
Appendix A

The Conley index and parameterized stable homotopy

In this appendix we define the category in which the Seiberg–Witten stable homotopy
type lives, and variations thereon, as well as some background on the Conley index.
Let G be a compact Lie group for this section. In Section A.1 we define parame-
terized homotopy categories we will be interested in. In Section A.2 we give basic
definitions for the Conley index. In Section A.3 we give a definition of spectra suit-
able for the construction. The main point is Theorem A.2.1, which states that the
parameterized homotopy class of the (parameterized) Conley index is well defined as
a parameterized equivariant homotopy class in KG;Z .

A.1 The unstable parameterized homotopy category

This section is intended both to introduce some notation and to point out that the
notions introduced in [43] are compatible with parameterized, equivariant homo-
topy theory, as considered in [16, 39].1 In the first part, we follow the discussion of
Costenoble–Waner [16, Chapter II] and Mrozek–Reineck–Srzednicki [43, Section 3].
In particular, we will occasionally use the notation of model categories, but the reader
unfamiliar with this language may safely ignore these aspects. The main points are
Lemma A.1.4, which lets us translate properties from the language of [43] to that
of [39], and Proposition A.1.6, which is used in describing the change of the Con-
ley index of approximate Seiberg–Witten flows upon changing the finite-dimensional
approximation.

Definition A.1.1. Fix a compactly generated space Z with a continuous G-action. A
triple U D .U; r; s/ consisting of a G-space U and G-equivariant continuous maps
r WU !Z and sWZ!U such that r ı sD idZ is called an (equivariant) ex-space over
Z.2 Let KG;Z be the category of ex-spaces, where morphisms .U; r; s/! .U 0; r 0; s0/

are given by maps f WU ! U 0 so that r 0f D r and f s D s0.

In comparison to the ordinary homotopy category, passing to the parameterized
homotopy category results in many more maps (for a highbrow definition of the
parameterized homotopy category, refer to Remark A.1.3).

1Establishing that [43] and [16, 39] are compatible is, in fact, straightforward. However, at
the time that [43] appeared, the May–Sigurdsson parameterized homotopy category had not yet
appeared.

2In [43], ex-spaces are called fiberwise-deforming spaces.
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Definition A.1.2. A fiberwise-deforming map f WU! U0 is an equivariant contin-
uous map f W .U; s.Z// ! .U 0; s0.Z// so that r 0 ı f is (equivariantly) homotopic
to r , relative to s.Z/. We say that fiberwise-pointed spaces U and U0 are fiberwise-
deforming homotopy equivalent if there exist continuousG-equivariant maps f WU!
U0, gWU0 ! U so that

f ı s D s0; g ı s0 D s;

r 0 ı f ' r rel s.Z/; r ı g ' r 0 rel s0.Z/;

g ı f ' idU rel s.Z/; f ı g ' idU 0 rel s0.Z/:

We write ŒU� for the fiberwise homotopy type of U. We will call a fiberwise-deforming
map, along with the choice of a homotopy h between r 0 ı f and r , a lax map, follow-
ing [16].

We can also consider homotopies of fiberwise-deforming maps. A homotopy
of fiberwise-deforming maps will mean a collection of fiberwise-deforming maps
Ft WU! U0, so that F WU � I ! U 0 is continuous. Homotopy of lax maps is similar,
but requiring that the homotopy involved in the definition of a lax map is compatible,
as we will define below.

Remark A.1.3. There is a model structure (what May–Sigurdsson call the q-model
structure) on KG;Z given by declaring a map in KG;Z to be a weak equivalence,
fibration, or cofibration, if it is such after forgetting the base Z, but May–Sigurdsson
point out technical difficulties with this model structure. They define a variant, the
qf -model structure on KG;Z , whose weak equivalences are those of the q-model
structure, but with a smaller class of cofibrations. Let Ho KG;Z denote the homotopy
category of the qf -model structure; we call this the parameterized homotopy category
and write ŒX;Y �G;Z for the morphism sets of HoKG;Z – these turn out to be the same
as the lax maps X to Y up to homotopy, as in [16, Section 2.1].

