
Chapter 6

Frøyshov-type invariants

In this chapter we will generalize the Frøyshov-type invariants [20, 37] defined for
rational homology 3-spheres to 3-manifolds with b1 > 0, making use of the Seiberg–
Witten Floer stable homotopy type constructed in this memoir. As applications, we
will prove restrictions on the intersection forms of smooth 4-manifolds with bound-
ary.

It may be of interest to compare the material of this section with work of Levine–
Ruberman, where similar invariants are defined in the Heegaard Floer setting [31];
also see [9] for further work in the Heegaard Floer setting.

6.1 Equivariant cohomology

We will recall a basic fact about the S1-equivariant Borel cohomology. For a pointed
S1-CW complex W , we let zH�

S1
.W IR/ be the reduced S1-equivariant Borel coho-

mology:
zH�
S1
.W IR/ D zH�.W ^S1 ES1CIR/;

where ES1C is a union of ES1 and a disjoint base point. Note that zH�
S1
.S0IR/ is

isomorphic to RŒT � and that zH�
S1
.W IR/ is an RŒT �-module. We have the following

(see [16, Proposition 1.18.2] and [38, Proposition 2.2]).

Proposition 6.1.1. Let V be an S1-representation space and V be the vector bundle

V D .W � ES1/ �S1 V ! W �S1 ES1

over W �S1 ES1. The Thom isomorphism for V induces an RŒT �-module isomor-
phism

zH
�CdimR V

S1
.†VW IR/ Š zH�

S1
.W IR/:

6.2 Frøyshov-type invariant

Let B be a compact CW-complex and choose a base point b0 2 B . We view B as an
S1-CW-complex, with the trivial action of S1. The following definition is an S1-ex-
space version of [38, Definition 2.7].

Definition 6.2.1. Let U D .W; r; s/ be a well-pointed S1-ex-space over B such that
W is S1-homotopy equivalent to an S1-CW complex. We say that U is of SWF type
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at level t if there is an equivalence, as ex-spaces, from W S1 ! SRt
B , and so that the

S1-action on W nW S1 is free.

Note that in the situation above, W S1 inherits the structure of an ex-space, as a
subspace ofW , naturally. Spaces of SWF type are meant to be the class of spaces that
are produced by the Seiberg–Witten Floer homotopy-type construction. Indeed, note
that in the case that B is a point, spaces of SWF type over B are exactly spaces of
SWF type as in [38]. For us, B will always be a Picard torus.

Moreover, for U D �WF .Y / for some 3-manifold Y admitting a spectral sec-
tion (with torsion spinc structure and spectral section suppressed from the notation),
more is true, in that the fixed point set W S1 is actually fiber-preserving homotopy-
equivalent, relative to s.B/, to SRt

B , although for the definition of the Frøyshov invari-
ant, this is not strictly needed.

Definition 6.2.2. Let U D .W; r; s/ be a well-pointed S1-ex-space of SWF type at
level t over B . We denote by 	ƒ.U/ the submodule in zH�.BCIR/˝RŒŒT ��, viewed
as a module over the formal power series ring RŒŒT ��, generated by the image of the
homomorphism induced by the inclusion �WW S1 ,! W :

zH�Ct
S1

.W=s.B/IR/
��

�! zH�Ct
S1

.W S1=s.B/IR/ Š zH�Ct
S1

.SRt
^ BCIR/

D H�.BIR/˝RŒT � ,! H�.BIR/˝RŒŒT ��:

We obtain a more specific invariant by considering onlyH 0.BIR/, in the case that B
is connected; we impose this condition on B from now on. Let 	.U/ denote the ideal
in RŒŒT �� which is the image of

zH�Ct
S1

.W=s.B/IR/
��

�! zH�Ct
S1

.W S1=s.B/IR/

Š zH�Ct
S1

.SRt
^ BCIR/! zH�Ct

S1
.SRt
IR/ D RŒT � ,! RŒŒT ��

obtained using the inclusion of a fiber SRt ! SRt ^ BC.
Then there is a nonnegative integer h such that 	.U/ D .T h/. Here, .T h/ is the

ideal generated by T h. We denote this integer by h.U/.

The invariant h.U/ defined above is most similar to dbot as in [31], while 	ƒ.U/
is, roughly, in line with the collection of their “intermediate invariants”.

Remark 6.2.3. We also note that the cohomology group zH�
S1
.W=s.B/IR/ admits

an action by H�.B/ as follows. Using the projection map r WW ! B , we have an
algebra morphism r�WH�.BIR/ ! H�.W IR/. The Mayer–Vietoris sequence for
.B;W / splits because of the map sWB ! W , and we obtain

H�.W IR/ D H�.W=s.B/IR/˚H�.BIR/;
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and in fact this splitting is at the level ofH�.BIR/-modules, so that the cohomology
group H�.W=s.B/IR/ inherits an H�.BIR/-action. This is not strictly necessary
in the definition of invariants from 	ƒ.U/ above, but is indicative of the structure
of 	ƒ.U/.

