
Chapter 4

Spectral geometry on quantum SU.2/

In this chapter we provide a detailed treatment of the non-commutative geometry of
quantum SU.2/. As alluded to in the introduction, it has turned out remarkably diffi-
cult to properly unify the theory of quantum groups with Connes’ non-commutative
geometry, and the general consensus seems to be that one needs to relax Connes’
axioms by allowing for certain twists; see [19]. There are by now a number of can-
didates for Dirac operators on SUq.2/ with various advantages and disadvantages [8,
9, 13, 21, 38, 41, 42, 62], and here we wish to give a detailed analysis of the Dirac
operators proposed in [38,41] from the quantum metric point of view. In order to treat
both Dirac operators simultaneously, it will be an advantage to allow for an additional
parameter t which, for fixed q, interpolates between the Dirac operator from [38] and
that from [41] on SUq.2/. We emphasise that for t ¤ q we do not work with a single
Dirac operator but rather with a pair of Dirac operators, aligning with the termino-
logy from classical fiber bundles, we refer to them as the vertical and horizontal Dirac
operator, respectively. The vertical and horizontal Dirac operators are in fact incom-
patible in the sense that their interactions with the coordinate algebra require the use
of two different twists.

4.1 The horizontal and vertical Dirac operators

Let us fix two parameters t; q 2 .0; 1�. We define two unbounded operators DH
q

and DV
t WO.SUq.2//˚2 ! L2.SUq.2//˚2. The first of these unbounded operators

is referred to as the horizontal Dirac operator and is given by the matrix

DH
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1
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!
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We remark that DH
q is independent of the parameter t 2 .0;1�. The second unbounded

operator is referred to as the vertical Dirac operator and given by the assignment
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(4.2)

for all � 2 An
q and � 2 Am

q . A direct computation verifies that both DV
t and DH

q are
symmetric and for both operators there exists a family of orthogonal finite dimen-
sional invariant subspaces which span a dense subspace in L2.SUq.2//˚2; it may
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even be deduced from (3.9) that we can obtain a joint invariant family of finite dimen-
sional subspaces, by setting

V nij WD

´ 
� � unij
� � uni;j�1

! ˇ̌̌̌
ˇ�;� 2 C

µ
� O.SUq.2//˚2; n 2 N0; i; j 2 ¹0; : : : ; nº:

It therefore follows that DH
q , DV

t and DV
t CDH

q are essentially selfadjoint, and we
denote the selfadjoint closures of the horizontal and vertical Dirac operators by DH

q

andDV
t , respectively. Moreover, we have the following convenient description of the

closure of DV
t CDH

q WO.SUq.2//˚2 ! L2.SUq.2//˚2:

Lemma 4.1.1. The unbounded operator DV
t CDH

q is essentially selfadjoint. More-
over, it holds that Dom.DV

t CDH
q / D Dom.DV

t / \ Dom.DH
q / and DV

t CDH
q D

DV
t CD

H
q .

Proof. We already argued that DV
t CDH

q is essentially selfadjoint. Let n; m 2 Z.
Using that @e.An

q/�An�2
q and @f .Am

q /�AmC2
q , we obtain for � 2An

q and � 2Am
q

that
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Hence, DV
t and DH

q anti-commute on the core O.SUq.2//˚2 and from [51, Pro-
position 2.3] it therefore follows that DV

t and DH
q weakly anti-commute in the sense

of [51, Definition 2.1]. An application of [51, Theorem 2.6] thus gives thatDV
t CD

H
q

is selfadjoint on Dom.DV
t / \ Dom.DH

q /; see also [36, 58]. Hence DV
t CDH

q �

DV
t C D

H
q and since both operators are selfadjoint the opposite inclusion follows

trivially.

4.2 The origin of the Dirac operators

We now describe the precise relationship between the Dirac operators constructed
above and those introduced in [38, 41]. Setting t D q, a direct computation verifies
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that

Dq WD DV
q CDH

q D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
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!
for q D 1:

Comparing with the Dirac operator DKS
q introduced in [38] we then have the identity

Dq D

�
0 1

�1 0

�
DKS
q

�
0 �1

1 0

�
:

In [41], Krähmer, Rennie and Senior proposed another candidate for a Dirac oper-
ator, DKRS

q , which they apply to construct a non-trivial twisted Hochschild 3-cocycle;
see [41, Theorem 3.5]. This provides one way of formalising the intuition that SUq.2/
ought to have dimension 3 as a non-commutative manifold, avoiding the typical
dimension drop phenomenon. In our notation, their Dirac operator is given by

DKRS
q WD DV

1 C

 
0 q�

1
2 @kf

q
1
2 @ke 0

!
„ ƒ‚ …

DWDH
KRS

:

The relationship between our horizontal Dirac operator and the horizontal Dirac oper-
ator introduced by Krähmer, Rennie and Senior is governed by the unbounded strictly
positive operator �q;0 via the relation

�q;0D
H
KRS�q;0 D �DH

q : (4.3)

The vertical and horizontal Dirac operatorsDV
1 andDH

q are also compatible with the
unbounded Kasparov product in a way which we will now explain; see [37,58,59]. It
is however important to realise that the triple�

C.SUq.2//; L2.SUq.2//˚2;DV
1 CD

H
q

�
is not a spectral triple unless q D 1, so that we are formally beyond the scope of the
current state of the art in unbounded KK-theory. We let D0

q denote the Dirac oper-
ator associated with the Da̧browski–Sitarz spectral triple .C.S2q /; H

1
q ˚H

�1
q ; D0

q/;
see [22]. We are going to discuss this even spectral triple in more details in Sec-
tion 5.1, but record for the moment thatD0

q agrees with the closure of the unbounded
symmetric operator

D0
q WD

�
0 �@f
�@e 0

�
WA1

q ˚A�1q ! H 1
q ˚H

�1
q :
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The grading operator onH 1
q ˚H

�1
q is denoted by  WD

�
1 0
0 �1

�
, and the derivation on

O.S2q / coming fromD0
q by taking commutators is denoted by @0WO.S2q /! B.H 1

q ˚

H�1q /.
Let E denote the Hilbert C �-module obtained by completing O.SUq.2// with

respect to the C.S2q /-valued inner product given by hx; yi WD …L
0 .x
�y/. We may

turn E into a C �-correspondence from C.SUq.2// to C.S2q / where the left action of
the unital C �-algebra C.SUq.2// is induced by the product structure in O.SUq.2//.
The C �-correspondence E can moreover be equipped with the unbounded selfad-
joint and regular operator N WDom.N /! E defined on the core O.SUq.2// � E by
putting N.x/ D n � x whenever x 2 An

q . The pair .C.SUq.2//; E;N / is then an odd
unbounded Kasparov module from C.SUq.2// to C.S2q /; see [12] for more details.

Following the scheme of unbounded KK-theory, we should in principle be able
to form the unbounded Kasparov product of the odd unbounded Kasparov module
.C.SUq.2//;E;N / and the even spectral triple .C.S2q /;H

1
q ˚H

�1
q ;D0

q/. The result
of this operation is in general not a spectral triple on C.SUq.2//, but we still invest-
igate the involved unbounded operators on the Hilbert space E y̋ C.S2

q /
.H 1

q ˚H
�1
q /,

which arises as the interior tensor product between the C �-correspondence E and the
C �-correspondence H 1

q ˚H
�1
q . The interior tensor product E y̋ C.S2

q /
.H 1

q ˚H
�1
q /

is isomorphic to L2.SUq.2//˚2 and the isomorphism is induced by the product struc-
ture in O.SUq.2//. The unbounded selfadjoint and regular operatorN WDom.N /!E

gives rise to the unbounded selfadjoint and regular operator N y̋  WDom.N y̋ 1/!
E y̋ C.S2

q /
.H 1

q ˚H
�1
q / which is given by N ˝  on the core

Dom.N /˝C.S2
q /
.H 1

q ˚H
�1
q / � E y̋

C.S2
q /

.H 1
q ˚H

�1
q /:

Under the isomorphism between E y̋ C.Sq2 /.H
1
q ˚H

�1
q / and L2.SUq.2//˚2 it can

be verified that N y̋  agrees with DV
1 . This explains the relationship between the

vertical Dirac operator DV
1 and the expected formula from unbounded KK-theory.