Let ƒZ denote the set of Moore paths of Z:

ƒZ D
®
.�; `/ 2 ZŒ0;1� � Œ0;1/ W �.r/ D �.`/ for r � `

¯
:

Recall that Moore paths have a strictly associative composition:

.��/.t/ D

´
�.t/ if t � `�;

�.t � `�/ if t � `�:

Given r WX ! Z, the Moore path fibration LX D L.X; r/ is defined by

LX D X �Z ƒZ;

and there is an inherited projection map LrWLX ! Z by Lr..x; �// D �.1/, as well
as an inherited section map LsWZ ! LX given by Ls.b/ D .s.b/; b/, the path with
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length zero at s.b/. Finally, there is a natural inclusion �WX ! LX , which is a weak-
equivalence on total spaces, and hence a weak equivalence in the qf -model structure.

Note that a lax map X ! Y is equivalent to the data of a genuine map X ! LY

in KG;Z (using that Y and LY are weakly equivalent, and basic properties of model
categories). In particular, any lax map defines an element of ŒX; Y �G;Z , which may
or may not be represented by a map X ! Y in KG;Z . The following lemma is then
immediate from the definitions.

Lemma A.1.4. Fiberwise-deforming homotopy-equivalent spaces are weakly equiv-
alent in KG;Z .

A homotopy between lax maps f0WX ! Y and f1WX ! Y is a lax map X ^Z
Œ0; 1�C ! Y so that f jX^i D fi for i D 0; 1. By [16, Section 2.1] the homotopy
classes of lax maps are in agreement with ŒX; Y �G;Z .

We will encounter collections of fiberwise-deforming spaces related by suspen-
sions. We have the following definition.

Definition A.1.5 ([43, Section 3.10]). Let U D .U; r; s/ and U0 D .U 0; r 0; s0/ be ex-
spaces over Z, Z0, where U , Z are G-spaces and U 0, Z0 are G0-spaces, for G, G0

compact Lie groups. Define an equivalence relation �^ on U � U 0 by .u; u0/ �^
.v; v0/ if .u; u0/D .v; v0/ or uD v 2 s.Z/, r 0.u0/D r 0.v0/ or r.u/D r.v/, u0 D v0 2
s0.Z0/. Define the fiberwise smash product by

U ^ U 0´ U � U 0= �^ :

We call an ex-space U well pointed if the inclusion s.Z/! U is a cofibration in
the category of G-spaces. That is, we require that s.Z/ � U admits a G-equivariant
Strøm structure (for a definition see [43, Section 3]). We record the following result
from [43] (the proof in the equivariant case is identical to that for the nonequivariant
case).

Proposition A.1.6 ([43, Proposition 3.10]). Assume that U, U0, V, V0 are fiberwise
well-pointed spaces, with ŒU� D ŒU0� and ŒV� D ŒV0�. Then ŒU ^ V� D ŒU0 ^ V0�.

There is also a pushforward for ex-spaces defined in [39]. Fix an ex-object U
given by Z !s U !r Z and a map f WZ ! Y . Define fŠU D .fŠU; t; q/ by the
retract diagram

Z Y

U fŠU

Z Y;
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where the top square is a pushout, and the bottom is defined by the universal property
of pushouts, along with the requirement that q ı t D id.

Proposition A.1.7 ([39, Proposition 7.3.4]). Say that U and U0 are weakly equivalent
G-ex-spaces. Then fŠU ' fŠU0.

Note the simple example that for U a sectioned spherical fibration over Z, and
f WZ ! � the collapse, fŠU is the Thom complex.

ForW a real G-vector space and U 2KG;Z , we define†WUD U^W C, where
W C is considered as a parameterized space over a point (we consider U ^W C as a
G-fiberwise deforming space by pulling back along the diagonal map G ! G �G).
By Proposition A.1.7, this is well defined on the level of homotopy categories.