From Proposition 6.1.1, we can see the following.

Lemma 6.2.4. Let UD .W; r; s/ be a well-pointed S1-ex-space of SWF type over B .
If V is a real vector space, we have

h.†VBU/ D h.U/:

If V is a complex vector space, we have

h.†VBU/ D h.U/C dimC V:

Proposition 6.2.5. Let U0 D .W0; r0; s0/, U1 D .W1; r1; s1/ be well-pointed S1-
ex-spaces of SWF type at level t over B0 and B1, and assume we are given a map
�WB0! B1. Let �ŠU0 denote the pushforward of U0, as an ex-space over B1. Assume
that there is a fiberwise-deforming S1-map

f W �ŠU0 ! U1

such that the restriction to

f S
1

W �ŠW
S1

0 ! W S1

1 ;

as a fiberwise-deforming morphism over B1, is homotopy equivalent to

id ^ �W .Rt /C � B0 [B0 B1 ! .Rt /C � B1:

Then
h.U0/ � h.U1/:

As a special case, if B0 is a point, the hypothesis is that the map f , restricted to
fixed point sets, f S

1
WW S1

0 ! W S1

1 =s.W1/, be homotopic to the inclusion of a fiber.

Proof of Proposition 6.2.5. We have the following diagram:

zH�Ct .W0=s.B0/IR/ zH�Ct .W1=s.B1/IR/

zH�Ct ..Rt /C �B0=s.B0/IR/ zH�Ct ..Rt /C �B1=s.B1/IR/

zH�Ct ..Rt /CIR/ D RŒT � zH�Ct ..Rt /CIR/ D RŒT �

RŒŒT ��:

f �

��

f �

Š
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From this diagram, we obtain

.T h.U0// � .T h.U1//;

which implies that h.U0/ � h.U1/.

Definition 6.2.6. For m; n 2 Z and S1-ex-space U of SWF type over B , we define

h.†Rm˚Cn

B U/ D h.U/C n:

Note that this definition is compatible with Lemma 6.2.4.

Definition 6.2.7. For m0; n0; m0; n1 2 Z and S1-ex-spaces U0, U1 of SWF type
over B , we say that †Rm0˚Cn0

B U0 and †Rm1˚Cn1
B U1 are locally equivalent if there

is N 2 Z�0 with N Cm0; N C n0; N Cm1; N C n1 � 0 and fiberwise-deforming
maps

f W†RNCm0˚CNCn0
B U0 ! †RNCm1˚CNCn1

B U1;

gW†RNCm1˚CNCn1
B U1 ! †RNCm0˚CNCn0

B U0

such that the restrictions

f S
1

W†RNCm0
B .U0/S

1

! †RNCm1
B .U1/S

1

;

gS
1

W†RNCm1
B .U1/S

1

! †RNCm0
B .U0/S

1

are homotopy equivalent to

IdWB � .Rt /! B � .Rt /C

as fiberwise-deforming morphisms over B .

It is easy to see that the local equivalence is an equivalence relation.

Corollary 6.2.8. If †Rm0˚Cn0
B U0 and †Rm1˚Cn1

B U1 are locally equivalent,

h.†Rm0˚Cn0
B U0/ D h.†Rm1˚Cn1

B U1/:

Proof. This is a direct consequence of Proposition 6.2.5.

Let Y be a closed 3-manifold, g be a Riemannian metric, s be a torsion spinc

structure on Y . Let BY be the Picard torus Pic.Y / of Y . Assume that indDY D 0 in
K1.BY /. We take a spectral system

S D .P;Q;WP ;WQ; ¹�
P
n ºn; ¹�

Q
n º; ¹�

WP
n ºn; ¹�

WQ
n ºn/
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for Y . See Definition 3.5.1. Put

Fn D Pn \Qn; Wn D WP;n \WQ;n

as before. Take half-integers kC, k� with kC; k� > 5 and with jkC � k�j � 1
2

. We
have the approximate Seiberg–Witten flow

'n D 'n;kC;k� W .Fn ˚Wn/ �R! Fn ˚Wn:

Put

An D .BkC.F
C
n IR/ �BY Bk�.F

�
n IR// �BY .BkC.W

C
n IR/ �BY Bk�.W

�
n IR//

for R� 0. Recall that An is an isolating neighborhood for n� 0 (Theorem 2.3.3).

Lemma 6.2.9. Let Un D .In; rn; sn/ be the S1-equivariant Conley index for the iso-
lated invariant set inv.An; 'n/ for n� 0. Then Un is of SWF type at level rankRW

�
n .