In order to explain the relationship between the horizontal Dirac operator and
constructions appearing in unbounded KK-theory, we define the Graßmann connec-
tion

rWO.SUq.2//! E y̋

C.S2
q /

B.H 1
q ˚H

�1
q /

by putting r.x/ WD
Pn
iD0.u

n
i0/
� ˝ @0.uni0 � x/ whenever x belongs to the algebraic

spectral subspace An
q � O.SUq.2//. Combining this Graßmann connection with the

Dirac operator from the Da̧browski–Sitarz spectral triple we obtain the linear map

1˝r D0
q WO.SUq.2// ˝

O.S2
q /

.A1
q ˚A�1q /! E y̋

C.S2
q /

.H 1
q ˚H

�1
q /

given by .1 ˝r D0
q /.x ˝ y/ WD r.x/.y/ C x ˝D0

q .y/, where the domain agrees
with the balanced tensor product O.SUq.2//˝O.S2

q /
.A1

q ˚A�1q /. It can then be veri-
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fied that 1 ˝r D0
q induces an unbounded symmetric operator on the Hilbert space

E y̋ C.Sq2 /.H
1
q ˚ H

�1
q /. Moreover, this unbounded symmetric operator is unitar-

ily equivalent to DKRS
H WO.SUq.2//˚2 ! L2.SUq.2//˚2. The dampening procedure

applied in (4.3) in order to pass from the horizontal Dirac operator DKRS
H to the hori-

zontal Dirac operator DH
q appears in many places and is systematically investigated

in [32, 33] from the point of view of unbounded KK-theory. We record however that
the modular operators applied in [32,33] are all assumed to be bounded (even though
inverses are allowed to be unbounded).

4.3 Bounded twisted commutators

Recall that � W C.SUq.2// ! B.L2.SUq.2//˚2/ denotes the injective �-homomor-
phism obtained by letting the GNS representation � act diagonally. We now wish
to describe the interaction between the coordinate algebra O.SUq.2// and the hori-
zontal and vertical Dirac operators. To this end, it is convenient to introduce the linear
maps @1 and @2WO.SUq.2//! O.SUq.2// given by the formulae

@1 WD q
1
2 @e; @2 WD q�

1
2 @f ; (4.4)

as well as the linear map @3t WO.SUq.2//! O.SUq.2// given by

@3t .x/ WD Œn=2�t � x for all x 2 An
q : (4.5)

The following lemma shows that suitably twisted commutators with the hori-
zontal and vertical Dirac do indeed give rise to bounded operators, which may be
explicitly described via the maps just introduced. Note that for t D q the twist is the
same and in this case the lemma below becomes the statement from [38, Lemma 3.2];
cf. Section 4.2.

Lemma 4.3.1. For each x 2 O.SUq.2//, it holds that the twisted commutators

DH
q � �L.q

1
2 ; x/ � �L.q

� 1
2 ; x/ �DH

q WO.SUq.2//˚2 ! L2.SUq.2//˚2 and

DV
t � �L.t

1
2 ; x/ � �L.t

� 1
2 ; x/ �DV

t W O.SUq.2//˚2 ! L2.SUq.2//˚2

extend to bounded operators on L2.SUq.2//˚2 given, respectively, by

@Hq .x/ WD

�
0 �@2.x/

�@1.x/ 0

�
and @Vt .x/ WD

�
@3t .x/ 0

0 �@3t .x/

�
:

Proof. Note first that �L.s˙
1
2 ;�/ preserves O.SUq.2// for all s 2 .0; 1� by Lem-

ma 3.6.3, so that the compositions in the lemma are indeed well defined. By linearity,
it suffices to fix an n 2 Z and prove the statements for x 2 An

q . It then holds that
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�L.q
˙ 1

2 ; x/ D q˙
n
2 x D @k˙1.x/. Using the twisted Leibniz rule from (3.7), the first

formula may now be verified by a direct computation. For the second equality, one
computes the twisted commutator on an arbitrary vector in Ak

q ˚Am
q , and again a

direct computation yields the desired formula.

In classical Riemannian spin geometry, it is well known (see e.g. [16, Chapter 6,
Lemma 1]) that a continuous function has bounded commutator with the Dirac oper-
ator exactly if the function in question is Lipschitz with respect to the Riemannian
metric. Our next aim is to provide a suitable counterpart for the algebra of Lipschitz
functions in the q-deformed setting. We recall that both of the parameters t and q in
.0; 1� are currently fixed.

Definition 4.3.2. Let x 2 C.SUq.2//. We say that x is horizontally Lipschitz when

(1) x is analytic of order � log.q/=2;

(2) the bounded operator �L.q
1
2 ; x/ preserves the domain of DH

q ;

(3) the twisted commutator

DH
q � �L.q

1
2 ; x/ � �L.q

� 1
2 ; x/ �DH

q WDom.DH
q /! L2.SUq.2//˚2

extends to a bounded operator @Hq .x/ on L2.SUq.2//˚2. The set of horizont-
ally Lipschitz elements is denoted LipH .SUq.2//.

We say that x is vertically Lipschitz when

(1) x is analytic of order � log.t/=2;

(2) the bounded operator �L.t
1
2 ; x/ preserves the domain of DV

t ;

(3) the twisted commutator

DV
t � �L.t

1
2 ; x/ � �L.t

� 1
2 ; x/ �DV

t WDom.DV
t /! L2.SUq.2//˚2

extends to a bounded operator @Vt .x/ on L2.SUq.2//˚2. The set of vertically
Lipschitz elements is denoted LipVt .SUq.2//

We apply the notation Lipt .SUq.2// for the subset of C.SUq.2// consisting of ele-
ments which are both horizontally and vertically Lipschitz.

A few remarks are in place. The subset Lipt .SUq.2// � C.SUq.2// is in fact a
unital �-subalgebra which we refer to as the Lipschitz algebra. Moreover, we obtain
from Lemma 4.3.1 that O.SUq.2// � Lipt .SUq.2// and hence that Lipt .SUq.2// is
norm-dense in C.SUq.2//. The basic algebraic properties of the linear maps

@Hq and @Vt WLipt .SUq.2//! B
�
L2.SUq.2//˚2

�
can be summarised as follows.
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Lemma 4.3.3. The linear maps @Hq ; @
V
t WLipt .SUq.2//!B.L2.SUq.2//˚2/ are twis-

ted �-derivations, in the sense that the formulae

@Hq .x
�/ D �@Hq .x/

�; @Hq .x � y/ D @
H
q .x/�L.q

1
2 ; y/C �L.q

� 1
2 ; x/@Hq .y/ and

@Vt .x
�/ D �@Vt .x/

�; @Vt .x � y/ D @
V
t .x/�L.t

1
2 ; y/C �L.t

� 1
2 ; x/@Vt .y/

hold for all x; y 2 Lipt .SUq.2//.

Proof. The twisted Leibniz rules are verified through a direct computation, and the
�-compatibility follows from the selfadjointness of the involved unbounded operators
and the formula �L.s

1
2 ; x/� D �L.s

� 1
2 ; x�/, which can be derived from (3.20).

We are interested in the linear map

@t;q WD @
V
t C @

H
q WLipt .SUq.2//! B

�
L2.SUq.2//˚2

�
:

It is important to clarify that @t;q is not a twisted derivation unless t D q. It does
however hold that @t;q.x�/ D �@t;q.x/� for all x 2 Lipt .SUq.2//. Later on, in Pro-
position 5.2.4, we shall moreover see that @t;q is closable for the norm topology.

Let us denote the standard matrix units in M2.C/ by eij , i; j 2 ¹0; 1º, and intro-
duce the twisted derivations @1; @2; @3t WLipt .SUq.2//! B.L2.SUq.2/// by putting

@1.x/ WD �e11 � @t;q.x/ � e00

@2.x/ WD �e00 � @t;q.x/ � e11

@3t .x/ WD e00 � @t;q.x/ � e00

for all x 2 Lipt .SUq.2//. By Lemma 4.3.1, this notation is compatible with the nota-
tion introduced in (4.4) and (4.5). The adjective twisted above is here to be understood
in the sense of Definition 3.2.1 where the twists are given by �.q

1
2 ; �/ and �.q�

1
2 ; �/

for @1 and @2, and by �.t
1
2 ; �/ and �.t�

1
2 ; �/ for @3t .