Remark A.1.8. For two ex-spaces U, U0, there is a fiberwise product U�Z U0, which
is naturally an ex-space (whose structure maps are inherited from the universal prop-
erties of pullbacks), and similarly we obtain a fiberwise smash product U ^Z U0.
That is, we have a functor ^Z WHo KG;Z � Ho KG;Z ! Ho KG;Z . By [39, Proposi-
tion 7.3.1], ^Z descends to homotopy categories. The main implication of this from
our perspective is that it is legitimate to suspend Conley indices by nontrivial sphere
bundles over the base Z.

Definition A.1.9. Fix B a finite G-CW complex. The G-equivariant parameterized
Spanier–Whitehead category PSWB is defined as follows. The objects are pairs
.U; R/, also denoted by †RBU, for U an element of KG;Z (with total space U a finite
G-CW complex) and R a virtual real finite-dimensional G-vector space (in a fixed
universe). Morphisms are given by

hom..U; R/; .U0; R0// D colimW Œ†
WCRU; †WCR

0

U0�G;B ;

where the colimit is over sufficiently large W . A stable homotopy equivalence in
PSWG;B will be a stable map that admits some representative which is a weak equiv-
alence. We write .U;R/'PSW .U0;R0/ to denote stable homotopy equivalence, omit-
ting the subscript if clear from the context. A parameterized G-equivariant stable
homotopy type is an equivalence class of objects in PSWG;B up to stable homotopy
equivalence.

In Definition A.1.9, the colimit may be taken over any sequence of representations
which is cofinal in the universe. In particular, in the case of S1 and Pin.2/-spaces, we
will fix the following definitions.

Let US1 DC˚1˚R˚1, where C is the standard representation of U.1/, and R
is the trivial representation. Let UPin.2/ D H˚1 ˚ zR˚1, where H is the quaternion
representation of Pin.2/ and zR is the sign representation. There is a full subcategory
CS1 of PSWS1;B obtained by considering only those spaces .U;R/ with R D C˚n˚
R˚m, with m; n 2 Z; we use the shorthand .U;�2n;�m/ to denote .U; R/ in CS1 .
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Note that every element of PSWS1;B on US1 is stable homotopy equivalent to an
element of CS1 . Similarly, we write CPin.2/ for the subcategory whose objects are
tuples .U; R/ in PSWPin.2/;B with

R D H˚n ˚ zR˚m:

We write .U;�4n;�m/ for the resulting element (so that the notation is consistent
with the forgetful functor from Pin.2/-spaces to S1-spaces).

We note that PSW�, the parameterized Spanier–Whitehead category over a point,
is exactly the ordinary Spanier–Whitehead category. The next lemma follows from
the definitions.

Lemma A.1.10. Let f W B ! �. There is an induced functor fŠW PSWB ! PSW�
defined by fŠ.U;R/D .fŠU;R/ so that .U;R/'PSWB .U0;R0/ implies fŠ.U;R/'PSW�
fŠ.U0; R0/.

We have the following corollary.

Corollary A.1.11. Let f W B ! �. Then stable-homotopy equivalence classes in
PSWB give well-defined stable-homotopy classes in PSW�.

Finally, we remark that May–Sigurdsson [39, Chapters 20–22] define many par-
ameterized homology theories, suitably generalizing the usual definition of a (usual)
homology theory, and giving convenient invariants from objects of PSW�.

A.2 The parameterized Conley index

In this subsection we review the parameterized Conley index from [43] (see also
Bartsch [7]); we note that we work in considerably less generality than they present.
We start by giving the basic definitions in Conley index theory, following [35, Sec-
tion 5]. Note that the authors of [43] work nonequivariantly; the proofs in the equiv-
ariant case are similar.