Proof. We first note that In is of the homotopy type of an S1-CW complex by Propo-
sition 3.6.1. The S1-fixed point set .In; rn; sn/S

1
is the Conley index for

inv.'njWn ; BkC.W
C
n IR/ �BY Bk�.W

�
n IR//:

Note that if � D 0, the quadratic terms c1.
/, c2.
/, XH .�/ are all zero. See (2.3.3).
Hence the restriction of the flow 'n to Wn is the flow induced by the linear
map ��d jWn . In particular, the flow 'njWn preserves each fiber of the trivial bun-
dle Wn D BY � L2k.im d�/

�n
�n

over BY . Hence there is an equivalence, as ex-spaces,

.In/
S1 Š S

W�n
B . (In fact, more is true: there is a fiber-preserving homotopy equiva-

lence .In/S
1
Š S

W�n
B .)

Let �WF .Y; s; ŒS�/ be the Seiberg–Witten Floer parameterized homotopy type
(Definition 3.5.8).

Recall that �Pn , �Qn , �WPn , �WQn are isomorphisms

PnC1
Š
�! Pn ˚CkP ;n;

QnC1
Š
�! Qn ˚CkQ;n;

W P
nC1

Š
�! W Cn ˚RkW;C;n ;

W
Q
nC1

Š
�! W �n ˚RkW;�;n :

These induce an S1-equivariant homotopy equivalence

I.'nC1/ Š †
CkQ;n˚RkW;�;n
B I.'n/
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for n� 0, whose restriction to the S1-fixed point set is a fiber-preserving homotopy
equivalence. See Theorem 3.1.1. This implies that the number

h.�WF .Y; s; ŒS�// D h.I.'n// �D
2
n

is independent of the choice of n� 0 by Lemma 6.2.4 and Corollary 6.2.8. Here,
D2
n D dim.Qn �Q0/.

Also, it follows from Proposition 3.4.1 that h.�WF .Y;s; ŒS�// is independent of
k˙. Hence h.�WF .Y; s; ŒS�// is well defined.

We will introduce another number. We can take a spinc 4-manifold .X; t/ with
boundary .Y; s/. Since c1.t/jY is torsion in H 2.Y IZ/, there is a positive integer m
such that

mc1.t/ 2 H
2.X; Y IZ/:

Put
c1.t/

2
´

1

m
h.mc1.t// [ c1.t/; ŒX�i 2 Q;

where h�; �i is the pairing

H 4.X; Y IZ/˝H4.X IZ/! Z:

We define

n.Y; g; s; P0/´ dim ind.DX ; P0/ �
c1.t/

2 � �.X/

8
2 Q

D
1

2
�D;P0 �

1

8
�Y;sign: (6.2.1)

Here, DX is the Dirac operator on X , ind.D; P0/ is the index defined in Proposi-
tion 2.1.3 and �D;P0 , �Y;sign are the �-invariants of the Dirac operator and signature
operator. We have used the index formula [5, 40]. See also [35, Section 6].

Definition 6.2.10. We define h.Y; s/ 2 Q by

h.Y; s/´ h.�WF .Y; s; ŒS�// � n.Y; g; s; P0/:

A priori, the expression in Definition 6.2.10 may depend on both the metric and
the spectral system. However, for two spectral systems S0, S1 with dim ind.DX ;P 00 /
D dim ind.DX ;P 10 /, we see that the h-invariants agree, since �WF .Y;s; ŒS0�/ differs
from �WF .Y; s; ŒS1�/ by suspension by a virtual complex vector bundle of formal
dimension zero. In order to see this, we first note that S1-equivariant Borel cohomol-
ogy is an S1-equivariant complex orientable cohomology theory by [12], so that for
an S1-equivariant complex vector bundle V over B and an S1-ex-space .X; r; s/ over
B , there is a canonical isomorphism

zH
�C2 rankC V

S1
.�Š†

V
BX/ Š

zH
�C2 rankC V

S1
.Th.r�V // Š zH�

S1
.X/:
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Here, �WB ! � and we have used (3.6.3). This implies that

h.†VBX/ D h.X/C 2 rankC V:

It follows in particular that

h.�WF .Y; s; ŒS0�// D h.�WF .Y; s; ŒS1�//:

Changes in the metric and changes in dim ind.DX ; P0/ are treated in a similar
way, so we only address the latter. Indeed, if we replace S0 with a spectral system
S1 so that the K-theory class is

ŒS1 �S0� D C 2 K.BY /;

then
h.�WF .Y; s; ŒS1�// D h.�WF .Y; s; ŒS0�// � 1;

but n.Y; g; s; P 10 / D n.Y; g; s; P
0
0 / � 1, as needed.

Finally, in the case that b1.Y /D 0, this agrees (by definition) with the ı-invariant
defined in [38].

In particular, it is natural to consider the parameterized equivariant homotopy type
of the formal desuspension:

†
�n.Y;g;s;P0/C
BY

�WF .Y; s; ŒS�/;

which one can think of as a desuspension so that the grading of a reducible element of
�WF .Y;s; ŒS�/ has been specified. We note that n.S1 � S2; g;s;P0/D 0, where g is
the product metric on S1 � S2, s is the torsion spinc structure and P0 is the standard
spectral section (since the Dirac operator has trivial kernel for each flat connection,
this is specified). That is, with our conventions, the grading of each reducible in

Pic.S1 � S2/ ' �WF .Y; s; ŒS�/

is zero. This differs from the convention in Heegaard–Floer homology, for which each
reducible should be �1

2
-graded, as in [45].