Remark 4.3.4. Let x 2 Lipt .SUq.2// be given. A direct computation shows that˝
�0; e00@

H
q .x/e00 � �

˛
D
˝
�0; e11@

H
q .x/e11 � �

˛
D 0

for all �; �0 2 O.SUq.2//˚2. We thereby obtain @Hq .x/ D
�

0 �@2.x/
�@1.x/ 0

�
. Similarly,

one sees that @Vt .x/ D
� @3

t .x/ 0

0 @4
t .x/

�
for some twisted derivation @4t WLipt .SUq.2//!

B.L2.SUq.2///. As a consequence, the following inequality holds:

max
®
k@Vt .x/k; k@

H
q .x/k

¯
6 k@t;q.x/k: (4.6)

In analogy with the algebraic case described in Lemma 4.3.1, we shall later show (see
Remark 5.3.3) that @4t .x/ D �@

3
t .x/, implying that

@t;q.x/ D

�
@3t .x/ �@2.x/

�@1.x/ �@3t .x/

�
for all x 2 Lipt .SUq.2//:
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Definition 4.3.5. We define two seminorms, Lt;q and Lmax
t;q , on C.SUq.2// by setting

Lt;q.x/ WD

8<: k@t;q.x/k for x 2 O.SUq.2//

1 for x 2 C.SUq.2// nO.SUq.2//

Lmax
t;q .x/ WD

8<: k@t;q.x/k for x 2 Lipt .SUq.2//

1 for x 2 C.SUq.2// n Lipt .SUq.2//

The (extended) metrics on �.SUq.2// induced by the two seminorms Lt;q and Lmax
t;q

through the formula (1.1) will be denoted dt;q and dmax
t;q , respectively.

Remark 4.3.6. It follows from Lemmas 4.3.1 and 4.3.3 that Lmax
t;q and Lt;q are both

Lipschitz seminorms in the sense of Definition 2.1.1.

In Latrémolière’s approach to the quantised Gromov–Hausdorff distance [46,47],
a central role is played by an axiom demanding that the seminorm in question satisfies
a certain Leibniz inequality [47, (1.1)]. Since @t;q is not a derivation, we only get a
twisted version of the Leibniz inequality, where the operator norm appearing in [47,
(1.1)] is replaced by the norm k � kt;q introduced in Section 3.6.

Lemma 4.3.7. Let x; y 2 Lipt .SUq.2//. Then we have the estimate

Lmax
t;q .x � y/ 6 kxkt;q � Lmax

t;q .y/C L
max
t;q .x/ � kykt;q:

Proof. Let x; y 2 Lipt .SUq.2//. We first notice that the following inequalities hold:@Hq .x � y/ 6
@Hq .x/ � �L.q 1

2 ; y/
C �L.q� 1

2 ; x/
 � @Hq .y/

6 Lmax
t;q .x/ �

�L.q 1
2 ; y/

C �L.q� 1
2 ; x/

 � Lmax
t;q .y/:

Since a similar computation shows that@Vt .x � y/ 6 Lmax
t;q .x/ �

�L.t 1
2 ; y/

C �L.t� 1
2 ; x/

 � Lmax
t;q .y/;

we obtain the result of the present lemma.

One of the main results of the present memoir is Theorem B, which shows that
Lmax
t;q turns C.SUq.2// into a compact quantum metric space. Knowing this, it then

follows (cf. Theorem 2.1.5) thatLt;q also has this property. The proof of Theorem B is
contained in Chapter 5 below, but before proceeding to this, we will need to carry out
a rather detailed analysis of the spectral geometry on SUq.2/ arising from the hori-
zontal and vertical Dirac operators introduced above. We first show how one recovers
the classical spin geometry on SU.2/ when t D q D 1.
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4.4 Comparison with the classical Dirac operator

In this section, we analyse the classical case where both of the parameters t and q
are equal to one. Consider therefore the compact Lie group SU.2/ of special unitary
2 � 2-matrices. The unital C �-algebra of continuous functions on SU.2/ agrees with
C.SU1.2// and the fundamental representation U W SU.2/! U.C2/ identifies with
the fundamental unitary u2M2.C.SU1.2///. We equip SU.2/with the Haar measure
� and record that the corresponding state on C.SU.2// agrees with the Haar state
hWC.SU1.2//! C. In particular, the Hilbert space of (equivalence classes) of square
integrable functions L2.SU.2// coincides with L2.SU1.2//. We are now going to
explain how the classical Dirac operator on SU.2/ identifies with the sum of the
vertical and horizontal Dirac operators, DV

1 and DH
1 , from (4.2) and (4.1) up to

rescaling and addition of a constant.
The Lie algebra of SU.2/ is denoted by su.2/ and is explicitly given by the space

of skew-hermitian .2 � 2/-matrices of trace zero. We equip the Lie algebra su.2/

with the inner product defined by

hX; Y i WD TR.X�Y / for all X; Y 2 su.2/;

where TRWM2.C/! C denotes the normalised trace satisfying that TR.1/ D 1. We
single out the orthonormal basis for su.2/ consisting of the matrices

X1 WD

�
0 �1

1 0

�
X2 WD

�
0 i

i 0

�
X3 WD

�
i 0

0 �i

�
:

The elements in su.2/ can be identified with left-invariant vector fields on SU.2/.
Indeed, for each element X 2 su.2/ one obtains a derivation X W C1.SU.2// !
C1.SU.2// by the formula

X.f /.g/ WD
d

dt

�
f .g � etX /

�ˇ̌
tD0

for all f 2 C1.SU.2//; g 2 SU.2/: (4.7)

In this way, the inner product on the Lie algebra su.2/ yields a Riemannian metric
on SU.2/ and therefore in particular a metric on SU.2/. Upon identifying SU.2/ with
the 3-sphere S3 via the map �

z1 �z2
z2 z1

�
7! .z1; z2/

it can be verified that the corresponding metric on S3 agrees with the classical round
metric. This means that S3 sits inside R4 as a sphere of radius one, or more precisely
that the standard inclusion S3 ! R4 becomes a Riemannian immersion.

The spinor bundle for SU.2/ is the trivial complex hermitian vector bundle of
rank 2. The fundamental representation of the Lie algebra su.2/ on C2 induces a
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representation of the Clifford algebra associated to su.2/ on C2. The classical Dirac
operator DS3 WC1.SU.2//˚2! L2.SU.2//˚2 on SU.2/ is then given by the expres-
sion

DS3.�/ WD

3X
iD1

Xi �Xi .�/ D

�
iX3.�/ �X1.�/C iX2.�/

X1.�/C iX2.�/ �iX3.�/

�
I

see for example [24, Section 3.5]. Notice that we are here considering DS3 as an
unbounded operator on the Hilbert space of L2-sections of the spinor bundle. We
denote the closure of DS3 by DS3 and record that DS3 is a selfadjoint unbounded
operator.

At the level of the coordinate algebra O.SU1.2//, which we tacitly identify with
a unital �-subalgebra of C1.SU.2//, we now single out the correspondence between
the derivations associated toX1;X2;X3 2 su.2/ and the derivations @e , @f , @h defined
in Chapter 3. Using the formula (4.7) on may verify the relations

@e D �
1

2
.X1 C iX2/ @f D

1

2
.X1 � iX2/ @h D iX3;

directly on the generators a, b, a�, b�, and since all maps are derivations the same
relations hold on all of O.SU1.2//. We may thus rewrite the unbounded operator
DV
1 CDH

1 WO.SU1.2//˚2 ! L2.SU1.2//˚2 as follows:

DV
1 CDH

1 D
1

2
�

�
iX3 �X1 C iX2

X1 C iX2 �iX3

�
�
1

2
:

At the level of unbounded operators on L2.SU.2//˚2 we therefore obtain that 2 �
.DV

1 CDH
1 /C 1�DS3 . Since both of the unbounded operators 2 � .DV

1 CDH
1 /C 1

and DS3 are essentially selfadjoint we conclude that their closures agree, resulting in
the identity

2 �DV
1 CDH

1 C 1 D DS3 :

We moreover recall from Lemma 4.1.1 that DV
1 CDH

1 D DV
1 C D

H
1 . Lastly, we

spell out some consequences of the above identity of Dirac operators from the point of
view of quantum metric spaces. Let us denote the classical round metric by dS3 WS3 �

S3 ! Œ0;1/ and the corresponding Lipschitz algebra by Lip.S3/. The Lipschitz
constant associated to a Lipschitz function f W S3 ! C is denoted by LLip.f /. For
each point p 2 S3 we apply the notation evpW C.SU1.2// ! C for the pure state
given by evaluation in the point p. We are here suppressing the �-isomorphisms
C.SU1.2// Š C.SU.2// Š C.S3/.