LetM be a finite-dimensional manifold and ' a flow onM ; for a subsetN �M ,
we define the following sets:

NC D
®
x 2 N W 8t > 0; 't .x/ 2 N

¯
;

N� D
®
x 2 N W 8t < 0; 't .x/ 2 N

¯
;

invN D NC \N�:

A compact subset S �M is called an isolated invariant set if there exists a com-
pact neighborhood S � N so that S D inv.N / � int.N /. Such a set N is called an
isolating neighborhood of S .

A pair .N; L/ of compact subsets L � N � M is an index pair for S if the
following hold:
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(1) inv.N n L/ D S � int.N n L/.

(2) L is an exit set for N , that is, for any x 2 N and t > 0 so that 't .x/ … N ,
there exists � 2 Œ0; t/ with '� .x/ 2 L.

(3) L is positively invariant in N . That is, for x 2 L and t > 0, if 'Œ0;t�.x/ � N ,
then 'Œ0;t�.x/ � L.

For an index pair P D .P1;P2/ of an isolated invariant set S , we define �P WP1!
Œ0;1� by

�P .x/ D

´
sup

®
t � 0 W 'Œ0;t�.x/ � P1 n P2

¯
if x 2 P1 n P2;

0 if x 2 P2:

We say that an index pair P is regular if �P is continuous.
For Z a Hausdorff space, !WM ! Z a continuous map, and a regular index pair

P D .P1;P2/, define the parameterized Conley index I!.P / as P1 [!jP2 Z, namely,

I!.P / D .Z � 0/ [ .P1 � 1/= � ;

where .x; 1/ � .!.x/; 0/ for all x 2 P2 � 1.
The space I!.P / is naturally an ex-space, with embedding sP WZ! I!.P / given

by z! Œz;0�, and projection rP WI!.P /!Z given by rP .Œx;1�/D!.x/, rP .Œz;0�/D
z. By construction, rP ı sP D idZ .

For Z D �, we sometimes write Iu.P / for I!.P /, to specify the “unparameter-
ized” Conley index.

Theorem A.2.1 ([43, Theorem 2.1]). If P and Q are two regular index pairs for an
isolated invariant set S , then .I!.P /; rP ; sP / and .I!.Q/; rQ; sQ/ have the same
equivariant homotopy type over Z, and are both fiberwise well pointed.

Proof. In [43] it is proved that the two indices have the same fiberwise-deforming
type; Lemma A.1.4 then implies the statement. The well-pointedness is [43, Proposi-
tion 6.1].

Definition A.2.2 ([13], [47, Definition 2.6]). A connected simple system is a collec-
tion I0 of pointed spaces along with a collection of Ih of homotopy classes of maps
among them, so that

(1) for each pair X;X 0 2 I0, there is a unique class Œf � 2 Ih from X ! X 0;

(2) for f; f 0 2 Ih with f WX ! X 0 and f 0WX 0 ! X 00, the composite f 0 ı f is
in Ih;

(3) for each X 2 I0, the morphism f WX ! X is Œid�.

Of course, the notion of a connected simple system has an obvious generalization
in any category with an associated homotopy category.
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Theorem A.2.3 ([47]). Fix notation as in Theorem A.2.1. The unparameterized Con-
ley indices Iu.P / D I!.P /=Z, ranging over regular index pairs for S , form a con-
nected simple system.

We conjecture that in fact the parameterized Conley indices also have this prop-
erty.

Conjecture A.2.4. Fix notation as in Theorem A.2.1. Then the parameterized Conley
indices .I!.P /; rP ; sP /, running over all regular index pairs for the isolated invariant
set S , form a connected simple system.

In Chapter 3 we encounter the parameterized Conley indices for product flows.
We have the following theorem.

Theorem A.2.5 ([43, Theorem 2.4]). Let S , S 0 be isolated invariant sets for ', '0.
Then

I!�!0.S � S
0; ' � '0/ ' I!.S; '/ ^ I!0.S

0; '0/:

Moreover, the usual deformation invariance of the Conley index continues for the
parameterized Conley index.

