, if p0 and p1 are related by a family pt of perturbations satisfying (5.1.2),
BFp0 is homotopic to BFp1 .

Proof. The class BFp is well defined by Proposition 5.2.5. Independence (as a map
class) from p follows from Lemma 5.2.1.

The unparameterized case follows from Proposition 5.2.5, and an argument for
families as before.

Analogous results hold for the Pin.2/-equivariant versions, mutatis mutandis.