Theorem 4.4.1. The pair .C.SU1.2//; Lmax
1;1 / is a compact quantum metric space.

The Lipschitz algebra Lip1.SU1.2// identifies with the Lipschitz algebra Lip.S3/
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and for every f 2 Lip.S3/ it holds that

Lmax
1;1 .f / D

1

2
LLip.f /:

In particular, for every pair of points p0; p1 2 S3 we obtain the formula

2 � dS3.p0; p1/ D d
max
1;1 .evp0

; evp1
/;

where the metric on the right-hand side denotes the Monge–Kantorovič metric asso-
ciated with the Lip-norm Lmax

1;1 .

Proof. A continuous function f W S3 ! C has bounded commutator with DS3 D

2 � .DV
1 CD

H
1 /C 1 if and only if f is Lipschitz with respect to dS3 [16, Chapter 6,

Lemma 1], and by the paragraph following [16, Chapter 6, Lemma 1] one has that
kŒDS3 ; f �k equals the Lipschitz constantLLip.f /. Since t D q D 1, all twists appear-
ing in the definition of the Lipschitz algebra Lip1.SU1.2// are trivial. Using that
DS3 D 2 � .DV

1 CD
H
1 /C 1 and, in particular, that the domain ofDS3 is the intersec-

tion of the domains ofDV
1 andDH

1 , it can then be verified that a continuous function
f W S3 ! C has bounded commutator with DS3 if and only if f is both vertically
and horizontally Lipschitz (meaning that f has bounded commutators with DV

1 and
with DH

1 ). The Lipschitz algebra Lip1.SU1.2// therefore agrees with the Lipschitz
algebra Lip.S3/ and the formulaLmax

1;1 .f /D
1
2
LLip.f / now follows. The comparison

formula for the two metrics dS3 and dmax
1;1 is now a consequence of [16, Chapter 6,

Formula 1]; see also [15, Proposition 1].

4.5 The real structure

In Connes’ non-commutative geometry, one encounters the notion of a real struc-
ture for a spectral triple .A;H;D/; see [17]. A real structure captures the dimension
(modulo 8) of the non-commutative spin manifold in question and is encoded by an
antilinear unitary J WH ! H (subject to a couple of conditions). Even though we
are working on the borderline of non-commutative geometry we shall nevertheless
show that one may define an analogue of a real structure in our setting. As one would
expect, this real structure gives SUq.2/ real dimension 3; see Remark 4.5.6 below for
more details.

Let us fix the parameters t; q 2 .0; 1�. Define the antilinear map JWO.SUq.2//!
O.SUq.2// by setting J.x/ D .@kık/.x

�/. Using that the modular automorphism �

is given by ık�2@k�2 WO.SUq.2//! O.SUq.2// a direct computation shows that J

extends to an antilinear unitary J on L2.SUq.2//. In fact, J is the modular conjuga-
tion arising when applying Tomita–Takesaki theory (see e.g. [74, Chapter VI]) to the
left Hilbert algebra O.SUq.2// equipped with the inner product hx; yi WD h.x�y/.



Spectral geometry on quantum SU.2/ 46

In particular, it therefore holds that JL1.SUq.2//J D L1.SUq.2//0; see [74, Chap-
ter VI, Theorem 1.19].

We now define the antilinear map

	 WD

�
0 J

�J 0

�
WO.SUq.2//˚2 ! O.SUq.2//˚2

together with the associated antilinear unitary operator

I WD

�
0 J

�J 0

�
WL2.SUq.2//˚2 ! L2.SUq.2//˚2:

We record that I 2D�1. This is the map that will be our substitute for a real structure,
and our next aim is therefore to prove a version of the first order condition, which in
our setting amounts to a relation of the form Œ@t;q.x/; IyI �D 0; see Proposition 4.5.4.
To achieve this, the unbounded operator �s;0 defined in (3.21) turns out to be essen-
tial, and we analyse its interaction with 	, DV

t and DH
q in the following series of

lemmas.

Lemma 4.5.1. The horizontal Dirac operator DH
q commutes with �q;0 and the ver-

tical Dirac operator DV
t commutes with �s;0 for all s 2 .0; 1�.

Proof. Let n; m 2 Z. By linearity, it suffices prove the two commutation relations
on vectors of the form

�
�
�

�
2 An

q ˚Am
q . Since �q;0 preserves the algebraic spectral

subspaces and @e.An
q/ � An�2

q and @f .Am
q / � AmC2

q we obtain that:

DH
q �q;0

�
�

�

�
D

 
�q�

1
2 q
�1�m

2 @f k�1.�/

�q
1
2 q

1�n
2 @ek�1.�/

!

D

0@q 1�.mC2/
2 0

0 q
�1�.n�2/

2

1ADH
q

�
�

�

�

D �q;0D
H
q

�
�

�

�
;

thus proving the first commutation relation. Since both DV
t and �s;0 are diagonal on

An
q ˚Am

q they clearly commute here.

Lemma 4.5.2. It holds that 	 � ��1s;0 D �s;0 � 	 for all s 2 .0; 1�. Moreover, we have
the commutation relations

.DH
q �
�1
q;0/ � 	 D 	 � .DH

q �
�1
q;0/ and .DV

t �
�1
t;0 / � 	 D 	 � .DV

t �
�1
t;0 /:
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Proof. By linearity, it suffices to check the three commutation relations on subspaces
of the form An

q ˚ Am
q for arbitrary n; m 2 Z. The first commutation relation 	 �

��1s;0 D �s;0 � 	 follows on An
q ˚Am

q by noting that J.Ak
q/ D A�kq for all k 2 Z.

For the second commutation relation, we first remark that @f J.�/ D �J@e.�/ for all
vectors � 2O.SUq.2//. Indeed, using the defining relations for Uq.su.2// from (3.2)
and the �-relations from (3.5) we may compute as follows:

@f J.�/ D @f @kık.�
�/ D @kık@f .�

�/ � q�1 D �@kık@e.�/
�
D �J@e.�/:

Similarly, one sees that @eJ D �J@f , and the second commutation relation then
follows by noting that

DH
q �
�1
q;0 D

 
0 �q�

1
2 @f k�1

�q
1
2 @ek�1 0

! 
q�

1
2 @k 0

0 q
1
2 @k

!
D

�
0 �@f
�@e 0

�
:

To prove the last commutation relation, observe that the restriction of the unboun-
ded operator DV

t �
�1
t;0 to the subspace An

q ˚Am
q is represented by

�
Œn�1

2 �t 0
0 �ŒmC1

2 �t

�
.

Using one more time that J.Ak
q/ D A�kq for all k 2 Z, we now obtain the identity

.DV
t �
�1
t;0 / � 	 D 	 � .DV

t �
�1
t;0 / on An

q ˚Am
q from a direct computation.

Lemma 4.5.3. For each y 2 O.SUq.2// we have the identities

ŒDH
q ;	y	� D �q;0 � 	@

H
q .y/	 � �q;0 D 	@Hq .@k.y//	 � �

2
q;0

ŒDV
t ;	y	� D �t;0 � 	@

V
t .y/	 � �t;0 D 	@Vt .�L.t

1
2 ; y//	 � �2t;0

on the subspace O.SUq.2//˚2 � L2.SUq.2//˚2.