We will prove a generalization of [20, Theorem 4].

Theorem 6.2.11. Let Y0 be a rational homology 3-sphere and Y1 be a closed, ori-
ented 3-manifold such that the triple-cup product

ƒ3H 1.Y1IZ/! Z;

˛1 ^ ˛2 ^ ˛3 7! h˛1 [ ˛2 [ ˛3; ŒY1�i

is zero. Let .X; t/ be a compact, spinc negative semidefinite 4-manifold with boundary
�Y0

`
Y1 such that c1.t/j@X is torsion. Then we have

c1.t/
2 C b�2 .X/

8
C h.Y0; tjY0/ � h.Y1; tjY1/:
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Proof. Since the triple-cup product is zero, we have indDY1 D 0 in K1.BY1/ by the
index formula. (See [30, Proposition 6].) Note that the map BF Œn�.X; t/ constructed
in Chapter 5 is a fiber-preserving map. We consider the restriction of BF Œn�.X; t/ to
the fiber over a point Œ0� 2 BX . The restriction BF Œn�.X; t/ to the fiber and the duality
map

In.Y0/ ^ In.�Y0/! SFn.Y0/˚Wn.Y0/;

defined in [36, Section 2.5], induce an S1-map

fnW†
Rm0˚Cn0CaIn.Y0/! †Rm1˚Cn1 .In.Y1/=sn.BY1//

for n� 0, where

m0 �m1 D rankRWn.Y1/
�
� dimRWn.Y0/

�;

n0 � n1 D rankC Fn.Y1/
�
� dimC Fn.Y0/

�;

a D dim indDX;P0

D
c1.t/

2 C b�2 .X/

8
C n.Y1; gjY1 ; tjY1 ; P0/ � n.Y0; gjY0 ; tjY0/:

The restriction of fn to the S1-fixed point set †Rm0 .In.Y0//
S1 is induced by the

operator

D0 D .dC; �0�1r�Y0 ; �
0
�1rY1/W�

1
CC.X/! �C.X/˚ .W�Y0/

0
�1 ˚ .WY1/

0
�1:

The operator D0 is an isomorphism. Therefore the restriction

f S
1

n W †Rm0 .In.Y0//
S1
! †Rm1 .In.Y1//

S1

Œ0�

is a homotopy equivalence. Here, Œ0� 2 BY1 is the restriction of Œ0� 2 BX to Y and
.In.Y1//

S1

Œ0�
is the fiber over Œ0�.

By Lemma 6.2.4 and Proposition 6.2.5, we have

c1.t/
2 C b�2 .X/

8
C h.Y0; tjY0/ � h.Y1; tjY1/:

Remark 6.2.12. There is an apparent discrepancy with the statement of [31, Theorem
4.7]. We note that in the translation between these statements, we expect h.Y; s/ to
correspond to dbot.Y;s/

2
C

b1.Y /
4

, due to the difference in the grading conventions on
the reducible; with this observation, the statements are consistent.

Remark 6.2.13. In order to generalize Theorem 6.2.11 to the case b1.Y0/ > 0, we
need to establish the duality for the Seiberg–Witten Floer parameterized homotopy
types �WF .Y0; tjY0 ; ŒS�/ and �WF .�Y0; tjY0 ; ŒS

_
0 �/ to get the parameterized

Bauer–Furuta map

�WF .Y0; tjY0 ; ŒS0�/! �WF .Y1; tjY1 ; ŒS1�/:

We do not discuss it in this memoir. See Proposition 3.6.2.
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Corollary 6.2.14. Let Y be a closed, connected, oriented 3-manifold such that the
triple-cup product is zero. Let .X; t/ be a compact, negative semidefinite, spinc 4-
manifold with @X D Y such that c1.t/jY is torsion. Then we have

c1.t/
2 C b�2 .X/

8
� h.Y; tjY /:

Proof. Removing a small ball from X , we get a compact spinc 4-manifold X 0 with
boundary S3

`
Y . Applying Theorem 6.2.11 to X 0, we get the inequality.

Example 6.2.15. Let T 2 be a torus .R=Z/ � .R=Z/. Put

Y ´ R � T 2=.x; �1; �2/ � .x C 1;��1;��2/:

Then Y is a flat T 2 bundle over S1, which has a flat metric and b1.Y / D 1. We have

H 2.Y IZ/ Š H1.Y IZ/ Š Z˚ .Z=2Z/˚ .Z=2Z/:

There are four spinc structures s0; : : : ;s3. Let s0 be the spinc structure corresponding
to the 2-plane field tangent to the fibers. As stated in Example 4.2.2, for j D 1; 2; 3,
.Y; sj / satisfies the conditions of Theorem 4.1.2. We have

�WF .Y; s; ŒS�/ Š S0BY :

Here, S is a spectral system with P0 D E0.D/
0
�1. As stated in [24, p. 2112],

n.Y; sj ; g; P0/ D 0

for j D 1; 2; 3. Therefore we obtain

h.Y; sj / D h.�WF .Y; s; ŒS�// � n.Y; sj ; g; P0/ D 0:

Example 6.2.16. Let † be a closed, oriented surface with g.†/ > 0 and Y be the
sphere bundle of the complex line bundle over † of degree d . Suppose that 0 <
g < d , where g ´ g.†/. Let sq be the spinc structure in Proposition 4.2.3. For
q 2 ¹g; g C 1; : : : ; d � 1º, we have

�WF .Y; sq; ŒS�/ Š S
0
B

by Theorem 4.2.5. Here, S is a spectral system with P0 D E0.Dr/
0
�1. The value of

n.Y; gr ; sq; P0/ was computed in [24, Section 8.2] and we have

n.Y; gr ; sq; P0/ D �
d � 1

8
�
.g � 1 � q/.d C g � 1 � q/

2d
: (6.2.2)

(Note that the definition of n.Y; g; sq; P0/ of this memoir is �1 times that of [24].)
Hence

h.Y; sq; g/ D h.�WF .Y; sq; ŒS�// � n.Y; g; sq; P0/

D
d � 1

8
C
.g � 1 � q/.d C g � 1 � q/

2d
:
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6.3 K -theoretic Frøyshov invariant

In analogy to the previous section on the (homological) Frøyshov invariant, we now
generalize the invariant �.Y / constructed in [37]. For details on Pin.2/-equivariant
complex K-theory, we refer to [37].

Let zR be the nontrivial real representation of Pin.2/ D S1
`
jS1. Let B be a

compact, connected Pin.2/-CW complex with a Pin.2/-fixed marked (though we do
not consider B itself to be an object in the category of pointed spaces) point b0 2
BPin.2/, such that the S1-action on B is trivial and the action of j is an involution.

Definition 6.3.1. Let U D .W; r; s/ be a well-pointed Pin.2/-ex-space over B such
that W is Pin.2/-homotopy equivalent to a Pin.2/-CW complex. We say that U is of
SWF type at level t if there is an ex-space Pin.2/-homotopy equivalence from W S1

to S zR
t

B and if the Pin.2/-action on W nW S1 is free.

As before, in fact for us there is the stronger condition that there is a fiber-
preserving (equivariant) homotopy equivalence W S1 ! S

zRt
B .

Let R.Pin.2// be the representation ring of Pin.2/. That is,

R.Pin.2// Š ZŒz; w�=.w2 � 2w; zw � 2w/;

where
w D 1 � ŒzC�; z D 2 � ŒH�:

We will generalize [37, Definition3] to Pin.2/-ex-spaces.

Definition 6.3.2. Let U D .W; r; s/ be a well-pointed Pin.2/-ex-space of SWF type
at level 2t over B so thatW is Pin.2/-homotopy equivalent to a Pin.2/-CW complex.
We denote by 	ƒ.U/ the submodule inKZ=2.B/, viewed as a module overR.Pin.2//,
generated by the image of the homomorphism induced by the inclusion �WW S1 ,!W :

zKPin.2/.W=s.B//
��

�! zKPin.2/.W
S1=s.B// Š zKPin.2/.S

zCt
^ BC/

D KZ=2.B/:

We obtain a more specific invariant by considering only a single fiber. Let 	.U/
denote the ideal in R.Pin.2// which is the image of

zKPin.2/.W=s.B//
��

�! zKPin.2/.W
S1=s.B//

Š zKPin.2/.S
zCt
^ BC/! zKPin.2/.S

zCt
IR/ D R.Pin.2//

obtained using the inclusion of a fiber SRt ! SRt ^ BC, over the marked point
b0 2B

Pin.2/. In particular, the invariant k.U/ depends on a choice of the point b0 2B ,
which does not appear in the notation.
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We define k.U/ 2 Z�0 by

k.U/ D min
®
k 2 Z�0 W 9x 2 	.U/; wx D 2kw

¯
:

If 	.U/ is of the form .zk/ for some nonnegative integer k, we say that U is KPin.2/-
split.

Lemma 6.3.3.
k.†

zC
BU/ D k.U/; k.†H

B U/ D k.U/C 1:

Proof. Since

.†
zC
BW /=s.B/ D †

zCŒW=s.B/�;

.†H
BW /=s.B/ D †

HŒW=s.B/�;

we can apply [37, Lemma 3.4].

