Chapter 3

Preliminaries on quantum SU(2)

The main object of study in the present text is the unital C*-algebra C(SU,(2)),
known as quantum SU(2), introduced by Woronowicz in [78]. There are numer-
ous good sources describing this object, and in addition to the original texts by
Woronowicz we refer the reader to the monographs [40, 75] for general background
information. Let ¢ € (0, 1]. Aligning our notation with the papers [2—4, 22, 25], we
define the C *-algebraic version of quantum SU(2) as the universal unital C *-algebra
C(SU,4(2)) with two generators a and b subject to the relations

ba = gqab b*a = gab® bb* =b*b
1 =a*a + ¢*bb* aa* + bb* = 1.

These relations are best justified by noting that they are equivalent to the requirement
that

. (Z ‘Zl’) € M(C(SU,(2)))

is a unitary matrix, in the following referred to as the fundamental unitary. Inside the
unital C*-algebra C(SUy(2)) we have the coordinate algebra O (SU,(2)) defined as
the unital s-subalgebra generated by a and b. The set {§K/ | k € Z,1,m € Ny} with
elements given by

kpl(p*x\ym >
ghim _ {a bl (b*) k,l,m =0 G

bL(b*)Y™(a*)* k<0,0,m=0

constitutes a linear basis for @ (SU,(2)); see [75, Proposition 6.2.5]. The coordinate
algebra O(SU,(2)) is in fact a Hopf *-algebra and the coproduct A, the antipode
S and the counit € are best described in terms of the fundamental unitary by means
of the formulae A(u) = u ® u, S(u) = u* and e(u) = (§9). The coproduct A
extends to a unital *-homomorphism A: C(SUy(2)) = C(SUg(2)) ®min C(SU4(2)),
which turns C(SU,(2)) into a C*-algebraic compact quantum group in the sense of
Woronowicz; see [79]. For general C*-algebraic compact quantum groups, it is not
true that one can find a bounded counit, but since C(SU,(2)) is known to be coamen-
able, the counit e: O (SU,(2)) — C actually does extend to a unital *-homomorphism
€:C(SU4(2)) — C;see [7].
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3.1 The quantum enveloping algebra

We are also interested in the guantum enveloping algebra U, (su(2)). For g € (0, 1),
this is defined (see [40, Chapter 4]) as the universal unital C-algebra with generators
e, f, k, k™! subject to the relations

2 _ -2

k*—k
kk'=1=k 'k, ek=gqke, kf=qfk and fe—ef=m. (3.2)

The quantum enveloping algebra becomes a unital x-algebra for the adjoint operation
determined by the formulae k* = k and e* = f. For g = 1, the (quantum) enveloping
algebra is defined as the universal unital algebra with generators e, f, h satisfying the
relations

[h,e] = —2e, [h, f1=2f and [f,e]=h,

with involution given by A* = hand e* = f'; i.e., it agrees with the enveloping algebra
of the Lie algebra su(2) as one would expect. Note that we have chosen to follow the
notation from [22], and that the quantum enveloping algebra just defined is the one
denoted Uy (slp) in [40]. The quantum enveloping algebra Uy, (s11(2)) is also a Hopf
x-algebra. For ¢ # 1, the comultiplication, antipode and counit are determined by the
formulae

Ae)=e@k+k'®e Se)=—qte ee)=0

Af)=f@k+k'®f S(f)=—qf €f)=0
Ak)y=k®k Sk) =kt etk) =1
and for ¢ = 1 by

Ale)=e®1+1Q®e Se)=—e €(e)=0
Af)=f@1+1f S(f)=—-f e(f)=0
Ahy=h®1+1®h Sth)=-h €h) =0.
In order to unify our notation, it is convenient to put X = 1 in the case where g = 1.
The coordinate algebra @ (SU, (2)) and the quantum enveloping algebra U, (s1u(2))
are related to one another by means of a non-degenerate dual pairing of Hopf *-

algebras [40, Chapter 4, Theorem 21]. For g # 1, this pairing can be described as
follows:

(k,u>=<qj q05>’ (e,u)z(g é) and (f,u>=((1) g), (3.3)

and for ¢ = 1 the same formulae apply together with the additional identity

(h,u) = (_01 (1))
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The dual pairing yields a left action and a right action of U, (s11(2)) on O (SU,(2)).
These actions play a central role in the present text and for n € U, (su(2)) they are
defined by the linear endomorphisms

dy=(1® MDA and &= ((n.)® DA

of O(SU,(2)). Thus, 9, denotes the left action associated to n whereas §, denotes the
corresponding right action. Pairing the generators of @(SU,(2)) and U, (s11(2)) one
obtains the following explicit formulae for the endomorphisms coming from e and f
(we are here only listing the non-zero values):

de(a) = b* dr(a*) = —qb 8.(a*) =b* dr(a) = —qb

-1 _x* * -1 * * (34)
de(b) =—q a™ 07 (b™) =a Se(b) =—q a 8p(b") =a".