Proof. Using Lemmas 3.6.4, 4.5.1 and 4.5.2, we may compute as follows:

DH
q � 	y	 D DH

q �
�1
q;0 � �q;0	y	

D DH
q �
�1
q;0 � 	�L.q

1
2 ; y/	 � �q;0

D �q;0 � 	DH
q �L.q

1
2 ; y/	 � �q;0

D �q;0 � 	@
H
q .y/	 � �q;0 C �q;0 � 	�L.q

� 1
2 ; y/DH

q 	 � �q;0

D �q;0 � 	@
H
q .y/	 � �q;0 C 	y	 �DH

q :

This proves the first identity regarding the commutator with the horizontal Dirac
operator. The second one follows by a similar computation, using the same series
of lemmas as above:

�q;0	@
H
q .y/	�q;0 D 	��1q;0

�
DH
q �
�1
q;0y�q;0 � �q;0y�

�1
q;0D

H
q

�
	�q;0

D 	
�
DH
q �
�2
q;0y�

2
q;0 � yDH

q

�
��1q;0	�q;0

D 	@Hq .@k.y//	�
2
q;0:
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The remaining identities regarding the commutator with the vertical Dirac operator
are proven by completely analogous computations.

With the above lemmas at our disposal, we may now state and prove the analogue
of the first order condition.

Proposition 4.5.4. For each y 2 L1.SUq.2// and x 2 Lipt .SUq.2// we have the
identities

ŒIyI; @Hq .x/� D 0 D ŒIyI; @
V
t .x/�:

Proof. Since the von Neumann algebra L1.SUq.2// agrees with the closure of the
coordinate algebra O.SUq.2// � B.L2.SUq.2/// with respect to the strong operator
topology, it suffices to treat the case where y 2 O.SUq.2//. Let thus y 2 O.SUq.2//
be given. We will just focus on proving that IyI commutes with @Vt .x/ since the
proof of the analogous result for @Hq .x/ follows the same pattern. From Lemmas 3.6.4
and 4.5.3 we obtain the identities

IyI � �L.t
� 1

2 ; x/DV
t

D �L.t
� 1

2 ; x/	y	 �DV
t

D �L.t
� 1

2 ; x/DV
t � 	y	 � �L.t

� 1
2 ; x/�t;0 � 	@

V
t .y/	 � �t;0

D �L.t
� 1

2 ; x/DV
t � 	y	 � �t � I@

V
t .y/Ix � �t;0 (4.8)

of unbounded operators defined on the dense subspace O.SUq.2//˚2 in the Hilbert
space L2.SUq.2//˚2.

Similarly, using Lemmas 3.6.4 and 4.5.3 one more time, we obtain that˝
IyI �DV

t �L.t
1
2 ; x/�; �

˛
D
˝
�L.t

1
2 ; x/�;DV

t � 	y
�	�

˛
D
˝
�L.t

1
2 ; x/�;	y�	 �DV

t �
˛
C
˝
�L.t

1
2 ; x/�; �t;0 � 	@

V
t .y

�/	 � �t;0�
˛

D
˝
DV
t �L.t

1
2 ; x/ � IyI�; �

˛
�
˝
�t � I@

V
t .y/Ix � �t;0�; �

˛
(4.9)

for all �; � 2 O.SUq.2//˚2. Combining the identities in (4.8) and (4.9) we see that

IyI � @Vt .x/.�/ D IyI �D
V
t �L.t

1
2 ; x/.�/ � IyI � �L.t

� 1
2 ; x/DV

t .�/

D DV
t �L.t

1
2 ; x/ � IyI.�/ � �t � I@

V
t .y/Ix � �t;0.�/

� �L.t
� 1

2 ; x/DV
t � 	y	.�/C �t � I@

V
t .y/Ix � �t;0.�/

D @Vt .x/ � IyI.�/

for all � 2 O.SUq.2//˚2. This proves the proposition.
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Corollary 4.5.5. The twisted �-derivations

@Vt and @Hq WLipt .SUq.2//! B
�
L2.SUq.2//˚2

�
both take values in M2.L

1.SUq.2///.

Proof. Since J is the modular conjugation for the left Hilbert algebra O.SUq.2//
with inner product coming from the Haar state, it holds that

L1.SUq.2//0 D JL1.SUq.2//J

as an identity between operator algebras in B.L2.SUq.2///; see [74, Chapter VI,
Theorem 1.19]. For x 2 Lipt .SUq.2//, it therefore suffices to show that each entry in
@Hq .x/; @

V
t .x/ 2 B.L2.SUq.2//˚2/ DM2.B.L2.SUq.2//// belongs to the commut-

ant .JL1.SUq.2//J /0. For y 2 L1.SUq.2// it holds that

IyI D �

�
JyJ 0

0 JyJ

�
;

and hence it suffices to show that ŒIyI; @Vt .x/� D ŒIyI; @Hq .x/� D 0, but this was
already proven in Proposition 4.5.4.

Remark 4.5.6. In the classical setting of non-commutative geometry, a real 3-dimen-
sional structure for an odd spectral triple .A;H;D/ with coordinate algebra A � A

is given by an antilinear unitary J WH ! H . This data is then supposed to satisfy
the conditions J 2 D �1, DJ D JD and for all a; b 2 A one has Œa; J bJ � D 0 and
ŒŒD; a�; J bJ � D 0; see [17].

In our setting, the antilinear unitary I 2B.L2.SUq.2//˚2/ provides the substitute
for a real structure. Lemma 4.5.2 may thus be viewed as a twisted analogue of the
relationDJ D JD, while Proposition 4.5.4 is the analogue of the first order condition
ŒŒD; a�; J bJ � D 0. The relation Œa; IbI � D 0 also holds by Tomita–Takesaki theory
as already remarked in the beginning of the present section.

4.6 The equivariance condition

We are now going to investigate the equivariance properties of the spectral geo-
metric data governed by our pair of Dirac operators. In some of the literature on
Dirac operators on q-deformed spaces (see e.g. [21, 22]) the equivariance is to be
understood in the sense that the Dirac operator in question commutes with the right
action of Uq.su.2//; i.e. with the diagonal action of operators of the form ı� with
� 2 Uq.su.2// on the core O.SUq.2//˚2 � L2.SUq.2//˚2. Since DH

q is construc-
ted explicitly using the left action it clearly commutes with ı� , and since ı� preserves
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the spectral subspaces it also follows easily that DV
t commutes with ı� . Thus, this

type of equivariance is basically built into the construction ofDt;q . In this section we
shall show another kind of equivariance, in that we will show that our spectral data
is compatible with the coproduct on the C �-algebraic quantum group C.SUq.2//.
More precisely, we will show in Lemma 4.6.1 below that the vertical and horizontal
Dirac operators both commute with the multiplicative unitary for SUq.2/, which
seems to be an equivariance condition which is more closely related with the SU.2/-
equivariance of the classical Dirac operator on S3; see Remark 4.6.2 for more details.
Throughout the section, we are still keeping the two parameters t and q in .0; 1� fixed
unless explicitly stated otherwise.

Let us consider the Hilbert space tensor product L2.SUq.2// y̋L2.SUq.2// and
introduce the unitary operator

W WL2.SUq.2// y̋L2.SUq.2//! L2.SUq.2// y̋L2.SUq.2//

given by the formulaW.x˝ y/ WD�.y/ � .x˝ 1/ for all elements x;y 2O.SUq.2//.
We record thatW.O.SUq.2//˝O.SUq.2///D O.SUq.2//˝O.SUq.2// and hence
thatW �.O.SUq.2//˝O.SUq.2///DO.SUq.2//˝O.SUq.2// as well. The unitary
operatorW implements the coproduct�WC.SUq.2//! C.SUq.2//˝min C.SUq.2//
in the sense that

�.z/ D W.1˝ z/W � for all z 2 C.SUq.2//:

The operatorW is referred to as the multiplicative unitary for quantum SU.2/; see [6]
for more details on these matters. For each x 2 Lipt .SUq.2// we may use the multi-
plicative unitary to make sense of the expressions �.@Hq .x// and �.@Vt .x//. Indeed,
since @Hq .x/ and @Vt .x/ are bounded operators on L2.SUq.2//˚2 we may apply the
following definitions:

�.@Hq .x// WD .W ˚W /.1˝ @
H
q .x//.W ˚W /

� and

�.@Vt .x// WD .W ˚W /.1˝ @
V
t .x//.W ˚W /

�;

where both of the right-hand sides are bounded operators on the Hilbert space tensor
product L2.SUq.2// y̋L2.SUq.2//˚2. We would like to commute the coproduct past
the twisted �-derivations @Hq and @Vt obtaining formulae of the form

.1˝ @Hq /�.x/ D �.@
H
q .x// and .1˝ @Vt /�.x/ D �.@

V
t .x//:

In order to make sense of the left-hand sides of these expressions we first investigate
the unbounded selfadjoint operators 1 y̋DH

q and 1 y̋DV
t , defined, respectively, as the

closures of the unbounded symmetric operators

1˝DH
q WO.SUq.2//˝O.SUq.2//˚2 ! L2.SUq.2// y̋L2.SUq.2//˚2;

1˝DV
t WO.SUq.2//˝O.SUq.2//˚2 ! L2.SUq.2// y̋L2.SUq.2//˚2:
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Lemma 4.6.1. The unitary operatorW ˚W preserves the subspaces Dom.1 y̋DH
q /

and Dom.1 y̋DV / � L2.SUq.2// y̋L2.SUq.2//˚2. Moreover, it holds that

Œ1 y̋DH
q ; W ˚W �.�/ D 0 for all � 2 Dom.1 y̋DH

q / and

Œ1 y̋DV
t ; W ˚W �.�/ D 0 for all � 2 Dom.1 y̋DV

t /:
(4.10)

Proof. We first remark that the direct sum W ˚ W preserves the common core
O.SUq.2//˝O.SUq.2//˚2 for the two selfadjoint unbounded operators 1 y̋DH

q and
1 y̋DV

t . Using standard results on commutators with selfadjoint unbounded operat-
ors, it therefore suffices to verify the identities in (4.10) for elements of the form
� D � D x ˝ y with x 2 O.SUq.2// and y D

�
y1
y2

�
2 O.SUq.2//˚2. Using the coas-

sociativity of �, one sees that �@�.w/ D .1˝ @�/�.w/ for all � 2 Uq.su.2// and
w 2 O.SUq.2//. It therefore follows that

.1˝DH
q /.W ˚W /.�/

D �

 
0 1˝ q�

1
2 @f k�1

1˝ q
1
2 @ek�1 0

!�
�.y1/ � .x ˝ 1/

�.y2/ � .x ˝ 1/

�
D �

 
q�

1
2�.@f k�1.y2// � .x ˝ 1/

q
1
2�.@ek�1.y1// � .x ˝ 1/

!
D .W ˚W /.1˝DH

q /.�/:

This proves the relevant identity in the case of the horizontal Dirac operator. To treat
the commutator with the vertical Dirac operator, we simply record that W preserves
the subspace O.SUq.2//˝An

q for all values of n 2Z. The commutation relation now
follows since DV

t acts as a diagonal scalar matrix on An
q ˚Am

q for all n;m 2 Z.

Remark 4.6.2. In the situation where t D q D 1, Lemma 4.6.1 together with the
formulae �g� D .evg�1 ˝ 1/�.�/D .evg�1 ˝ 1/.W ˚W /.1˝ �/ for the left trans-
lation operator �g WO.SU.2//! O.SU.2// implies that �g ıD1;1 D D1;1 ı �g as
operators on O.SU.2//˚2. Lemma 4.6.1 thus recovers the SU.2/-equivariance of the
classical Dirac operator in this case (cf. Section 4.4).

Next, we wish to introduce the analogue of the Lipschitz algebra Lipt .SUq.2//
for the minimal tensor product C.SUq.2// ˝min C.SUq.2//, but in this case asso-
ciated with the unbounded selfadjoint operators 1 y̋DH

q and 1 y̋DV
t instead of the

unbounded selfadjoint operators DH
q and DV

t . For this to make sense, we let the
minimal tensor product of C �-algebras C.SUq.2//˝min C.SUq.2// act on

L2.SUq.2// y̋L2.SUq.2//˚2

via the representation �˝ � , which we will from now on often suppress. Note that in
this representation, the coproduct is implemented by W ˚W in the sense that

.�˝�/.�.x//D .W ˚W /.1˝�.x//.W ˚W /� for all x 2C.SUq.2//: (4.11)
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We start out by expanding our notion of analytic elements. To this end, we record that
the left circle action �LW S1 � C.SUq.2//! C.SUq.2// induces a left circle action
1˝ �L on the minimal tensor product C.SUq.2//˝min C.SUq.2// given on simple
tensors by

.1˝ �L/.z; x ˝ y/ WD x ˝ �L.z; y/ for all z 2 S1; x; y 2 C.SUq.2//:

We recall that the closed strip Is � C was introduced in (3.19) for all values of
s 2 .0; 1�.

Definition 4.6.3. Let s 2 .0;1�. An element x 2C.SUq.2//˝min C.SUq.2// is called
analytic of order � log.s/=2 when the continuous map

R! C.SUq.2//˝min C.SUq.2//

given by r 7! .1˝ �L/.e
ir ; x/ extends to a continuous function

Is ! C.SUq.2//˝min C.SUq.2//

which is analytic on the interior I ıs � Is . We denote this (unique) continuous exten-
sion by z 7! .1˝ �L/.e

iz; x/.

We record that the �-algebra structure on the minimal tensor product

C.SUq.2//˝min C.SUq.2//

induces a �-algebra structure on the subset of elements which are analytic of order
� log.s/=2.

Lemma 4.6.4. Let s 2 .0; 1�. If x 2 C.SUq.2// is analytic of order � log.s/=2 in the
sense of Definition 3.6.1, then �.x/ is analytic of order � log.s/=2 in the sense of
Definition 4.6.3. Moreover, we have the formula

.1˝ �L/.e
iz; �.x// D �.�L.e

iz; x// for all z 2 Is:

Proof. We first notice that .1˝�L/.eir ;�.x//D�.�L.eir ; x// for all x2C.SUq.2//
and r 2R. To verify this identity, it suffices to use the formula in (3.16) for the matrix
coefficients and then extend to all of C.SUq.2// by continuity and linearity. Suppose
next that x 2 C.SUq.2// is analytic of order � log.s/=2. The map r 7!�.�L.e

ir ; x//

then extends continuously to Is and the extension is analytic on I ıs . It follows that
�.x/ is analytic of order � log.s/=2 as well. The desired formula for all z 2 Is is
then a consequence of the identity theorem in complex analysis.

We now have the data needed in order to formally introduce the Lipschitz algeb-
ras associated to the unbounded selfadjoint operators 1 y̋DH

q and 1 y̋DV
t . Let x 2

C.SUq.2//˝min C.SUq.2//. We say that x is horizontally Lipschitz when

(1) x is analytic of order � log.q/=2 (with respect to 1˝ �L);
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(2) the bounded operator .1˝ �L/.q
1
2 ; x/ preserves the domain of 1 y̋DH

q ;

(3) the twisted commutator

.1 y̋DH
q / � .1˝ �L/.q

1
2 ; x/ � .1˝ �L/.q

� 1
2 ; x/ � .1 y̋DH

q /

extends to a bounded operator, denoted .1 ˝ @Hq /.x/, on the Hilbert space
L2.SUq.2// y̋L2.SUq.2//˚2.

We say that x is vertically Lipschitz when

(1) x is analytic of order � log.t/=2 (with respect to 1˝ �L);

(2) the bounded operator .1˝ �L/.t
1
2 ; x/ preserves the domain of 1 y̋DV

t ;

(3) the twisted commutator

.1 y̋DV
t / � .1˝ �L/.t

1
2 ; x/ � .1˝ �L/.t

� 1
2 ; x/ � .1 y̋DV

t /

extends to a bounded operator, denoted .1 ˝ @Vt /.x/, on the Hilbert space
L2.SUq.2// y̋L2.SUq.2//˚2.

The Lipschitz algebra Lipt .SUq.2/ � SUq.2//, then consists of the elements in
C.SUq.2//˝min C.SUq.2//which are both horizontally and vertically Lipschitz. We
record that the Lipschitz algebra Lipt .SUq.2/ � SUq.2// is a norm-dense �-subalg-
ebra of the minimal tensor product C.SUq.2//˝min C.SUq.2//.

Lemma 4.6.5. For x 2 Lipt .SUq.2// it holds that �.x/ 2 Lipt .SUq.2/ � SUq.2//
and we have the formulae .1˝@Hq /�.x/D�.@

H
q .x// and .1˝@Vt /�.x/D�.@

V
t .x//.

Proof. Let x 2 Lipt .SUq.2// be given. We focus on showing that �.x/ is horizont-
ally Lipschitz and that .1˝ @Hq /�.x/D �.@

H
q .x//, since the same argument applies

to the vertical case as well. First note that �.x/ is analytic of order � log.q/=2 by
Lemma 4.6.4. Let � 2 O.SUq.2// ˝ O.SUq.2//˚2 be an element in the core for
1 y̋DH

q , and recall that .W � ˚W �/.�/ 2 O.SUq.2//˝ O.SUq.2//˚2. Using Lem-
mas 4.6.1, 4.6.4 and (4.11) we then see that

.1˝ �L/
�
q

1
2 ; �.x/

�
.�/ D �

�
�L.q

1
2 ; x/

�
.�/

D .W ˚W /
�
1˝ �L.q

1
2 ; x/

�
.W � ˚W �/.�/ 2 Dom.1 y̋DH

q /:

Using this, another application of Lemmas 4.6.1, 4.6.4 and (4.11) shows that the
twisted commutator may be computed on � as follows:

.1 y̋DH
q /.1˝ �L/

�
q

1
2 ; �.x/

�
.�/ � .1˝ �L/

�
q�

1
2 ; �.x/

�
.1 y̋DH

q /.�/

D .W ˚W /
�
1˝DH

q �L.q
1
2 ; x/ � 1˝ �L.q

� 1
2 ; x/DH

q

�
.W � ˚W �/.�/

D .W ˚W /
�
1˝ @Hq .x/

�
.W � ˚W �/.�/ D �

�
@Hq .x/

�
.�/:
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The result of the lemma now follows since �.@Hq .x// is a bounded operator and
since O.SUq.2// ˝ O.SUq.2//˚2 is a core for the selfadjoint unbounded operator
1 y̋DH

q .

For �; � 2 L2.SUq.2// we let ��;� WC.SUq.2//! C denote the bounded linear
functional ��;� .x/ WD h�; �.x/�i. Let us moreover introduce the two bounded operat-
ors T� and T� WL2.SUq.2//˚2!L2.SUq.2// y̋L2.SUq.2//˚2 given by the formulae
T�.�/ WD � ˝ � and T� .�/ WD � ˝ �. We define the bounded operator

��;� ˝ 1WB
�
L2.SUq.2// y̋L2.SUq.2//˚2

�
! B

�
L2.SUq.2//˚2

�
given by .��;� ˝ 1/.z/ WD T �� zT� , and record that we have the estimate k��;� ˝ 1k 6
k�k � k�k on the operator norm.

The last result of the present section shows how the Lipschitz seminorm and the
coproduct interact with the slice maps just introduced. This result will be essential in
our analysis of the Berezin transform; see Proposition 6.3.6.

Proposition 4.6.6. For each �; � 2 L2.SUq.2// and z 2 Lipt .SUq.2/ � SUq.2// it
holds that .��;� ˝ 1/.z/ 2 Lipt .SUq.2// and we have the identities

@Hq
�
.��;� ˝ 1/.z/

�
D .��;� ˝ 1/.1˝ @

H
q /.z/ and

@Vt
�
.��;� ˝ 1/.z/

�
D .��;� ˝ 1/.1˝ @

V
t /.z/:

In particular, we have the estimate

Lmax
t;q

�
.��;� ˝ 1/.�.x//

�
6 k�kk�k � Lmax

t;q .x/

for all x 2 Lipt .SUq.2//.

Proof. Let �; � 2 L2.SUq.2// and z 2 Lipt .SUq.2/ � SUq.2// be given. We focus
on showing that .��;� ˝ 1/.z/ is vertically Lipschitz and that @Vt ..��;� ˝ 1/.z// D
.��;� ˝ 1/.1 ˝ @

V
t /.z/. The analogous claim regarding the horizontal Dirac oper-

ator follows by a similar argument. Notice first that we have the inclusion T�DV
t �

.1 y̋DV
t /T� of unbounded operators on L2.SUq.2//˚2. Since the same inclusion

holds with T� instead of T� we also obtain the inclusion T �
�
.1 y̋DV

t / � D
V
t T
�
�

by
applying the adjoint operation. Secondly, since .��;� ˝ 1/.y1 ˝ y2/ D ��;� .y1/y2
for y1; y2 2 C.SUq.2// it follows that

�L.e
ir ; .��;� ˝ 1/.y1 ˝ y2// D .��;� ˝ 1/.1˝ �L/.e

ir ; y1 ˝ y2/ for all r 2 R;

and hence the same formula holds globally on C.SUq.2//˝min C.SUq.2// by linear-
ity and density. We thereby obtain that x WD .��;� ˝ 1/.z/ 2 C.SUq.2// is analytic
of order � log.t/=2 (in the sense of Definition 3.6.1) and that we have the identity

�L.e
iw ; x/ D .��;� ˝ 1/.1˝ �L/.e

iw ; z/ for all w 2 It :
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It follows from the above observations that the bounded operator

�L.t
1
2 ; x/ D .��;� ˝ 1/.1˝ �L/.t

1
2 ; z/ D T �� .1˝ �L/.t

1
2 ; z/T�

preserves the domain of DV
t . Moreover, we may compute as follows for any vector

� 2 Dom.DV
t /:

DV
t � �L.t

1
2 ; x/.�/ D DV

t � T
�
� .1˝ �L/.t

1
2 ; z/T� .�/

D T �� .1 y̋D
V
t / � .1˝ �L/.t

1
2 ; z/T� .�/

D T �� .1˝ @
V
t /.z/T� .�/C T

�
� .1˝ �L/.t

� 1
2 ; z/ � .1 y̋DV

t /T� .�/

D .��;� ˝ 1/.1˝ @
V
t /.z/.�/C �L.t

� 1
2 ; x/ �DV

t .�/:

This ends the proof of the first part of the lemma. The second part of the lemma
(regarding the estimate relating to the seminorm Lmax

t;q ) now follows immediately by
an application of Lemma 4.6.5.

4.7 Conjugating the Dirac element with the fundamental unitary

The main technical tool for proving quantum Gromov–Hausdorff continuity for the
Podleś spheres S2q [3, Theorem A] is a trivialisation of the “spinor bundle” A1

q˚A�1q ,
implemented by the fundamental corepresentation unitary uWDu12M2.O.SUq.2///.
Note that this trivialisation is not compatible with the Z=2Z-grading on the spinor
bundle. As in Section 4.2, we let @0WO.S2q /! B.H 1

q ˚H
�1
q / denote the derivation

arising by taking the commutator with the Da̧browski–Sitarz Dirac operator; see [22].
In the work [3] we analysed the linear map ı0 WD u@0u�, a key feature of which is that
it gives rise to the same seminorm as @0 after composition with the operator norm.
Moreover, we saw in [3, Proposition 3.12] that ı0 can be described by means of the
right action of the quantum enveloping algebra Uq.su.2// on the coordinate algebra
O.SUq.2//.

To obtain quantum Gromov–Hausdorff continuity also at the level of quantum
SU.2/, it is therefore relevant to analyse the analogue of ı0 in this context as well,
and we carry out the relevant details in this section. For the analysis below to work of
out we need the vertical and horizontal derivations to obey the same twisted Leibniz
rule. We thus focus exclusively on the special case where the two parameters t and
q 2 .0; 1� agree, and consider the twisted �-derivation (see Definition 3.2.1)

@ WD @q;q D

�
@3q �@2

�@1 �@3q

�
WO.SUq.2//!M2

�
O.SUq.2//

�
;

where the twists are given by @k and @k�1 so that @.xy/D @.x/@k.y/C @k�1.x/@.y/

for all x; y 2 O.SUq.2//.



Spectral geometry on quantum SU.2/ 56

Note that the twisted �-derivation @3q can be described by the formula

@3 WD @3q D

´
@k�@k�1

q�q�1 for q ¤ 1
1
2
@h for q D 1;

so that @ is defined entirely in terms of the left action of Uq.su.2// on the coordin-
ate algebra O.SUq.2//. The main point is to show that when @ is conjugated with
the fundamental corepresentation unitary we obtain a twisted �-derivation which can
be expressed in terms of the right action of the quantum enveloping algebra. Recall
that for � 2 Uq.su.2//, the right action of � is defined by the linear endomorph-
ism ı�WO.SUq.2//! O.SUq.2// given by the formula ı� WD .h�; �i ˝ 1/�, and in
this way we obtain three twisted derivations ı1; ı2; ı3WO.SUq.2//! O.SUq.2// by
setting

ı1 WD q
1
2 ıe ı2 WD q�

1
2 ıf and ı3 WD

´
ık�ık�1

q�q�1 for q ¤ 1
1
2
ıh for q D 1;

which are all twisted by the automorphisms ık and ık�1 so that ıi .xy/Dıi .x/ık.y/C
ık�1.x/ıi .y/ for all x; y 2 O.SUq.2// and i 2 ¹1; 2; 3º. We now assemble this data
into a single twisted �-derivation

ı WD

�
ı3 �ı2

�ı1 �ı3

�
WO.SUq.2//!M2

�
O.SUq.2//

�
;

where the twists are again given by ık and ık�1 . Recalling that u D u1 denotes the
fundamental corepresentation unitary, the main result of this section is the identity

u@.x/u� D ı.x/ for all x 2 O.SUq.2//; (4.12)

which will play crucial role in our further analysis. The strategy for proving (4.12)
will be to first show that u@.�/u� satisfies the same twisted Leibniz rule as ı, thus
reducing the proof to verifying (4.12) on the generators of O.SUq.2//. To this end,
we will need the algebra automorphism ��

1
2 WD ık ı @k WO.SUq.2//! O.SUq.2//.

Notice that it follows from the defining commutation relations in O.SUq.2// that

bx D ��
1
2 .x/b and b�x D ��

1
2 .x/b� for all x 2 O.SUq.2//: (4.13)

Before we proceed we will introduce some relevant notation: if �; � WO.SUq.2//!
O.SUq.2// are algebra automorphisms, we shall write

Œy; x�� � WD y�.x/ � �.x/y

for the twisted commutator between two elements x; y 2 O.SUq.2//.
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Lemma 4.7.1. We have the identities

Œa�; x�ık @k
D .1 � q2/b@1.x/ and Œa; x�ık @k

D .1 � q2/q�1b�@2.x/

Œb�; x�ık @k
D b�.@k � @k�1/.x/ and Œb; x�ık @k

D b.@k � @k�1/.x/

for all x 2 O.SUq.2//.

Proof. A direct computation reveals that the operation x 7! Œa�; x�
ık @k

satisfies the
following twisted Leibniz rule:

Œa�; xy�ık @k
D Œa�; x�ık @k

� @k.y/C ık.x/ � Œa�; y�ık @k
for all x; y 2 O.SUq.2//:

It moreover follows from (4.13) that the operation x 7! b@1.x/ satisfies the same
twisted Leibniz rule so that

b@1.xy/ D b@1.x/@k.y/C ık.x/b@
1.y/ for all x; y 2 O.SUq.2//:

In order to prove the first identity of the lemma, it thus suffices to check that

a�@k.x/ � ık.x/a
�
D .1 � q2/b@1.x/

for x 2 ¹a; a�; b; b�º. In these four cases, one may verify the relevant identity by a
straightforward computation. The second identity of the lemma can be proved by a
similar argument. The two last identities (those involving twisted commutators with b
and b�) follow immediately from (4.13).

Lemma 4.7.2. We have the identities

Œu; x�ık @k
D .q2 � 1/

�
0 b

q�1b� 0

�
@.x/ and

Œu�; x�@
k�1 ı

k�1
D .q2 � 1/@.x/

�
0 q�1b

b� 0

�
for all x 2 O.SUq.2//.

Proof. The relevant identities are trivially satisfied for q D 1, so we focus on the
case where q ¤ 1 and let x 2 O.SUq.2// be given. Applying the definition of the
fundamental corepresentation unitary u together with Lemma 4.7.1 we obtain that

Œu; x�ık @k
D

 
Œa�; x�

ık @k
�q � Œb; x�

ık @k

Œb�; x�
ık @k

Œa; x�
ık @k

!
D

�
.1 � q2/b@1.x/ �qb.@k � @k�1/.x/

b�.@k � @k�1/.x/ .1 � q2/q�1b�@2.x/

�
D .q2 � 1/

�
0 b

q�1b� 0

�
@.x/:
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This proves the first identity of the lemma. The remaining identity then follows from
the first via the following computation:

.q2 � 1/@.x/

�
0 q�1b

b� 0

�
D .1 � q2/

��
0 b

q�1b� 0

�
@.x�/

��
D .ık.x

�/u � u@k.x
�//�

D u�ık�1.x/ � @k�1.x/u� D Œu�; x�@
k�1 ı

k�1
:

We are now ready to show that the operation x 7! u@.x/u� is a twisted derivation.

Proposition 4.7.3. It holds that

u@.xy/u� D u@.x/u�ık.y/C ık�1.x/u@.y/u�

for all x; y 2 O.SUq.2//.

Proof. Let x; y 2 O.SUq.2// be given. We compute that

u@.xy/u� D u@.x/@k.y/u
�
C u@k�1.x/@.y/u�

D u@.x/u�u@k.y/u
�
C u@k�1.x/u�u@.y/u�

D u@.x/u�ık.y/C ık�1.x/u@.y/u�

C u@.x/u� � Œu; y�ık @k
u� � u � Œu�; x�@

k�1 ı
k�1

u@.y/u�:

Notice now that�
0 q�1b

b� 0

�
u D

�
q�1bb� ab

q�1a�b� �qb�b

�
D u�

�
0 b

q�1b� 0

�
:

Thus, applying Lemma 4.7.2 we obtain that

u@.x/u� � Œu; y�ık @k
u� D .q2 � 1/u@.x/u�

�
0 b

q�1b� 0

�
@.y/u�

D .q2 � 1/u@.x/

�
0 q�1b

b� 0

�
u@.y/u�

D u � Œu�; x�@
k�1 ı

k�1
� u@.y/u�:

This proves the proposition.

We are now ready to verify that u conjugates @ into ı.

Proposition 4.7.4. It holds that u@.x/u� D ı.x/ for all x 2 O.SUq.2//.
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Proof. Using Proposition 4.7.3 we see that the operations x 7! u@.x/u� and x 7!
ı.x/ satisfy the same twisted Leibniz rule. Since they also behave in the same way
with respect to the adjoint operation, it therefore suffices to verify the required identity
on the generators a; b 2 O.SUq.2//. To treat the case q D 1 and q < 1 on the same
footing, we define

� WD Œ1=2�q D
1

q1=2 C q�1=2
;

so that @3.a/ D �a and @3.b/ D �b. The two relations may now be proven by a
straightforward computation, indeed:

u@.a/u�D

�
a� �qb

b� a

� 
� � a 0

�q
1
2 b� �� � a

!�
a b

�qb� a�

�
D

 
� � a�a2Cq

3
2 bb�a�q2� � bab� � � a�abCq

3
2 bb�bCq� � baa�

� � b�a2�q
1
2 ab�aCq� � a2b� � � b�ab�q

1
2 ab�b�� � a2a�

!

D

 
� � a q

1
2 b

0 �� � a

!
D ı.a/; and

u@.b/u�D

�
a� �qb

b� a

� 
� � b 0

q�
1
2 a� �� � b

!�
a b

�qb� a�

�
D

 
� � a�ba�q

1
2 ba�a�q2� � b2b� � � a�b2�q

1
2 ba�bCq� � b2a�

� � b�baCq�
1
2 aa�aCq� � abb� � � b�b2Cq�

1
2 aa�b�� � aba�

!

D

 
�� � b 0

q�
1
2 a � � b

!
D ı.b/:

We now have the tools needed to properly investigate the quantum metric space
structure on SUq.2/, and we proceed to do so in the following chapter.