Theorem A.2.6 ([43, Theorem 2.5], [47, Corollary 6.8]). If N is an isolating neigh-
borhood with respect to flows '� continuously depending on � 2 Œ0; 1�, with a con-
tinuous family of isolated invariant sets S� inside of N , then the fiberwise-deforming
homotopy type of I!.S�; '�/ is independent of �.

In the case of the unparameterized Conley index, for each �1; �2 2 Œ0; 1�, there is
a well-defined, up to homotopy, map of connected simple systems:

F.�1; �2/W I
u.S�1 ; '�1/! Iu.S�2 ; '�2/:

Furthermore, for all �1; �2; �3 2 Œ0; 1�,

F.�2; �3/ ı F.�1; �2/ � F.�1; �3/;

F .�1; �1/ � id:

Lemma A.2.7. Fix a flow ' on a manifoldX , along with a map pWX!B , and write
� WB ! � as the map collapsing B to a point. Then the pushforward of the parame-
terized Conley index I.'/, namely �ŠI.'/, is the ordinary Conley index Iu.'/.

Proof. This is immediate from the definitions.

We also note the behavior under time reversal.

Theorem A.2.8 ([15, Theorem 3.5], [38, Proposition 3.8]). Let M be a stably paral-
lelized G-manifold for a compact Lie group G. For ' a flow on M , the (unparame-
terized) Conley index of an isolated invariant set S with respect to the time-reversed
flow �', denoted Iu.S;�'/, is equivariantly Spanier–Whitehead dual to Iu.S; '/.
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A.3 Spectra

For G a compact Lie group, we define a G-universe U to be a countably infinite-
dimensional orthogonal representation of G.

Definition A.3.1. Let U be a universe with a direct sum decomposition U DLn
iD1 V

1
i , for finite-dimensional G-representations Vi . A sequential G-spectrum X

on U is a collection X.V / of spaces, indexed on the subspaces of U of the form
V D

Ln
iD1 V

ki
i for some ki � 0, along with transition maps, whenever W � V ,

�V�W W†
V�WX.W /! X.V /;

where V �W is the orthogonal complement of W in V . For V D W , the transition
map is required to be the identity, and the maps � are required to be transitive in the
usual way. The space X.V / is sometimes referred to as the V th level of the spectrum.

If �V�W is a homotopy equivalence for V , W sufficiently large, we say that X is
a G-suspension spectrum.

We will only work with suspension spectra in this memoir.

A morphism of spectra X ! Y will be a collection of morphisms

�V WX.V /! Y.V /

compatible with the transition maps.
We will also consider a generalization of morphisms, as follows.

Definition A.3.2. A weak morphism of spectra �WX ! Y is a collection of mor-
phisms

�V WX.V /! Y.V /

for V sufficiently large, so that the diagram

†W�VX.V / †W�V Y.V /

X.W / Y.W /

†W�V �V

�W

homotopy commutes for W sufficiently large. Weak morphisms �0, �1 are said to be
homotopic if there exists a weak morphism �Œ0;1�WX ^ Œ0; 1�C ! Y restricting to �j
at X ^ ¹j º for j D 0; 1.

We will also need the notion of a connected simple system of spectra. Indeed,
instead of using the direct generalization for spaces, the Seiberg–Witten Floer spec-
trum, as currently defined, requires that we work with weak morphisms instead, as
follows.
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Definition A.3.3. A connected simple system of G-spectra is a collection I0 of G-
spectra, along with a collection Ih of weak homotopy classes of maps between them,
so that the analogs of (1)–(3) of Definition A.2.2 are satisfied.

Remark A.3.4. In Section 3.5 we could have used nonsequential G-spectra, but we
have no need for the added generality in the memoir, and it slightly complicates the
notation.

Remark A.3.5. If higher naturality is established for the Conley index, then it would
be possible to replace weak morphisms in the definition of SWF, and Definition A.3.3
could be replaced with ordinary morphisms of spectra.