The endomorphisms coming from e and f in U, (su(2)) are related to one another
via the adjoint operation, meaning that

9e(x*) = —q7'0p(x)* and S.(x*) = —¢ 85 (x)* (3.5)

for all x € O(SUy(2)). We furthermore record that dx and & are algebra auto-
morphisms of @(SU,(2)). The relationship between these automorphisms and the
adjoint operation is given by dx (x*) = 9; ' (x)* and & (x*) = &' (x)* for all x €
O(SU,;(2)). The relevant formulae on generators are listed here:

(@) =q%a (b)) =q%b &(a)=q%a & (b*) =q2b*.  (3.6)

All these formulae may be derived directly from the defining relations for @ (SU,(2))
and U, (su(2)) and the definition of a dual pairing of Hopf *-algebras [40, Chapter 1,
Definition 5 & (41)]. In the same way one sees that both d, and d¢ are twisted deriv-
ations, in the sense that

Je(xy) = 0¢(x)0k (¥) + g—1(x)de(y)
A (xy) = 07 ()3 (¥) + -1 (x)d7 (»)
forall x,y € O(SU,(2)).

We shall encounter such twisted derivations numerous times in the sections to
follow and we therefore formalise this notion in the following short section.

(3.7)

3.2 Twisted derivations

Definition 3.2.1. Let A and B be C *-algebras and let o and 6: A — B be algebra
homomorphisms defined on a dense *-subalgebra A C A. We say that a linear map
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d: A — B is atwisted derivation when d(x - y) = d(x) - 0(y) + o(x) - d(y) for all
X,y € sA. A twisted derivation is called a twisted x-derivation when d(x*) = —d(x)*
and o (x*)* = O(x) for all x € A.

We remark that a twisted derivation d: A — B is the same thing as a deriva-
tion d: A — B when B is given the bimodule structure determined by the algebra
homomorphisms ¢ and 6: A — B.

3.2.0.1 g-numbers. We are going to need two versions of ¢g-numbers. For g € (0, 1]
and n € N we define the quantity

)g:=14¢*+-+¢>" D, (3.8)

Furthermore, the classical g-number makes sense for every a € R and is defined by

47 g e(0,1)
lalg = {

q-q
a qg=1.

Whenever no confusion can arise, we omit the subscript ¢ from the notation.

3.3 Corepresentation theory

The (co-)representation theory of SU, (2) is well understood, and turns out to be equi-
valent with that of SU(2); see [78, Section 5]. We may therefore choose a complete
set of irreducible corepresentation unitaries u” € M,,11(0O(SU,;(2))), n € Ny, where
the matrix entries u{; are labelled by indices i, j € {0, 1,....n}. For g # 1, we fix
this choice of irreducible corepresentation unitaries such that
(k) = 855 q7 %
1—n N N
(e.ulh) =8ij—1-4" 2 Vin—j +1)q(j)q (3.9
1—n . -
(foufy) =8ij+1-9 2 Vin—j)g(j + g

and for ¢ = 1 we fix the same formulae together with the additional identity

(houiy) = 8i - (2] —n).

We record that the fundamental unitary u agrees with the irreducible corepresenta-
tion unitary u! and that u® = 1. We shall often refer to the entries u:’j. € O(SU4(2))
as the matrix coefficients and we apply the convention that u;’] := 0 whenever one
of the parameters #n, i, j is outside of its natural range; i.e., when n < O or (i, j) ¢
{0, ...,n}2. The adjoint operation can be described at the level of the matrix coeffi-
cients via the formula

W) = (=q) " up_j ey (3.10)
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see for instance [21, Section 2]. For more details on the corepresentation theory for
quantum SU(2), we refer the reader to [40, Chapter 3, Theorem 13 & Chapter 4, Pro-
positions 16 and 19]. Using the g-Clebsch—Gordan coefficients (see [21, Section 3]
and [40, Chapter 3.4]) one may explicitly describe the products between the generat-
ors and the matrix coefficients:

i+j¢(n_i+1)(n—j+1)_un+l () a

= o+ 1) U ey

b* oy j \/(l + 1)(11 —j + 1) n+1 i+1 (l’l _l><.]> n—1

T e T Ty e
i+ 0 +1) . 2V n=i)n—j) 4

a-uj; = P ui g 1) )
b VTN =i+ 1) vV in =)
Ui =4 nt 1) B P T

(3.11)
In particular, it holds that uf, = (a*)" for all n € Ny, a fact that will be used several
times throughout the memoir.

