Chapter 1

Introduction

Over the past century, the theory of operator algebras has given rise to an abundance
of non-commutative analogues of classical mathematical theories, many of which
have grown into successful independent research areas with exciting applications
in theoretical physics. Prominent examples of this phenomenon include the theory
of quantum groups [43, 79], non-commutative geometry a la Connes [14, 16-18],
and Rieffel’s theory of quantum metric spaces [68, 70], which constitute far-reaching
non-commutative generalisations of classical topological groups, Riemannian (spin)
manifolds and compact metric spaces, respectively. Despite a continuous effort, it
has proven very challenging to reconcile the theory of non-commutative geometry
with the theory of quantum groups [19, 57], and even for the most fundamental g-
deformation, Woronowicz’ SU,(2), it is not clear how one should modify Connes’
axioms to obtain a non-commutative geometry which adequately reflects the under-
lying g-geometry. Numerous candidates for Dirac operators on SU,(2) have been
proposed [9, 13,21,38,41,42,62], each having their advantages and disadvantages,
but it seems unclear which (if any) of these provide SU,(2) with the right kind of
non-commutative geometry. At the time of writing, it is not even known if any of
these Dirac operators give rise to a compact quantum metric structure, so also the
connection between the metric geometry and the differential geometry on SU,(2) is
open'.

The first aim of the present memoir is to remedy the latter problem by introducing
a family of Dirac operators on SU,(2) and showing that these give rise to compact
quantum metric structures. More precisely, we investigate a new 2-parameter family
of Dirac operators D; 4, indexed over (0, 1] x (0, 1], which connect some of the exist-
ing constructions in that D, , agrees with the Dirac operator suggested in [38] and
D1 4 is closely related to the one studied in [41]. It is important to stress that D, 4 does
not have bounded commutators with the coordinate algebra @ (SU,(2)) in general,
and we therefore cannot obtain a genuine spectral triple. It does, however, decom-
pose naturally into a “horizontal” part D ;I and “vertical” part D), each of which
admits bounded rwisted commutators (though for different twists) with elements from
O(SU,4(2)). The appearance of such twists seems inevitable when non-commutative

'Note that one may construct a Dirac operator from a length function on the dual m
whose iterated commutators do give rise to a compact quantum metric space [8, Proposition 4.3
and Theorem 7.4], but this construction seems to be less related to the spin geometry of SU (2).
Indeed, for ¢ = 1 the resulting Dirac operator is very different from the classical Dirac operator
since the K-homology class of the Dirac operator coming from a length function is trivial.
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geometry is applied in the context of g-deformed spaces [19], and even though our
constructions do not fit exactly with Connes’ original axioms for a spectral triple,
many of the properties of classical spectral triples admit suitable analogues in our
twisted setting, as witnessed by the following result:

Theorem A (See Lemmas 3.6.4,4.1.1,4.3.1,4.5.2, 4.6.1, Proposition 4.5.4 and Sec-
tion 4.4). The Dirac operators D; 4 = DtV + D;’ are selfadjoint and the following
hold:

(1) There exists a one-parameter family (0y)re(0,00) Of algebra automorphisms
of O(SUg4(2)) such that the twisted commutators

DtVat(x) —at_l(x)DtV and Dfaq(x) —aq_l(x)DH,

extend to bounded operators 3! (x) and 85 (x) forall x € O(SU4(2)). More-
over, there exists a one-parameter family of unbounded, strictly positive oper-
ators (T'r)re(0,00) Satisfying that oy (x) = I IxT, for all v € (0, 00) and all
x € O(SU,(2)).

(2) The Dirac operators D, 4 are SU,(2)-equivariant, in the sense that acting on
(L%(SU4(2)) QL2 (SU4(2)))®2, the selfadjoint unbounded operators 18D 4
and 1®Df commute with W @ W where W € B(L?(SU,(2))®L%(SU,(2)))
denotes the multiplicative unitary for SU4(2).

(3) There exists an antilinear unitary I with 1?> = —1 such that D, satisfies
the first order condition [d) (x), [yI] = 0 = [Bf(x), Iyl] for all x,y €
O(SU,4(2)). Moreover, I commutes with D; 4 up to modular operators in
the sense that the relations

p/T;'-1=1-D/T;" and DFT;'-1=1.DIT/!

hold on the dense subspace O(SU, (2)®% c L? (SU, (2))®2.

(4) When t = q = 1, the unbounded selfadjoint operator D1 satisfies that 2 -
D11+ 1 = Dgs, where Dgs is the classical Dirac operator on SU(2) = S3.

As already mentioned, one of the main goals of the memoir is to investigate the
metric geometry governed by the Dirac operators D; 4, by connecting our construc-
tion to Rieffel’s theory of compact quantum metric spaces [68,70]. The data defining
a compact quantum metric space consists of a unital C *-algebra A (or, more gen-
erally, an operator system) endowed with a densely defined seminorm L, and the
central requirement is that the Monge—Kantorovi¢ extended” metric dy on the state

The adjective extended here means that d; is a priory allowed to take the value infinity.
Note, however, that by compactness this cannot be the case if d;, metrises the weak™ topology.
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space S (A), defined as
dp(p,v) == sup{|u(a) —v(a)| | L(a) <1}, (1.1)

metrises the weak™ topology. The motivating example of course comes from taking a
classical compact metric space (M, d) and associating to it the seminorm

FACOPASD]
d(x,y)

defined on the Lipschitz functions Lip(M). Rieffel’s definition is also very much
inspired by constructions appearing in non-commutative geometry; see [15]. Indeed,
one can associate a natural seminorm Lp to a unital spectral triple (4, H, D) by
setting

Lip(f) := sup{ X,y GM,X#y}

Lp(a) := || [D,a]

| (1.2)

whenever the element a belongs to a specified dense unital *x-subalgebra A4 C A
of “differentiable” operators. Note, however, that this construction does not always
yield a compact quantum metric space, and even in the cases where this happens, the
argument is often far from trivial; see, e.g., [2,63, 69].

Having the Dirac operators D; 4 at our disposal we obtain a family of seminorms
L;4:0(SUg4(2)) — [0, 00) by setting

Lig(x) = [0] (x) + 3 (x)|

and we may ask whether they yield compact quantum metric structures on C(SU,(2)).
Since the seminorm L; ;, comes from two unbounded selfadjoint operators via a twis-
ted commutator construction we may enlarge the domain considerably and replace
the coordinate algebra @ (SU,(2)) with a much larger algebra of Lipschitz elements
Lip,(SU4(2)). We are considering the resulting seminorm L3'7*: Lip,(SUg4(2)) —
[0, 00) as the “maximal” seminorm associated with our spectral data whereas L; 4
is regarded as the corresponding “minimal” seminorm. In analogy with the classical
case, there is a wide gap between the Hopf algebra @ (SUy (2)) of polynomial expres-
sions in the generators and the Lipschitz algebra Lip,(SU4(2)), in so far that the
intersection of the domain of the closures of the twisted derivations 9} and 851 on
the coordinate algebra does not agree with the Lipschitz algebra Lip, (SU,;(2)); see
for example [25, Theorem 3.1]. One may compare the gap between the minimal and
maximal seminorms to the gap between the unital C*-algebra C(SU,(2)) and its
weak closure, the von Neumann algebra L*°(SU,(2)). We are in this text presenting
a thorough treatment of the maximal seminorms L}'2* and this is partly the reason for

t.q
the appearance of a number of analytic challenges.

Theorem B (see Theorem 5.6.1). The pair (C(SUq(2)), Ly5") is a compact quantum
metric space for all t,q € (0, 1].
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Enlarging the domain of a seminorm increases the difficulty of proving that it
defines a compact quantum metric structure, so Theorem B immediately implies the
corresponding statement for the minimal seminorm L, 4.