Proposition 6.3.4. Let U0 D .W0; r0; s0/, U1 D .W1; r1; s1/ be Pin.2/-ex-spaces of
SWF type at level 2t0, 2t1 over B0 and B1, and assume we are given an inclusion
�WB0!B1. Let �ŠU0 denote the pushforward of U0, as an ex-space overB1. Assume
that there is a fiberwise-deforming S1-map

f W �ŠU0 ! U1

such that the restriction to

f S
1

W �ŠW
S1

0 ! W S1

1 ;

as a fiberwise-deforming morphism over B1, is homotopy equivalent to

` [ �W ..zCt0/C � B0/ [B0 B1 ! .zCt1/C � B1;

where ` is the map on one-point compactifications induced by a map of representa-
tions zCt0 ! zCt1 , which is an inclusion if t0 � t1. Say that � sends the marked point
b0 2 B0 to b1 2 B1:

(1) If t0 � t1, we have

k.U0/C t0 � k.U1/C t1:

(2) If t0 < t1 and U0 is KPin.2/-split, we have

k.U0/C t0 C 1 � k.U1/C t1:
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Proof. We have the following commutative diagram:

zKPin.2/.W0=s0.B0// zKPin.2/.W1=s1.B1//

zKPin.2/...zC
t0/C � B0/ [B0 B1=s.B1//

zKPin.2/..zC
t1/C � B1=s.B1//

zKPin.2/..zC
t0/C/ zKPin.2/..zC

t1/C/

zKPin.2/.S
0/ zKPin.2/.S

0/:

��
0

��
1

f �

�� ��

.`[�/�

�wt0 �wt1

`�

id

Here we have used � to denote various inclusions. Note that f � in the first row is well
defined, because s0.B0/ � s0.B1/, using the definition of the pushforward �ŠU0 (this
does not require that � be an inclusion). In fact, more is true, in that �ŠW0=s0.B1/ is
exactly W0=s0.B0/.

We can apply the arguments in the proofs of [37, Lemmas 3.10 and 3.11] so that
the result follows.

Definition 6.3.5. Form;n 2 Z and Pin.2/-ex-space U of SWF type at even level, we
define

k.†
zR2m˚Hn

B U/ D k.U/C n:

Note that this definition is compatible with Lemma 6.3.3.

Definition 6.3.6. For m0; n0; m1; n1 2 Z and Pin.2/-ex-spaces U0, U1 of SWF type
at even level over B , we say that †zR

2m0˚Hn0
B U0 and †zR

2m1˚Hn1
B U1 are locally

equivalent if there are N 2 Z with N C m0; N C n0; N C m1; N C n1 � 0 and
Pin.2/-fiberwise deforming maps

f W†
zR2.NCm0/˚HNCn0
B U0 ! †

zR2.NCm1/˚HNCn1
B U1;

gW†
zR2.NCm1/˚HNCn1
B U1 ! †

zR2.NCm0/˚HNCn0
B U0;

such that the restrictions

f S
1

W†
zR2.NCm0/
B US

1

0 !†
zR2.NCm1/
B US

1

1 ; gS
1

W†
zR2.NCm1/
B US

1

1 !†
zR2.NCm0/
B US

1

0

are homotopy equivalent to

IdWB � .Rt /C ! B � .Rt /C

as Pin.2/-fiberwise-deforming morphisms.
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Corollary 6.3.7. If †zR
2m0˚Hn0

B U0 and †zR
2m1˚Hn1

B U1 are locally equivalent, we
have

k.†
zR2m0˚Hn0
B U0/ D k.†

zR2m1˚Hn1
B U1/:

Proof. This is a direct consequence of Proposition 6.3.4.

Let s be a spin structure (not just a self-conjugate spinc structure, although we will
also write s for the induced self-conjugate spinc structure) of Y . Then the Seiberg–
Witten equations (2.3.4) and the finite-dimensional approximations (2.3.10) have
Pin(2)-symmetry. Let BY be the Picard torus of Y , which is homeomorphic to the
torus zRb1.Y /=Zb1.Y /, where we have chosen coordinates so that 0 2 zRb1.Y / corre-
sponds to the selected spin structure on Y . We choose Œ0� 2BY as base point. Assume
that indDY D 0 in KQ1.BY /. By Theorem 2.4.8, we can choose a Pin.2/-spectral
system

S D .P;Q;WP ;WQ; ¹�
P
n ºn; ¹�

Q
n º; ¹�

WP
n ºn; ¹�

WQ
n ºn/

for Y . Put
Fn D Pn \Qn; Wn D WP;n \WQ;n:

We have the Pin.2/-equivariant Conley index .In; rn; sn/ for the isolated invariant set
inv.An; 'kC;k�;n/ for n� 0.

Lemma 6.3.8. The Pin.2/-equivariant Conley index .In; rn; sn/ is of SWF type at
level rankRW

�
n for n� 0.

Proof. The proof is similar to that of Lemma 6.2.9 and omitted.

Let �WF Pin.2/.Y; s; ŒS�/ be the Pin.2/-Seiberg–Witten Floer parameterized
homotopy type. As before, the local equivalence class of �WF Pin.2/.Y; s; ŒS�/ is
independent of k˙, n. See [49] for the study of the local equivalence class of the
Pin.2/-Seiberg–Witten Floer homotopy type in the case b1.Y / D 0. We may assume
that dimRW

�
n are even for all n. Then we have the well-defined number

k.�WF Pin.2/.Y; s; ŒS�// 2 Z:

Definition 6.3.9. Fix .Y; s/ as above. We define �.Y; s/ 2 Q [ ¹�1º by

�.Y; s/´ inf
g;S

2
�
k.�WF Pin.2/.Y; s; ŒS�// �

1

2
n.Y; g; s; P0/

�
:

We say that .Y;s/ is FloerKPin.2/-split if .In; rn; sn/ isKPin.2/-split for n large, where
.In; rn; sn/ realizes equality in the definition of �.Y; s/.

Note that this invariant indeed depends a priori on s as a spin structure, in what
we have chosen as the marked point in BY that is used in the definition of �.
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Unlike the case for homology, we have not shown that the invariant

k.�WF Pin.2/.Y; s; ŒS�//

is invariant under changes of spectral section that lie in fKQ.B/ (essentially since we
do not have access to a notion of Pin.2/-complex orientable cohomology theories).
We expect that the quantity appearing in the inf is, in fact, independent of ŒS�, how-
ever.

We do not know whether a self-conjugate spinc structure may have different �-
invariants associated to different underlying spin structures. The invariant �.Y;s/, for
Y a rational homology 3-sphere, agrees with Manolescu’s definition [37], by con-
struction.

Corollary 6.3.10. The reduction mod2 of the � invariant satisfies

�.Y; s/ D �.Y; s/ mod 2;

where �.Y; s/ is the Rokhlin invariant of .Y; s/.

Proof. Indeed, n.Y;g;s; P0/ mod 2 is the Rokhlin invariant of .Y;s/ by its construc-
tion. The corollary then follows from the definition of � and the fact that k is an
integer.

Corollary 6.3.10 indicates that �.Y;s/may depend on s, as a spin structure. Note
that if .Y; s/ admits a Pin.2/-equivariant spectral section, for a self-conjugate spinc

structure s, then �.Y;�/ is constant on all spin structures underlying s; by Lin’s
result [33], this condition, coupled with the triple-cup product vanishing, charac-
terizes 3-manifolds which admit a Pin.2/-equivariant spectral section. However, if
the Pin.2/-equivariant K-theory could be extended to 3-manifolds without a Pin.2/-
spectral section, so that Corollary 6.3.10 held, it would of course also imply that
�.Y; s/ depends on the spin structure and not just the spinc structure.

Using our invariant �.Y; s/, we can prove a 10
8

-type inequality for smooth 4-
manifolds with boundary, which generalizes the results of [21] and [37].

Theorem 6.3.11. Let .Y0;s0/ be a spin, rational homology 3-sphere and .Y1;s1/ be
a closed, spin 3-manifold such that the index indDY1 is zero in KQ1.BY1/.

(1) Let .X; t/ be a compact, smooth, spin, negative semidefinite 4-manifold with
boundary �.Y0; s0/

`
.Y1; s1/. Then we have

1

8
b�2 .X/C �.Y0; s0/ � �.Y1; s1/:

(2) Let .X; t/ be a compact, smooth, spin 4-manifold with boundary �.Y0;s0/
`

.Y1; s1/. Then we have

�
�.X/

8
C �.Y0; s0/ � 1 � b

C.X/C �.Y1; s1/:
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Moreover, if Y0 is Floer KPin.2/-split and bC.X/ > 0, we have

�
�.X/

8
C �.Y0; s0/C 1 � b

C.X/C �.Y1; s1/:

Proof. Let Œ0� 2 BX D Pic.X/ be the element corresponding to the flat spin connec-
tion. Recall that BF Œn� is a fiber-preserving map. The restriction BF Œn�.X; t/ to the
fiber over Œ0� and the duality map

In.Y0/ ^ In.�Y0/! SFn.Y0/˚Wn.Y0/

defined in [36, Section 2.5], give a Pin.2/-map

fnW†
zRm0˚Hn0 In.Y0/! †

zRm1˚Hn1 .In.Y1/=sn.BY1//

such that

fn..†
zRm0˚Hn0 In.Y0//

S1/ � .†
zRm1˚Hn1 In.Y1/Œ0�/

S1 ;

fn..†
zRm0˚Hn0 In.Y0//

Pin.2// � .†
zRm1˚Hn1 In.Y1/Œ0�/

Pin.2/:

Here, Œ0� 2 Pic.Y1/ is the element corresponding to the flat spin connection, and

m0 �m1 D rankRWn.Y1/
�
� dimRWn.Y0/

�
� bC.X/;

n0 � n1 D rankH Fn.Y1/
�
� dimH Fn.Y0/

�

C
1

2
n.Y1; gjY1 ; tjY1 ; P0/ �

1

2
n.Y0; gjY0 ; tjY0/ �

�.X/

16
:

The restriction of fn to .†zR
m0˚Hn0 In.Y0//

S1 is induced by the operator

.dC; �0�1r�Y0 ; �
0
�1rY1/W�

1
CC.X/! �C.X/˚ .W�Y0/

0
�1 ˚ .WY1;Œ0�/

0
�1

and is a homotopy equivalence

.†
zRm0˚Hn0 In.Y0//

Pin.2/
! .†

zRm1˚Hn1 In.Y1/Œ0�/
Pin.2/
I

indeed, both of these are just S0 consisting of 0 and the base point. Moreover, if
bC.X/ D 0, the restriction of fn to .†zR

m0˚Hn0 In.Y0//
S1 is a Pin.2/-homotopy

equivalence
†
zRm0 In.Y0/

S1
! †

zRm1 In.Y1/
S1

Œ0� :

We may assume that m0, m1 are even and we can use Proposition 6.3.4 (1) to get the
first statement.