3.4 The Haar state

Quantum SU(2) comes equipped with its Haar state h: C(SU4(2)) — C which can
be expressed on the matrix coefficients by the simple relations

h(1) =1 and h(uj;) =0

foralln e Nandi, j € {0,1,...,n}; see e.g. [40, Chapter 4, (50)]. On the elements
Ekl'” of the linear basis (3.1), the Haar state vanishes if k % 0, and for k = 0 it
furthermore vanishes when [ # m. Finally, when k = 0 and / = m it holds that

miy kmy __ 1 .
h(b™b )_—(m+1)q’ (3.12)

see e.g. [75, Theorem 6.2.17]. As the name suggests, the Haar state is bi-invariant
with respect to the comultiplication in the sense that

(@ DAKX) =(1®h)A(x) =h(x)-1 forallx € C(SU,(2)).

For g # 1, the Haar state is not a trace, but it is a twisted trace with respect to the
algebra automorphism v := §;—2 o d;—2, in the sense that

h(xy) = h(v(y)x) forallx,y e O(SU4(2)); (3.13)
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see [40, Chapter 4, Proposition 15]. Using the formulae in (3.9), one sees that the
modular automorphism v is given by the following formula on the matrix coefficients:

v(ui;) = g>n=i=n U (3.14)
The algebra automorphisms §;—1 o d;—1 and 8 o dx will be denoted 2 and v=2,
respectively.

The Haar state is faithful and we denote the corresponding GNS Hilbert space
by L?(SU,(2)) and the natural embedding C(SU,(2)) € L?(SU,(2)) by A. Fur-
thermore, we denote the associated injective *-homomorphism by p: C(SU4(2)) —
B(L?(SU4(2))) and the notation L*°(SU,(2)) refers to the enveloping von Neumann
algebra so that L*°(SU,(2)) agrees with the double commutant p(C(SU4(2)))” €
B(L?(SU,(2))). Lastly, the diagonal representation of C(SU,(2)) on two copies of
L?(SU4(2)) plays a prominent role in the sections to follow and will be denoted by
7: C(SU,4(2)) — B(L?(SU4(2))®?). Whenever convenient, we apply the notation
Hy:=L?(SU4(2)). The matrix units u:’] constitute an orthogonal basis in L2(SU,(2))
and the 2-norms of u;; and (u:’J)* are given by

( . n> h(( n)* n) qz(n—i)
Ui Uiz = M\ ) U5 ) =
(n J;].”q (3.15)
n o\ * n\* n n\*x q- .
(i)™, i)™} = h iy (ui)") = gy

whenever n € Ng and i, j € {0, ...,n}; see [40, Chapter 4, Theorem 17].

3.5 Circle actions

The unital C*-algebra C(SU,(2)) carries two distinguished circle actions
or and og:S!x C(SU4(2)) = C(SU4(2))

referred to as the left circle action and the right circle action, respectively. These two
circle actions are given on the matrix coefficients by the formulae

or(z, u:-’j) = 72Ty

;; and GR(Z,u;’]-)zzzi_"u'-’ (3.16)

ij

forallz € S',n e Ngandi,j €{0,1,...,n}; see for example [41, Section 2.2]. The
spectral subspaces for the left circle action play a special role in the present text and
they are denoted by

A% = {x € C(SU4(2) |oL(z.x) =z -xforallz € S}, m e Z.
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For each m € Z we define the algebraic spectral subspace A7 := A7 N O(SUy (2)).
Note that the Podles sphere (see [66]) agrees with the fixed point algebra so that
C(S7) = A, and the coordinate algebra O(S7) agrees with the algebraic fixed point
algebra Ag. The algebraic spectral subspaces are left comodules over O (SU,(2)) in
the sense that the coproduct restricts to a coaction A: Az — O(SU,4(2)) ® A7 for
each m € Z. The spectral subspace Ag' comes with an associated spectral projection
I ,1;1: C(SU4(2)) — AZ’ defined by the norm-convergent Riemann integral

1 2w . )
E(x) = 5/ or(e'”,x)-e7t""dr. (3.17)
0

Note that ITZ is a contraction and that T15 (9 (SU, (2))) € y'. We apply the notation
HJ" € H, for the Hilbert space closure of A(AZ’) C H,. For each M € Ny, we
introduce the spectral band

M
BY = > ap. (3.18)
m=—M

The spectral band also exists in an algebraic version, namely i)’éu = Z,A,;I:_ M Ay
We note that B ;” agrees with the norm-closure of the algebraic spectral band, where
the non-trivial inclusion follows by using the spectral projections.

3.6 Analytic elements

For each s € (0, 1], we define the closed strip

log(s) _1og(s)}} e
2 7 2 -

I = {z eC ' Im(z) € |: (3.19)
Definition 3.6.1. Lets € (0, 1]. We say that an element x € C(SU,(2)) is analytic of
order —log(s)/2 when the continuous map R — C(SU,(2)) given by r +> o (', x)
extends to a continuous map /; — C(SU,(2)) which is analytic on the interior /{ C
I. If so, we denote this (unique) continuous extension by z > oz (e'?, x).

Let x,y € C(SU4(2)) be analytic of order —log(s)/2. Applying the basic proper-
ties of operator valued analytic maps we obtain that x - y and x* are analytic of order
—log(s)/2 and that we have the relations

oL(e”.x-y) =or(e””. x)-or(e.y) and op(e".x*) =op(e'7.x)" (320)

for all z € I. The set of elements that are analytic of order —log(s)/2 thus constitutes
a unital x-subalgebra.
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Lemma 3.6.2. Let s € (0, 1] and let x be an analytic element of order —log(s)/2. If
T:C(SU4(2)) — C(SUy(2)) is a bounded operator which is equivariant with respect
to the circle action o, then T (x) is analytic of order —log(s)/2 and it holds that
T(or(e?,x)) = op(e'?, T(x)) forall z € I.

Proof. Since T is bounded, the map I; > z — T (o (e'?, x)) € C(SU4(2)) is con-
tinuous and analytic on the interior /2. Moreover, for r € R we have T (o (¢'", x)) =
or(e'”, Tx), so it follows that T (x) is analytic of order —log(s)/2 and, by the identity
theorem for analytic functions, that T'(o7 (€7, x)) = o7.(¢'?, T(x)) forallz € I;. m

Lemma 3.6.3. Letm € Z and x € AJ. It holds that x is analytic of order —log(s)/2
forall s € (0, 1] and that the associated extension is given by

op(e'®,x) =¢e"*™.x forallz € C.
Proof. This follows since o7 (¢!, x) = e!’™ . x and since z > e/ is analytic. m

It follows from Lemma 3.6.3 that every x € O(SU,(2)) is analytic of order
—log(s)/2 for all s € (0, 1] and that we have an algebra automorphism

oL(€7.): O(SU,(2)) — O(SUy(2)

for all z € C. Moreover, it holds that o7, (¢'?, o7, (¢'™, x)) = UL(ei(Z+w), x) for all
z,w € Cand x € O(SUy(2)). As a consequence Lemma 3.6.3 we also obtain that

OL(C]%,)C) = dx(x) forall x € O(SU,4(2)).

For each s € (0, 00), we also introduce the unbounded operator I o: O (SU,(2))®? —
L2(SU,(2))®2 given by the formula

Tyo (5) - (s * _?_m) (5) (3.21)
n 0 s 2 n

for all § € 4y and n € Ag'. Since I's,o admits an orthonormal basis of eigenvectors
with strictly positive eigenvalues, we obtain that I'y ¢ is closable and that the closure
is a positive unbounded operator with dense image. We denote this closure by

[s: Dom(Ty) — L2(SU,(2))®2.

The inverse of 'y is again a positive unbounded operator with dense image and we
have the following identities regarding images and domains:

Dom(T; ') = Im(Ts) and Im(T;') = Dom(T).
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The inverse I'; ! agrees with the closure of the unbounded operator
Ti—10: O(SU,(2))®% — L?(SU,(2))®?
and we therefore have the identity I'; ! = T'y—1.

Lemma 3.6.4. Let s € (0,1]. If x € C(SU,4(2)) is analytic of order —log(s)/2, then
it holds that x(Dom(I's)) € Dom(I'y) and x(Im(I'y)) € Im(T's) and we have the
relations

TxT ' (§) = on(s72,x)(§) and T;'xTy(n) = or(s%, x)(n)
Jorall ¢ € Im(T's) and n € Dom(T).

Proof. Suppose that x € C(SU,(2)) is analytic of order —log(s)/2. We focus on
showing that x (Dom(Ts)) € Dom(T) and that [yx ;1 (§) = or, (s_%,x)(f) for all
¢ € Dom(I'), since the remaining identities follow by similar arguments. We apply
the notation & := O (SU,(2))®? for the defining core for . It then suffices to show
that

(Tyn, xT518) = (0,017 2. 0)%) (3.22)

for all £,n € &. Let thus &, 1 € & be given. For each r € R we consider the unit-
ary operator [''": L2(SU,(2))®2 — L2(SU,(2))®2. 1t can then be verified that these
unitary operators implement the left circle action in the sense that the identity

F;’rxl—ws—ir — OL(e_iHOg(S)/Z,x) (3.23)

holds for all » € R. Indeed, when x belongs to a spectral subspace the above identity
follows from Lemma 3.6.3 and therefore holds in general by density and continuity.

Let us define the closed strip / := {z € C | Im(z) € [—1, 1]} together with the
continuous functions f, g: I — C given by the formulae

f(2) = (Ti%n,xTy7€) and  g(z2) := (o0 ("% x)g)

for all z € C. Notice that the first of these functions makes sense since 7, & € &
and the second makes sense because x is analytic of order —log(s)/2. Both of these
functions are then holomorphic on the interior of the strip /° and they agree on the
real line R C 7 by an application of (3.23). This implies that f(z) = g(z) for all
z € I and we obtain the identity in (3.22) by evaluating at z = i. ]

For each t € (0, 1], we apply the notation Ana, (SU,(2)) for the unital *-subalgebra
of C(SU4(2)) consisting of elements x € C(SU,(2)) which are analytic of order
max{—log(q)/2,—log(t)/2}. We equip Ana;(SUy(2)) with the norm || - ||; 4 defined
by

’

o2 )| + or(g™2. 0)|}

Ixllr.g := max{|or (2. x)| + |or(g?.x)|
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and record that Ana;(SU,(2)) is then a unital Banach *-algebra. For more details,
see for instance [11, Example 1.5]. We end this section by a small lemma providing
an estimate on the norm || - ||;,, on a fixed spectral band.

Lemma 3.6.5. Let M € Ny and x € Béu. It holds that x € Ana;(SU4(2)) and we
have the estimate

M

Ix¥llg < Y % +q%)-llxll forallt € (0.1].
m=—M

Proof. This follows from Lemma 3.6.3. Indeed, for every s € (0, 1] we have the estim-

ate:
M

< >0 sEFT . n

m=—M

M
Y. sTEIL()

m=—M

GRS

3.7 The continuous field

It is possible to consider the unital C*-algebras C(SU,(2)) for different values of
q € (0, 1] as fibres in a continuous field of C *-algebras, as was shown by Blanchard
in [10]. For the sake of clarity, we will, for a moment, adorn the elements in SU,(2)
with an additional g, thus writing a4 and b, for the generators. Let us fix § € (0,1). We
obtain from [ 10, Théoreme 3.3 & Proposition 7.1] that there exists a unital continuous
field of C*-algebras C(SU,.(2)) over [§, 1] whose fibre at g agrees with C(SU,(2)).
Concretely, the continuous field C(SU4(2)) is defined as the universal C *-algebra
generated by three elements ae, be and f subject to the relations

—  f commutes with ae and b,;
—  f is selfadjoint and the spectrum of f agrees with the interval [§, 1];
- Ue = (“f _fb') is a unitary element in M, (C(SU4(2))).

bé ae
For each g € [§, 1], the evaluation homomorphism ev,: C(SU.(2)) — C(SU,(2))
is defined by sending the generators a. and D, to the corresponding generators a,
and b, in C(SU4(2)) and by sending f to the scalar ¢. In what follows, we will tacitly
identify C*(f) with C([8, 1]). We denote by 9 (SU,.(2)) the unital x-subalgebra gen-
erated by C*(f'), ae and b,. Note that it follows from the discussion in the beginning

of Chapter 3 that the elements

kpl(p*ym k,l,m=0
kim . _ {a. o(b7) m (3.24)

* bL(bH)M (@) * k< 0,1,m=0

constitute a basis for O (SU,(2)) when considered as a C([§, 1])-module. Let k € Z
and /,m € Ny. As a consequence of the twisted Leibniz rule from (3.7) there exists a
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unique element 9., (EX/) € ©(SU,(2)) such that
evg (Do (BE™)) = 0. (evg (55'™))  forall ¢ € [5,1].

We may thus define d,,: O (SU4(2)) — O(SU.(2)), by mapping each basis element
EKIM 10 9,, (EK'™) and extending by C([8, 1])-linearity. By construction, it holds that

evg (e (xs)) = De(evg(xa)) forall xo € O(SU4(2)) and g € [8, 1].

In a similar fashion, we define a C([8, 1])-linear map dy,: O(SU4(2)) = O(SU.(2))
satisfying that

evg (97, (xs)) = 97 (evg(xs)) forall xe € O(SU(2)) and g € [5, 1].