Corollary C (see Corollary 5.6.2). The pair (C(SUg4(2)), L;,4) is a compact quantum
metric space for all t,q € (0, 1].

To prove Theorem B, we develop a set of new general tools which are likely to
have applications elsewhere, and we therefore briefly outline the main ideas involved.
The central ingredient is the Podles sphere C(S ;) [66], which arises as the fixed point
algebra of a certain circle action on C(SU,(2)) (providing a quantised analogue of the
Hopf fibration). In contrast to SU,(2), the non-commutative metric geometry of .S 5
is reasonably well understood. The work of Dabrowski and Sitarz [22] provides the
Podles sphere with a unital spectral triple, and it was furthermore proven in [2] that
c(S 3) becomes a compact quantum metric space when equipped with the corres-
ponding seminorm from (1.2). The circle action defining the Podles$ sphere also gives
rise to an increasing sequence of finitely generated projective modules which suit-
ably exhaust C(SU,(2)). These finitely generated projective modules are direct sums
of spectral subspaces for the circle action and are referred to as spectral bands. The
first step in proving Theorem B is to lift the compact quantum metric structure from
C(S ;) to the spectral bands and we develop the general theory to achieve this in Sec-
tion 2.3. The second step is then to lift the compact quantum metric structure from
the spectral bands all the way up to C(SU,(2)). Perhaps a bit surprisingly, the main
aid here comes from the theory of Schur multipliers, and we unfold this aspect in
Section 5.4.

One of the main virtues of Rieffel’s theory of compact quantum metric spaces, is
that it allows for a natural generalisation of the classical Gromov—Hausdorff distance
between compact metric spaces [23, 26], naturally dubbed the quantum Gromov—
Hausdorff distance [70]. This concept has been further developed by, among others,
Kerr [39], Li [52-54] and Latrémoliere [46—49], and by now exists in several differ-
ent versions which take into account more structure than Rieffel’s original definition.
The existence of such a distance function allows one to study the class of compact
quantum metric spaces from a more analytical point of view, and opens the pos-
sibility to investigate a wealth of natural continuity questions. Over the past two
decades, many positive answers have been obtained, and examples include Rieffel’s
fundamental result that the 2-sphere can be approximated by the fuzzy spheres (mat-
rix algebras) [71], as well as the more recent proof [3] that the Podles spheres Sj
vary continuously in the deformation parameter ¢ € (0, 1]; for many more examples
see [1,35,44,50,54,70].

In light of Theorem B, the next natural question to ask is whether one obtains
quantum Gromov—Hausdorff continuity in the deformation parameters ¢ and ¢, and
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through a series of approximation arguments we are able to answer this in the affirm-
ative:

Theorem D (See Theorem 7.3.1). The quantum metric spaces (C(SUgq(2)), L}
vary continuously in the deformation parameter (t,q) € (0, 1] x (0, 1] with respect to

the quantum Gromov-Hausdorf{f distance.

We single out the following special case of Theorem D, which was the original
motivation for the study undertaken in the present memoir. Denoting by d g3 the usual
round metric on SU(2) =~ S3 € R* and by Ly;,: Lip(SU(2)) — [0, 00) the Lipschitz
constant seminorm on C(SU(2)) associated with the rescaled metric 2 - d g3, combin-
ing Theorems D and A yields the following:

Corollary E (see Corollary 7.3.2). The quantum metric spaces (C(SUgq(2)), L}
converge in quantum Gromov—Hausdorff distance to (C(SU(2)), Lpip) as (¢, q) tends

to (1,1).

The rescaling of the metric on S3 may at first sight seem strange, but it is exactly
this factor of 2 which makes the Hopf fibration S3 — S? a Riemannian submersion
when the 2-sphere is endowed with its round metric arising from the natural embed-
ding into R3.

The road to Theorem D is quite long, but involves a number of constructions
which are of independent interest. As in the case of the Podles sphere [3], the key to
such a continuity result is to construct an SU,(2) version of the Berezin transform.
By means of the Berezin transform we obtain finite dimensional compact quantum
metric spaces Fuzzy (B(f< ) € O(SU4(2)) indexed by N, K € Ny. We think of these
compact quantum metric spaces as fuzzy spectral bands. These fuzzy spectral bands
are @O (SU,(2))-coinvariant and it is possible to describe them explicitly in terms of
the usual generators for SU,(2). In Chapter 6 we construct our Berezin transform and
prove that the fuzzy spectral bands approximate SU, (2):

Theorem F (see Corollary 6.4.4). The quantum metric spaces (FuzzN(B;< ). Lt yg)
converge in quantum Gromov—Hausdorff distance to (C(SU4(2)), Ly'g") as N and K
tend to infinity.

This theorem should be viewed as an SU, (2)-analogue of Rieffel’s original result
[71], showing that the 2-sphere can be approximated in quantum Gromov—Hausdorff
distance by the fuzzy 2-spheres (matrix algebras). The concrete techniques used in
the construction of the Berezin transform and the fuzzy spectral bands build on the
corresponding constructions for the Podles sphere developed in [3]. An interesting
consequence of the above fuzzy approximation is that the maximal and minimal
seminorm actually give rise to the same compact quantum metric structure on SU, (2).
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Theorem G (see Corollary 6.4.2). The quantum Gromov-Hausdorff distance between
(C(SU4(2)), LYY) and (C(SUq(2)), Ly,q) is zero. Moreover, the Monge—Kantorovi¢
metrics dj'y* and d; 4 on $(C(SUq(2))), induced by the two seminorms via the for-

mula (1.1), agree.

In particular, the continuity results in Theorem D and Corollary E, which pertain to
the maximal seminorm L3'7* automatically hold true for the minimal seminorm L, 4:

Corollary H. The quantum metric spaces (C(SUy4(2)), Lt 4) vary continuously in
the deformation parameters (t,q) € (0, 1] x (0, 1] with respect to the quantum Gromov—
Hausdorff distance. In particular, (C(SU4(2)), L ,4) converges to (C(SU(2)), Liip)
as (t,q) tends to (1, 1).

The rest of the memoir is structured as follows: Chapter 2 contains the necessary
background on compact quantum metric spaces as well as the new tools needed for the
present memoir. Chapter 3 contains a detailed introduction to SU (2). In Chapter 4 we
introduce our family of Dirac operators and prove Theorem A. Chapter 5 is devoted
to proving Theorem B and in Chapter 6 we construct the Berezin transform and prove
Theorems F and G. The final Chapter 7 pieces everything together into a proof of the
main continuity result, Theorem D.

1.1 Notation and standing assumptions

Unless otherwise stated, we shall always apply the notation || - || for the unique C*-
norm on a C *-algebra A or, more generally, for its restriction to a complete operator
system X C A. Since the Greek letter epsilon is the standard symbol both for the
counit in a quantum group and an arbitrarily small positive number, we will use the
symbol € for the former and the symbol & for the latter. As for tensor products, the
symbols ®, Qmin and ® will denote algebraic, minimal C *-algebraic, and Hilbert
space tensor products, respectively. The theory of unbounded operators plays a central
role in the memoir, and if T is an unbounded closable operator in a Hilbert space we
will denote its closure by T. Lastly, we will use the abbreviations WOT and SOT for
the weak- and strong operator topology, respectively, and ucp for unital completely
positive.

1.2 Note added in proof

Since the writing of the present memoir, the research on quantum metrics on g-defor-
mations has progressed further. In [60], it was proven that the D’ Andrea—Dabrowski
spectral triples provide all quantum projective spaces (CPqe with compact quantum
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metric structures (the case £ = 1 corresponding to the Podles$ sphere), and in [34]
the higher-dimensional Vaksman—Soibelman spheres were treated, thus providing a
generalisation of Theorem B. The work [34] also features an updated treatment of
finitely generated projective modules in the context of quantum metric spaces.