If bC.X/ is even, †zR
m0˚Hn0 In.Y0/ and †zR

m1˚Hn1 In.Y1/ are of SWF type at
even levels and we can apply Proposition 6.3.4 (1), (2) to fn to obtain the second state-
ment. If bC.X/ is odd, we take a connected sum X#S2 � S2, and then we can apply
Proposition 6.3.4. In this second part, we take advantage of the fact that �.Y;s/ mod 2
agrees with the Rokhlin invariant, as is used in [37, Proof of Theorem 1.4].



Frøyshov-type invariants 126

Corollary 6.3.12. Let .X; t/ be a compact spin 4-manifold with boundary Y . Assume
that the index bundle indDY is zero in KQ1.BY /. Then we have

�
�.X/

8
� 1 � bC.X/C �.Y; tjY /:

Moreover, if bC.X/ > 0 we have

�
�.X/

8
C 1 � bC.X/C �.Y; tjY /:

Proof. Removing a small disk from X , we get a bordism X 0 with boundary S3
`
Y .

Since �.S3/ D 0 and S3 is Floer KPin.2/-split, applying Theorem 6.3.11 to X 0, we
obtain the inequalities.

Since the spin bordism group �spin
3 is zero, we obtain the following.

Corollary 6.3.13. �.Y; s/ > �1.

Example 6.3.14. Let s be a spin structure on S1 � S2. Since S1 � S2 has a posi-
tive scalar curvature metric g, the conditions of Theorem 4.1.2 are satisfied. Hence
�WF .Y; s;S/ Š S0BY . Here, S is a spectral system with P0 D E0.D/

0
�1. Also we

have n.S1 � S2; g; s; P0/ D 0, because there is an orientation-reversing diffeomor-
phism of S1 � S2. So we obtain

�.S1 � S2; s/ � 0:

Note that s extends to a spin structure t on S1 �D3. Applying Theorem 6.3.12 to
.S1 �D3/#.S2 � S2/, we get �.S1 � S2; s/ � 0. Hence

�.S1 � S2; s/ D 0:

If X is a compact, oriented, spin 4-manifold with boundary S1 � S2 and with
bC.X/ > 0, we have

�
�.X/

8
C 1 � bC.X/

by Corollary 6.3.12. This inequality can be also obtained from the 10
8

-inequality [21]
for the closed 4-manifold X [ .S1 �D3/ and the additivity of the signature.

Example 6.3.15. Let Y be the flat 3-manifold and s1, s2, s3 be the spinc structures
in Example 6.2.15. As in Example 6.2.15, for any underlying spin structure, we have

�.Y; sj / � 0

for j D 1; 2; 3.
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Example 6.3.16. Let pW Y ! † be the sphere bundle of the complex line bundle
Nd on a closed, oriented surface † of degree d . Assume that d is even and that
0 < g.†/ < d

2
C 1. Using a connection on Nd , we have an identification

TNd D p
�T†˚ p�Nd :

Let sWY ! p�Nd jY be the tautological section. Then we have

T Y D p�T†˚ iRs: (6.3.1)

Choose spin structures of † and Nd . This is equivalent to choosing complex line

bundles K
1
2

† , N
1
2

d
and isomorphisms K

1
2

† ˝ K
1
2

† Š K†, N
1
2

d
˝ N

1
2

d
Š Nd . Also we

consider the natural spin structure of the trivial bundle iRs. The spin structures of †,

iRs and (6.3.1) induce a spin structure s0 on Y . Note that p�.N
1
2

d
˝N

1
2

d
/Š p�Nd D

C and hence the structure group of p�N
1
2

d
is ¹˙1º. Put s´ s0 ˝ p�N

1
2

d
. Then s is

a spin structure of Y with spinor bundle S D p�..K
� 12
† ˚ K

1
2

†/ ˝ N
1
2

d
/. The spinc

structure induced by s is sg�1Cd2
of Proposition 4.2.3. Since g � g � 1C d

2
< d ,

we can apply Theorem 4.2.5 and we get

�WF Pin.2/.Y; s; ŒS�/ Š S0B :

Here, S is as in Theorem 4.2.5. Taking q to be g � 1C d
2

in (6.2.2), we have

n.Y; s; gr ; P0/ D
1

8
:

Thus we obtain
�.Y; s/ � �

1

8
:


