
Chapter 3

Preliminaries on quantum SU.2/

The main object of study in the present text is the unital C �-algebra C.SUq.2//,
known as quantum SU.2/, introduced by Woronowicz in [78]. There are numer-
ous good sources describing this object, and in addition to the original texts by
Woronowicz we refer the reader to the monographs [40, 75] for general background
information. Let q 2 .0; 1�. Aligning our notation with the papers [2–4, 22, 25], we
define the C �-algebraic version of quantum SU.2/ as the universal unital C �-algebra
C.SUq.2// with two generators a and b subject to the relations

ba D qab b�a D qab� bb� D b�b

1 D a�aC q2bb� aa� C bb� D 1:

These relations are best justified by noting that they are equivalent to the requirement
that

u WD

�
a� �qb

b� a

�
2M2

�
C.SUq.2//

�
is a unitary matrix, in the following referred to as the fundamental unitary. Inside the
unital C �-algebra C.SUq.2// we have the coordinate algebra O.SUq.2// defined as
the unital �-subalgebra generated by a and b. The set ¹�klm j k 2 Z; l;m 2 N0º with
elements given by

�klm WD

´
akbl.b�/m k; l;m > 0

bl.b�/m.a�/�k k < 0; l;m > 0
(3.1)

constitutes a linear basis for O.SUq.2//; see [75, Proposition 6.2.5]. The coordinate
algebra O.SUq.2// is in fact a Hopf �-algebra and the coproduct �, the antipode
S and the counit � are best described in terms of the fundamental unitary by means
of the formulae �.u/ D u ˝ u, S.u/ D u� and �.u/ D

�
1 0
0 1

�
. The coproduct �

extends to a unital �-homomorphism�WC.SUq.2//! C.SUq.2//˝min C.SUq.2//,
which turns C.SUq.2// into a C �-algebraic compact quantum group in the sense of
Woronowicz; see [79]. For general C �-algebraic compact quantum groups, it is not
true that one can find a bounded counit, but since C.SUq.2// is known to be coamen-
able, the counit �WO.SUq.2//!C actually does extend to a unital �-homomorphism
�WC.SUq.2//! C; see [7].
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3.1 The quantum enveloping algebra

We are also interested in the quantum enveloping algebra Uq.su.2//. For q 2 .0; 1/,
this is defined (see [40, Chapter 4]) as the universal unital C-algebra with generators
e, f , k, k�1 subject to the relations

kk�1 D 1D k�1k; ek D qke; kf D qf k and fe � ef D
k2 � k�2

q � q�1
: (3.2)

The quantum enveloping algebra becomes a unital �-algebra for the adjoint operation
determined by the formulae k�D k and e�D f . For qD 1, the (quantum) enveloping
algebra is defined as the universal unital algebra with generators e, f , h satisfying the
relations

Œh; e� D �2e; Œh; f � D 2f and Œf; e� D h;

with involution given by h�D h and e�D f ; i.e., it agrees with the enveloping algebra
of the Lie algebra su.2/ as one would expect. Note that we have chosen to follow the
notation from [22], and that the quantum enveloping algebra just defined is the one
denoted Ŭq.sl2/ in [40]. The quantum enveloping algebra Uq.su.2// is also a Hopf
�-algebra. For q ¤ 1, the comultiplication, antipode and counit are determined by the
formulae

�.e/ D e ˝ k C k�1 ˝ e S.e/ D �q�1e �.e/ D 0

�.f / D f ˝ k C k�1 ˝ f S.f / D �qf �.f / D 0

�.k/ D k ˝ k S.k/ D k�1 �.k/ D 1

and for q D 1 by

�.e/ D e ˝ 1C 1˝ e S.e/ D �e �.e/ D 0

�.f / D f ˝ 1C 1˝ f S.f / D �f �.f / D 0

�.h/ D h˝ 1C 1˝ h S.h/ D �h �.h/ D 0:

In order to unify our notation, it is convenient to put k D 1 in the case where q D 1.
The coordinate algebra O.SUq.2// and the quantum enveloping algebra Uq.su.2//

are related to one another by means of a non-degenerate dual pairing of Hopf �-
algebras [40, Chapter 4, Theorem 21]. For q ¤ 1, this pairing can be described as
follows:

hk; ui D

 
q�

1
2 0

0 q
1
2

!
; he; ui D

�
0 1

0 0

�
and hf; ui D

�
0 0

1 0

�
; (3.3)

and for q D 1 the same formulae apply together with the additional identity

hh; ui D

�
�1 0

0 1

�
:
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The dual pairing yields a left action and a right action of Uq.su.2// on O.SUq.2//.
These actions play a central role in the present text and for � 2 Uq.su.2// they are
defined by the linear endomorphisms

@� WD .1˝ h�; �i/� and ı� WD .h�; �i ˝ 1/�

of O.SUq.2//. Thus, @� denotes the left action associated to � whereas ı� denotes the
corresponding right action. Pairing the generators of O.SUq.2// and Uq.su.2// one
obtains the following explicit formulae for the endomorphisms coming from e and f
(we are here only listing the non-zero values):

@e.a/ D b
� @f .a

�/ D �qb ıe.a
�/ D b� ıf .a/ D �qb

@e.b/ D �q
�1a� @f .b

�/ D a ıe.b/ D �q
�1a ıf .b

�/ D a�:
(3.4)

The endomorphisms coming from e and f in Uq.su.2// are related to one another
via the adjoint operation, meaning that

@e.x
�/ D �q�1@f .x/

� and ıe.x
�/ D �q�1ıf .x/

� (3.5)

for all x 2 O.SUq.2//. We furthermore record that @k and ık are algebra auto-
morphisms of O.SUq.2//. The relationship between these automorphisms and the
adjoint operation is given by @k.x�/ D @�1k .x/

� and ık.x�/ D ı�1k .x/� for all x 2
O.SUq.2//. The relevant formulae on generators are listed here:

@k.a/ D q
1
2 a @k.b/ D q

1
2 b ık.a/ D q

1
2 a ık.b

�/ D q
1
2 b�: (3.6)

All these formulae may be derived directly from the defining relations for O.SUq.2//
and Uq.su.2// and the definition of a dual pairing of Hopf �-algebras [40, Chapter 1,
Definition 5 & (41)]. In the same way one sees that both @e and @f are twisted deriv-
ations, in the sense that

@e.xy/ D @e.x/@k.y/C @k�1.x/@e.y/

@f .xy/ D @f .x/@k.y/C @k�1.x/@f .y/
(3.7)

for all x; y 2 O.SUq.2//.
We shall encounter such twisted derivations numerous times in the sections to

follow and we therefore formalise this notion in the following short section.

3.2 Twisted derivations

Definition 3.2.1. Let A and B be C �-algebras and let � and � WA! B be algebra
homomorphisms defined on a dense �-subalgebra A � A. We say that a linear map
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d WA! B is a twisted derivation when d.x � y/ D d.x/ � �.y/C �.x/ � d.y/ for all
x;y 2A. A twisted derivation is called a twisted �-derivation when d.x�/D�d.x/�

and �.x�/� D �.x/ for all x 2 A.

We remark that a twisted derivation d WA ! B is the same thing as a deriva-
tion d WA! B when B is given the bimodule structure determined by the algebra
homomorphisms � and � WA! B .

3.2.0.1 q-numbers. We are going to need two versions of q-numbers. For q 2 .0; 1�
and n 2 N we define the quantity

hniq WD 1C q
2
C � � � C q2.n�1/: (3.8)

Furthermore, the classical q-number makes sense for every a 2 R and is defined by

Œa�q WD

´
qa�q�a

q�q�1 q 2 .0; 1/

a q D 1:

Whenever no confusion can arise, we omit the subscript q from the notation.

3.3 Corepresentation theory

The (co-)representation theory of SUq.2/ is well understood, and turns out to be equi-
valent with that of SU.2/; see [78, Section 5]. We may therefore choose a complete
set of irreducible corepresentation unitaries un 2MnC1.O.SUq.2///, n 2 N0, where
the matrix entries unij are labelled by indices i; j 2 ¹0; 1; : : : ; nº. For q ¤ 1, we fix
this choice of irreducible corepresentation unitaries such that

hk; unij i D ıij � q
j�n

2

he; unij i D ıi;j�1 � q
1�n

2

p
hn � j C 1iqhj iq

hf; unij i D ıi;jC1 � q
1�n

2

p
hn � j iqhj C 1iq;

(3.9)

and for q D 1 we fix the same formulae together with the additional identity

hh; unij i D ıij � .2j � n/:

We record that the fundamental unitary u agrees with the irreducible corepresenta-
tion unitary u1 and that u0 D 1. We shall often refer to the entries unij 2 O.SUq.2//
as the matrix coefficients and we apply the convention that unij WD 0 whenever one
of the parameters n; i; j is outside of its natural range; i.e., when n < 0 or .i; j / …
¹0; : : : ; nº2. The adjoint operation can be described at the level of the matrix coeffi-
cients via the formula

.unij /
�
D .�q/j�iunn�i;n�j I (3.10)
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see for instance [21, Section 2]. For more details on the corepresentation theory for
quantum SU.2/, we refer the reader to [40, Chapter 3, Theorem 13 & Chapter 4, Pro-
positions 16 and 19]. Using the q-Clebsch–Gordan coefficients (see [21, Section 3]
and [40, Chapter 3.4]) one may explicitly describe the products between the generat-
ors and the matrix coefficients:

a� � unij D q
iCj

p
hn � i C 1ihn � j C 1i

hnC 1i
� unC1ij C

p
hiihj i

hnC 1i
� un�1i�1;j�1

b� � unij D q
j

p
hi C 1ihn � j C 1i

hnC 1i
� unC1iC1;j � q

iC1

p
hn � iihj i

hnC 1i
� un�1i;j�1

a � unij D

p
hi C 1ihj C 1i

hnC 1i
� unC1iC1;jC1 C q

iCjC2

p
hn � iihn � j i

hnC 1i
� un�1ij

b � unij D �q
i�1

p
hj C 1ihn � i C 1i

hnC 1i
� unC1i;jC1 C q

j

p
hn � j ihii

hnC 1i
� un�1i�1;j :

(3.11)
In particular, it holds that un00 D .a

�/n for all n 2 N0, a fact that will be used several
times throughout the memoir.

3.4 The Haar state

Quantum SU.2/ comes equipped with its Haar state hWC.SUq.2//! C which can
be expressed on the matrix coefficients by the simple relations

h.1/ D 1 and h.unij / D 0

for all n 2 N and i; j 2 ¹0; 1; : : : ; nº; see e.g. [40, Chapter 4, (50)]. On the elements
�klm of the linear basis (3.1), the Haar state vanishes if k ¤ 0, and for k D 0 it
furthermore vanishes when l ¤ m. Finally, when k D 0 and l D m it holds that

h.bmb�m/ D
1

hmC 1iq
I (3.12)

see e.g. [75, Theorem 6.2.17]. As the name suggests, the Haar state is bi-invariant
with respect to the comultiplication in the sense that

.h˝ 1/�.x/ D .1˝ h/�.x/ D h.x/ � 1 for all x 2 C.SUq.2//:

For q ¤ 1, the Haar state is not a trace, but it is a twisted trace with respect to the
algebra automorphism � WD ık�2 ı @k�2 , in the sense that

h.xy/ D h.�.y/x/ for all x; y 2 O.SUq.2//I (3.13)
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see [40, Chapter 4, Proposition 15]. Using the formulae in (3.9), one sees that the
modular automorphism � is given by the following formula on the matrix coefficients:

�.unij / D q
2.n�i�j /

� unij : (3.14)

The algebra automorphisms ık�1 ı @k�1 and ık ı @k will be denoted �
1
2 and ��

1
2 ,

respectively.
The Haar state is faithful and we denote the corresponding GNS Hilbert space

by L2.SUq.2// and the natural embedding C.SUq.2// � L2.SUq.2// by ƒ. Fur-
thermore, we denote the associated injective �-homomorphism by �WC.SUq.2//!
B.L2.SUq.2/// and the notation L1.SUq.2// refers to the enveloping von Neumann
algebra so that L1.SUq.2// agrees with the double commutant �.C.SUq.2///00 �
B.L2.SUq.2///. Lastly, the diagonal representation of C.SUq.2// on two copies of
L2.SUq.2// plays a prominent role in the sections to follow and will be denoted by
� W C.SUq.2// ! B.L2.SUq.2//˚2/. Whenever convenient, we apply the notation
Hq WDL

2.SUq.2//. The matrix unitsunij constitute an orthogonal basis inL2.SUq.2//
and the 2-norms of unij and .unij /

� are given by

hunij ; u
n
ij i D h

�
.unij /

�unij
�
D

q2.n�i/

hnC 1iq˝
.unij /

�; .unij /
�
˛
D h

�
unij .u

n
ij /
�
�
D

q2j

hnC 1iq
I

(3.15)

whenever n 2 N0 and i; j 2 ¹0; : : : ; nº; see [40, Chapter 4, Theorem 17].

3.5 Circle actions

The unital C �-algebra C.SUq.2// carries two distinguished circle actions

�L and �RWS
1
� C.SUq.2//! C.SUq.2//

referred to as the left circle action and the right circle action, respectively. These two
circle actions are given on the matrix coefficients by the formulae

�L.z; u
n
ij / D z

2j�nunij and �R.z; u
n
ij / D z

2i�nunij (3.16)

for all z 2 S1, n 2 N0 and i; j 2 ¹0; 1; : : : ; nº; see for example [41, Section 2.2]. The
spectral subspaces for the left circle action play a special role in the present text and
they are denoted by

Amq WD
®
x 2 C.SUq.2//

ˇ̌
�L.z; x/ D z

m
� x for all z 2 S1

¯
; m 2 Z:
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For each m 2 Z we define the algebraic spectral subspace Am
q WD A

m
q \O.SUq.2//.

Note that the Podleś sphere (see [66]) agrees with the fixed point algebra so that
C.S2q / D A

0
q , and the coordinate algebra O.S2q / agrees with the algebraic fixed point

algebra A0
q . The algebraic spectral subspaces are left comodules over O.SUq.2// in

the sense that the coproduct restricts to a coaction �WAm
q ! O.SUq.2//˝Am

q for
each m 2 Z. The spectral subspace Amq comes with an associated spectral projection
…L
mWC.SUq.2//! Amq defined by the norm-convergent Riemann integral

…L
m.x/ D

1

2�

Z 2�

0

�L.e
ir ; x/ � e�irmdr: (3.17)

Note that…L
m is a contraction and that…L

m.O.SUq.2///�Am
q . We apply the notation

Hm
q � Hq for the Hilbert space closure of ƒ.Am

q / � Hq . For each M 2 N0, we
introduce the spectral band

BMq WD

MX
mD�M

Amq : (3.18)

The spectral band also exists in an algebraic version, namely BM
q WD

PM
mD�M Am

q .
We note that BMq agrees with the norm-closure of the algebraic spectral band, where
the non-trivial inclusion follows by using the spectral projections.

3.6 Analytic elements

For each s 2 .0; 1�, we define the closed strip

Is WD

²
z 2 C

ˇ̌̌̌
Im.z/ 2

�
log.s/
2

;�
log.s/
2

�³
� C: (3.19)

Definition 3.6.1. Let s 2 .0; 1�. We say that an element x 2 C.SUq.2// is analytic of
order� log.s/=2when the continuous map R!C.SUq.2// given by r 7! �L.e

ir ; x/

extends to a continuous map Is ! C.SUq.2// which is analytic on the interior I ıs �
Is . If so, we denote this (unique) continuous extension by z 7! �L.e

iz; x/.

Let x;y 2 C.SUq.2// be analytic of order� log.s/=2. Applying the basic proper-
ties of operator valued analytic maps we obtain that x � y and x� are analytic of order
� log.s/=2 and that we have the relations

�L.e
iz; x � y/ D �L.e

iz; x/ � �L.e
iz; y/ and �L.e

iz; x�/ D �L.e
i � Nz; x/� (3.20)

for all z 2 Is . The set of elements that are analytic of order� log.s/=2 thus constitutes
a unital �-subalgebra.
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Lemma 3.6.2. Let s 2 .0; 1� and let x be an analytic element of order � log.s/=2. If
T WC.SUq.2//! C.SUq.2// is a bounded operator which is equivariant with respect
to the circle action �L, then T .x/ is analytic of order � log.s/=2 and it holds that
T .�L.e

iz; x// D �L.e
iz; T .x// for all z 2 Is .

Proof. Since T is bounded, the map Is 3 z 7! T .�L.e
iz; x// 2 C.SUq.2// is con-

tinuous and analytic on the interior I ıs . Moreover, for r 2R we have T .�L.eir ; x//D
�L.e

ir ;T x/, so it follows that T .x/ is analytic of order� log.s/=2 and, by the identity
theorem for analytic functions, that T .�L.eiz; x//D �L.eiz; T .x// for all z 2 Is .

Lemma 3.6.3. Letm 2 Z and x 2 Amq . It holds that x is analytic of order � log.s/=2
for all s 2 .0; 1� and that the associated extension is given by

�L.e
iz; x/ D eiz�m � x for all z 2 C:

Proof. This follows since �L.eit ; x/ D eit �m � x and since z 7! eiz�m is analytic.

It follows from Lemma 3.6.3 that every x 2 O.SUq.2// is analytic of order
� log.s/=2 for all s 2 .0; 1� and that we have an algebra automorphism

�L.e
iz; �/WO.SUq.2//! O.SUq.2//

for all z 2 C. Moreover, it holds that �L.eiz; �L.eiw ; x// D �L.e
i.zCw/; x/ for all

z; w 2 C and x 2 O.SUq.2//. As a consequence Lemma 3.6.3 we also obtain that

�L.q
1
2 ; x/ D @k.x/ for all x 2 O.SUq.2//:

For each s 2 .0;1/, we also introduce the unbounded operator �s;0WO.SUq.2//˚2!
L2.SUq.2//˚2 given by the formula

�s;0

�
�

�

�
WD

 
s

1�n
2 0

0 s
�1�m

2

!�
�

�

�
(3.21)

for all � 2 An
q and � 2 Am

q . Since �s;0 admits an orthonormal basis of eigenvectors
with strictly positive eigenvalues, we obtain that �s;0 is closable and that the closure
is a positive unbounded operator with dense image. We denote this closure by

�sWDom.�s/! L2.SUq.2//˚2:

The inverse of �s is again a positive unbounded operator with dense image and we
have the following identities regarding images and domains:

Dom.��1s / D Im.�s/ and Im.��1s / D Dom.�s/:
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The inverse ��1s agrees with the closure of the unbounded operator

�s�1;0WO.SUq.2//˚2 ! L2.SUq.2//˚2

and we therefore have the identity ��1s D �s�1 .

Lemma 3.6.4. Let s 2 .0; 1�. If x 2 C.SUq.2// is analytic of order � log.s/=2, then
it holds that x.Dom.�s// � Dom.�s/ and x.Im.�s// � Im.�s/ and we have the
relations

�sx�
�1
s .�/ D �L.s

� 1
2 ; x/.�/ and ��1s x�s.�/ D �L.s

1
2 ; x/.�/

for all � 2 Im.�s/ and � 2 Dom.�s/.

Proof. Suppose that x 2 C.SUq.2// is analytic of order � log.s/=2. We focus on
showing that x.Dom.�s// � Dom.�s/ and that �sx��1s .�/ D �L.s

� 1
2 ; x/.�/ for all

� 2 Dom.�s/, since the remaining identities follow by similar arguments. We apply
the notation E WD O.SUq.2//˚2 for the defining core for �s . It then suffices to show
that

h�s�; x�
�1
s �i D

˝
�; �L.s

� 1
2 ; x/�

˛
(3.22)

for all �; � 2 E . Let thus �; � 2 E be given. For each r 2 R we consider the unit-
ary operator � irs WL

2.SUq.2//˚2 ! L2.SUq.2//˚2. It can then be verified that these
unitary operators implement the left circle action in the sense that the identity

� irs x�
�ir
s D �L

�
e�ir log.s/=2; x

�
(3.23)

holds for all r 2 R. Indeed, when x belongs to a spectral subspace the above identity
follows from Lemma 3.6.3 and therefore holds in general by density and continuity.

Let us define the closed strip I WD ¹z 2 C j Im.z/ 2 Œ�1; 1�º together with the
continuous functions f; gW I ! C given by the formulae

f .z/ WD h� i � Nzs �; x� i �zs �i and g.z/ WD
˝
�; �L.e

i �z log.s/=2; x/�
˛

for all z 2 C. Notice that the first of these functions makes sense since �; � 2 E

and the second makes sense because x is analytic of order � log.s/=2. Both of these
functions are then holomorphic on the interior of the strip I ı and they agree on the
real line R � I by an application of (3.23). This implies that f .z/ D g.z/ for all
z 2 I and we obtain the identity in (3.22) by evaluating at z D i .

For each t2.0;1�, we apply the notation Anat .SUq.2// for the unital �-subalgebra
of C.SUq.2// consisting of elements x 2 C.SUq.2// which are analytic of order
max¹� log.q/=2;� log.t/=2º. We equip Anat .SUq.2// with the norm k � kt;q defined
by

kxkt;q WD max
®�L.t 1

2 ; x/
C �L.q 1

2 ; x/
; �L.t� 1

2 ; x/
C �L.q� 1

2 ; x/
¯
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and record that Anat .SUq.2// is then a unital Banach �-algebra. For more details,
see for instance [11, Example 1.5]. We end this section by a small lemma providing
an estimate on the norm k � kt;q on a fixed spectral band.

Lemma 3.6.5. Let M 2 N0 and x 2 BMq . It holds that x 2 Anat .SUq.2// and we
have the estimate

kxkt;q 6
MX

mD�M

.t
m
2 C q

m
2 / � kxk for all t 2 .0; 1�:

Proof. This follows from Lemma 3.6.3. Indeed, for every s 2 .0;1�we have the estim-
ate: �L.s˙ 1

2 ; x/
 D  MX

mD�M

s˙
m
2 …L

m.x/

 6
MX

mD�M

s˙
m
2 kxk:

3.7 The continuous field

It is possible to consider the unital C �-algebras C.SUq.2// for different values of
q 2 .0; 1� as fibres in a continuous field of C �-algebras, as was shown by Blanchard
in [10]. For the sake of clarity, we will, for a moment, adorn the elements in SUq.2/
with an additional q, thus writing aq and bq for the generators. Let us fix ı 2 .0;1/. We
obtain from [10, Théorème 3.3 & Proposition 7.1] that there exists a unital continuous
field of C �-algebras C.SU�.2// over Œı; 1� whose fibre at q agrees with C.SUq.2//.
Concretely, the continuous field C.SU�.2// is defined as the universal C �-algebra
generated by three elements a�, b� and f subject to the relations

– f commutes with a� and b�;

– f is selfadjoint and the spectrum of f agrees with the interval Œı; 1�;

– u� D
� a�� �f b�
b�� a�

�
is a unitary element in M2.C.SU�.2///.

For each q 2 Œı; 1�, the evaluation homomorphism evqW C.SU�.2// ! C.SUq.2//
is defined by sending the generators a� and b� to the corresponding generators aq
and bq inC.SUq.2// and by sending f to the scalar q. In what follows, we will tacitly
identify C �.f / with C.Œı; 1�/. We denote by O.SU�.2// the unital �-subalgebra gen-
erated by C �.f /, a� and b�. Note that it follows from the discussion in the beginning
of Chapter 3 that the elements

�klm� WD

´
ak�b

l
�.b
�
� /
m k; l;m > 0

bl�.b
�
� /
m.a�� /

�k k < 0; l;m > 0
(3.24)

constitute a basis for O.SU�.2// when considered as a C.Œı; 1�/-module. Let k 2 Z
and l;m 2 N0. As a consequence of the twisted Leibniz rule from (3.7) there exists a
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unique element @e�.�
klm
� / 2 O.SU�.2// such that

evq
�
@e�.�

klm
� /

�
D @e

�
evq.�klm� /

�
for all q 2 Œı; 1�:

We may thus define @e� WO.SU�.2//! O.SU�.2//, by mapping each basis element
�klm� to @e�.�

klm
� / and extending by C.Œı; 1�/-linearity. By construction, it holds that

evq
�
@e�.x�/

�
D @e

�
evq.x�/

�
for all x� 2 O.SU�.2// and q 2 Œı; 1�:

In a similar fashion, we define a C.Œı; 1�/-linear map @f� WO.SU�.2//! O.SU�.2//
satisfying that

evq
�
@f�.x�/

�
D @f

�
evq.x�/

�
for all x� 2 O.SU�.2// and q 2 Œı; 1�:


