Chapter 5

Quantum metrics on quantum SU(2)

We now return to the general setting, and consider again two parameters ¢, g € (0, 1]
which will be fixed throughout this section. The aim of this section is to show that
(C(SU4(2)), LYY is a compact quantum metric space. The proof consists of several
steps and we therefore first explain the general strategy. For each M € Ny, we recall
from Section 3.5 that the algebraic spectral M -band is defined as the subspace BM

Zm__ m Ay S O(SUg(2)) and that the spectral M -band B, M agrees with the norm
closure of i)’M with respect to the C*-norm on C(SU,(2)). The Lipschitz seminorm

LI C(SU4(2)) — [0, 0¢]

restricts to a Lipschitz seminorm L7'7": BM — [0, oo] with domain given by the
intersection B, M N Lip,(SU4(2)). We start by proving that the pair (B, LY is
a compact quantum metric space for all M € Ny. Knowing this, the next step is to
construct a Lip-norm contraction C(SU,(2)) — Bé” for each M € Nj. This sets the
stage for an application of Corollary 2.1.10, from which we will finally deduce that
(C(SU4(2)), LY) is a compact quantum metric space; see Theorem 5.6.1 below
for details. In the following section we first treat the case where M = 0, which
plays a special role, since this provides the connection with the Podle$ sphere, whose
quantum metric structure was investigated in [2]; see also [3,4].

5.1 The Podles sphere revisited

Notice first of all that the spectral 0-band B agrees with the Podles sphere C(S7).
For each m € Z, we recall from Section 3.5 that H;" < L?(SU,4(2)) denotes the
Hilbert space completion of the algebraic spectral subspace 7' with respect to the
inner product coming from the Haar state #: C(SU,;(2)) — C. The GNS Hilbert space
L2(SUq (2)) is then isomorphic to the Hilbert space direct sum

L*(SU,() = € H)"

The horizontal Dirac operator D: O(SU,(2))®? — L?(SU,(2))®? restricts to the
unbounded operator

0 _ 0 —3f 4l -1 1 -1
D _(—3e 0 .Aq@Aq — H, ® H,
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and we denote the closure by DJ:Dom(DJ) — H,} & H,'. The vertical Dirac oper-
ator D): O(SU,(2))®? — L2(SU,(2))®? restricts to the trivial operator zero on the
direct sum A} @ A, ', and the diagonal representation

7:C(SU4(2)) — B(L*(SU4(2))%?)
restricts to a representation
7% C(S;) > B(H, & H,").

We equip the Hilbert space H, & H, ' with the Z/27Z-grading operator y = (§ %)
and record that the triple (C (S, ;), H ql ®H, L Dg) agrees with the Dabrowski-Sitarz
spectral triple (up to conjugation with the grading operator y); see [22,61]. We remark
that we are now within the standard realm of non-commutative geometry, in so far
that (C(S7). H; @ H; ', D)) is a genuine (even) spectral triple on C(S7). This is in
contrast to the situation for C(SU,(2)), where we are just relying on the spectral data
given by the horizontal and vertical Dirac operators. The Dabrowski—Sitarz spectral
triple therefore has its own Lipschitz algebra Lip(S, 5) defined as

{x € C(82)| 7°(x)(Dom(DJ)) € Dom(D) and [DY, x°(x)] is bounded}.

For each x € Lip(S ;) we apply the notation 3°(x) := [D2, 7%(x)]. The main result
in [2] is that the Lipschitz seminorm Lg’ma": c(S ;) — [0, o] defined by

L(q),maX(x) ‘= { ” ao(x) || X € LIP(S‘?)
00 x € C(S2) \ Lip(S7)

turns C(S q2) into a compact quantum metric space. We shall now prove that the two
settings are compatible, in the sense that the restriction of Ly7* to C(S, qz) agrees
with Lg’ma".

Recall that v2 denotes the algebra automorphism 91 o §;—1: O(SU,(2)) —
0O (SU,(2)) while g: O(SUq(2)) = O (SUy (2)) denotes the antilinear antihomomorph-
ism x > (8; 9%) (x*) which extends to the antilinear unitary operator J on L?(SU,(2));
see Section 4.5 for more details.

Lemma 5.1.1. For each x.y € O(SU,(2)) it holds that Jv= (y)*JA(x) = A(xy).

Proof. This follows from a straightforward computation, using that 6z (x)* =8—1 (x™)
and 0k (x*) = dp—1(x)* forall x € O(SU,(2)). [

Proposition 5.1.2. The inclusion C(S, ;) C C(SU4(2)) in an isometry with respect to
the seminorms L2=m‘”‘: C(qu) — [0, 00] and Ly5*: C(SU4(2)) — [0, 00]. In particular,
it holds that Lip(qu) C Lip,(SUg(2)).
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Proof. By restricting the Haar state, we obtain a GNS representation p°: C (S[f) —
B(H q?), and we denote by L*°(S 3) C B(H ;) the enveloping von Neumann algebra
p°(C(S7))”. By standard von Neumann algebraic techniques, the inclusion C(S7) €
C(SUy4(2)) extends to a normal inclusion t: L*°(S ;) — L°°(SU,(2)) with the prop-
erty that ((x) - £ = x - & for £ € L?(S7) € L*(SU4(2)).

Let x € Lip(S 5) be given. We recall from [4, Lemma 3.7] that the operator
8%(x) := ud®(x)u* belongs to M»(L>(S7)) and we may thus define the element

1(3°(x)) == u*i(8°(x))u € M, (L*(SU4(2))).

It clearly holds that ||¢(3°(x))|| = ||0°(x)||. Moreover, we remark that whenever ¢ €
H; ® H;' € L*(SUy(2)) & L*(SU,4(2)) it holds that u - ¢ € H) @ H,) and hence
that

L@ Iy = Iy1u(d°(x))¢ = 1yI13°(x)¢ forall y € L¥(SUL(2)). (5.1)

Let now § € O(SU,(2))®2. We aim to show that x - § € Dom(D’) N Dom(D;’) and
that we have the identities

[DF x]E = 1(3°(x))§ and [D} . x]E =0. (5.2)

This suffices to prove the present theorem: indeed, since x € Lip(qu) both twists
involved in the definitions of 8} (x) and 851 (x) are trivial. Moreover, if one proves the
relations in (5.2) for £ in the core O(SU4(2))®2, an approximation argument shows
that x(Dom(Df)) c Dom(Df), x(Dom(D/)) € Dom(D)’) and that the relations
in (5.2) hold on the two domains.

Let us start out by proving the claims relating to the vertical Dirac operator.
Without loss of generality, we may assume that § € Ay @ A7 for some n,m € Z.
Since x € C(S;), it follows that x§ € Hy @ H;'. But Hj © H;' C Dom(D,V) and
the relevant commutator [D)’, x]£ is trivial since the restriction of D} to H, s D HS
is given by multiplication with the diagonal matrix

5, 0
0 — 7 [ )
Next we focus on the claims relating to the horizontal Dirac operator. Let first n €
Dom(Dg) and z € O(SU,(2)) be given. We begin by showing that

IzIn e Dom(Df) and [Df, I1zIn = 185(81((2))17). (5.3)

Since A, @ A" is a core for Dom(DJ) we may, without loss of generality, assume
that n € :A»é &) A;l. We then remark that [z/n = IzIne O(SU,(2)) @ O(SU,(2))
and that Lemma 4.5.3 therefore implies that

[DE 12119 = 108 (0(2) IT2 o,
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The desired formula for the commutator [Df , 1zI]n then follows by noting that
I'y,0 restricts to the identity operator on A; ® A;l. To proceed, we denote the two
columns in u* by vy € A; ey ,A);l and v, € A}I = ,A(;l, thus

v = . and v, =| |-
—qb a

For our fixed element £ € 9 (SU,(2))®2, we therefore choose y1, y2 € O(SU,4(2)) €
L?(SU4(2))®2 such that
E=uuE = vi-y1 + 2 y2 = —IvE(y) v — Iv3(32)*] - va,

where the last equality follows from Lemma 5.1.1 (suppressing the embedding A
for notational convenience). To ease the notation, put z; := —v%(yl)* and z, ;=
—y7 (y2)*. We then have that

E=1z11-vi+ 1z -vy, and x& = 1Iz11-xvy + 1231 - xv;.

Since vy and v, belong to A} & A,' € Dom(DYJ) and x € Lip(S7) we know that xv,
and xv, € Dom(Dg). We thus obtain from (5.3) that x§ € Dom(D(;’) and moreover
that
Dfxs =IzI- Dfxvl + Iz1 - D;vaz + 185(8k(21))1xv1
+ 197 (O (22)) I xv2
= Iz10 - 3°(x)vy + 220 - 3°(x)v2 + [z I xD [ vy + I 221 xD [ v,
+ X1 (O(z0) Tvr + xT 0 (B (22)) T v2
= Izy0 - 3°(x)vy + 220 - 3°(x)v2 + xDf Iz Tvy + xD[ 12510,
= 1@ ())& + xDIE,

where the last equality follows from (5.1). This ends the proof of the present propos-

ition. ]
Corollary 5.1.3. We have the identity (B, LYT) = (C(S;), Lg’max). In particular,
it holds that (B?, LYF) is a compact quantum metric space.

Proof. 1t suffices to establish the identity (BJ, L) = (C(S7), LY™) since [2,
Theorem 8.3] already shows that (C(S 5), Lg’ma") is a compact quantum metric space.
We have B) = C(S7) and, by Proposition 5.1.2, Lip(S7) € BJ N Lip,(SU,(2)) with
Lg’m" (x) = L}7(x) for all x € Lip(S 3). We therefore only need to show that Bg N
Lip, (SU,4(2)) € Lip(S7). Denote by : Hy & H, ' — L*(SU,(2)) ® L*(SU,4(2)) the
inclusion of Hilbert spaces. It can then be verified that L*J);I c J)g * and from this
inclusion it follows that (* D ;1 C Dgt*. Similarly, we have the inclusion LDg cD ;’ l

of unbounded operators.
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The above inclusions can now be applied to see that
7°(x)E = Fr(x)k e Dom(Dg)
for each x in Bg N Lip,(SUg(2)) and each & in Dom(DfI)). Moreover, it holds that
Dgno(x)é = DSL*H(X)L%' = t*af(x)té + L*n(x)LDgg = L*Bf(x)té + no(x)Dgé.
This shows that x € Lip(S qz) and the corollary is proved. ]

Remark 5.1.4. The algebraic counterpart to Proposition 5.1.2 is basically a triviality.
Indeed, for x € @(S7) we have that 9 4 (x) = ( _qfl/ozaf @) = 9%(x), and
it moreover holds that

0 @) [ 0 g
—q70.(x) 0 —q73,(x) 0

= 9°(x)* 9% (x) € M2(0(S;)).

0
—q'/20¢(x)

We thereby obtain that
L 2 _ P *a _ 80 *80 _ LO 2
g ()% = 1900 () rg (), = 18 W) os2) = L0,

where L)) denotes the variation of L™ whose domain is 9 (S7).

5.2 Spectral projections and twisted derivations

Let 6: S' x C(SU,4(2)) — C(SUy(2)) be a strongly continuous action of the circle
on quantum SU(2). In this section we are investigating the relationship between the
spectral projections coming from 6 and the twisted *-derivations

95 and 0} : Lip, (SU4 (2)) — B(L*(SU4(2))®?)

introduced in Chapter 4. As a first consequence of these efforts, we shall establish,
in Proposition 5.2.4 below, that the sum of twisted *-derivations d; 4 = 85 + 0/ is
closable.

We suppose that there exists a 2w -periodic, strongly continuous one-parameter
unitary group (Uy),cr acting on the Hilbert space L?(SU,(2))®? such that

(1) Uy (x)U-, = w(8(e'", x)) forall r € R and x € C(SU,(2)), where 7 is the

diagonal unital *-homomorphism introduced in Section 3.4.
@ [DF.U)=0=[D} U] forallr € R;
(3) 9(z,op(w,x)) = op(w,0(z,x)) forall z,w € S!, x € C(SU,4(2)).
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Since the map r — U, is strongly continuous, we obtain that the map r — U, T U_,
is weakly continuous for every T € B(L2(SU,(2))®?). For each n € Z we may there-
fore define the n-th spectral projection T19: B(L?(SU4(2))®?) — B(L2(SU,(2))®?),
implicitly, by the formula

2
(& (D)) = 5 / (E.UTU_mje™™dr. £ e LASU,QNP2.  (5.4)
T Jo

We remark that the spectral projections separate points; i.e. that for an operator 7" in
B(L?(SU,4(2))®2), it holds that T = 0 if and only if HZ(T) =0foralln € Z. It
follows from our conditions that the spectral projection

Ty B(L?(SUq(2))%%) — B(L*(SU,4(2)®?)
induces a spectral projection sz C(SU4(2)) — C(SU,4(2)) satisfying that
% (x)) = n(M%(x)) forall x € C(SU,(2)).

The spectral projection on C(SUg4(2)) is given by the norm-convergent Riemann

integral
1 2w ) )
Hz(x) = — O, x)-e " dr. (5.5)
277,' 0

Lemma 5.2.1. For eachn € Z and x € Lip,(SUy(2)), it holds that
5 (x) € Lip (SUy(2))
and we have the identities
M5 (05 () = 05 (T () and - T30 () = 37 (M(x)). (5.6)

In particular, it holds that the spectral projection Hg: C(SU4(2)) = C(SU4(2)) is a
contraction for our Lipschitz seminorm, meaning that

LP2(M(x)) < L™ (x) forall x € C(SU4(2)).

Proof. Let n € 7. The fact that TI becomes a contraction for the seminorm LYd
is going to follow from the identities in (5.6) together with the fact that the spectral
projection Hg is a norm-contraction. Let x € Lip,(SU,(2)) be given. We focus on
showing that Hz (x) is horizontally Lipschitz and that the identity Hg(agl (x)) =
8(7 (Hg (x)) is satisfied. The vertical case follows by a similar argument.

We first record that the assumption (3) on 6 implies that

or (e’ T1%(x)) = N%(or(e'". x)) forallr € R.
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Hence, Lemma 3.6.2 shows that HZ (x) is analytic of order —log(g)/2 and that the
identities

M8 (02(g%, %) = 0r(q2, T0(x)) and T%(or(g~2. %)) = or(¢~ 2, (%))

are satisfied. Let now &, € Dom(Df ) be given. We may then compute as follows:

(D' 01(q*. 115 )n)
27
= % (Dfé, U,OL(q%,x)U_,n)e_ir" dr
0
1 2w

:EO

1 2 —irn
= E/(; (E, Uraf(x)U_rn)-e dr

(6. U.DHor (g, x)U_n)-e7 " dr

1 2n )
+ —/ (€. UraL(q_%,x)U_ern) eV dr
2 0
_1
= (6. 1153 () n) + (5. oL(¢ 2. T13(2)) D} ).
This shows that o, (q%, Hg (x))n € Dom((Df)*) = Dom(Df), and moreover that
I1% (x) is horizontally Lipschitz with 8 (IT§ (x)) = T1§ (3 (x)). "

Our prime example, where the above lemma applies, is given by the 2 -periodic
strongly continuous one-parameter unitary group ( UrL) reRr defined by

eirk—=1)
UrL (i) = (eir(m—H) %_7) %_ € H;c, ne H]", (5.7)

This unitary group induces the left circle action on C(SU,(2)) in the sense that
UFr(x)UL = n(op(e'”,x)) forallr € Rand x € C(SU,(2)). (5.8)

For each n € Z we denote the corresponding spectral projection by H,f. The following
lemma now verifies that the last assumption (2) is indeed satisfied.

Lemma 5.2.2. It holds that [DH ,UF] = 0 = [D) ,UL] forall r € R.

Proof. Recall that O(SU, (2))®2 is a core for both of the unbounded selfadjoint oper-
ators Df and D). Moreover, we know that ©(SU,(2)) agrees with the algebraic
linear span of the algebraic spectral subspaces 4%, k € Z. It therefore suffices to
prove the relevant commutator identities on vectors of the form ( fl ) with § € A7 and
n € Ay for some n,m € Z. The vanishing result for the commutator with the ver-
tical Dirac operator D/ is then clearly satisfied, so we focus on the horizontal Dirac
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operator i)f . In this case, the vanishing result follows since

1
“20p5-1(1) _
@H(S):_quk € A2 @ AN2.
 \ Fog@ )0 T )

The assumptions in Lemma 5.2.1 are therefore met, and it yields the following:

Corollary 5.2.3. Let x € Lip,(SU,(2)), n € Z. It holds that T1% (x) € Lip,(SU4(2))
and we have the identities

Y (ME(x)) = ME@Y (x)) and 3H (Tk(x)) = IE@H (x)).

In particular, it holds that L‘,‘jaq"(l'[,f (%)) < Lyg ().

Proposition 5.2.4. The sum of twisted *-derivations
drq = 0 + 07 :Lip,(SU4(2)) — B(L*(SU4(2))®?)
is closable.

Proof. We first record that (4.6) yields that
max{ |35 ()1, 197 G} < 182, o)l < 1957 Co) | + 1187 ()|

for all x € Lip,(SU,4(2)).

To see that d; 4 is closable it thus suffices to show that Bf and 9 are both clos-
able. We focus on showing that 85’ is closable since the proof is almost the same
for 3. For m € Z, we first remark that the restriction Bf :Lip,(SU4(2)) N A7 —
B(L?(SU,(2))®2) is closable: indeed, for each x € Lip,(SU,(2)) N A and each
¢ € Dom(D qH ) we obtain from Lemma 3.6.3 that

1 1 m _m
0y ()€ = Dglor(q2. x)§ —or(¢™2.x)D] = ¢ Dy x§ —q~ 2 xD]E.

The fact that the relevant restriction is closable then follows from the selfadjoint-
ness of Df. An application of Corollary 5.2.3 now shows that 8{11: Lip,(SU,(2)) —
B(L?(SU,4(2))®2) is closable. Indeed, as already remarked, for a bounded operator
y € B(L?(SU4(2))®2) it holds that y = 0 if and only if TIX(y) = Oforalln € Z. m

5.3 Spectral bands as compact quantum metric spaces

We fix again our two parameters ¢, ¢ € (0, 1] together with an M € Ny. We are now

going to establish that the spectral band B ;’I = Z%=_ um Ag becomes a quantum met-

ric space when equipped with the Lipschitz seminorm L3'7*: B é"l — [0, co] introduced
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in Definition 4.3.5. To this end, we utilise the general theory about finitely generated
projective modules developed in Section 2.3. We emphasise that the domain of the
restriction L7 Bé"’ — [0, o] is substantially larger than the algebraic spectral band
B é"l . We start out by stating (and reproving) a well-known result regarding the spec-
tral subspaces (Ag' )mez (see e.g. [30, Proposition 3.5]). Recall that nkt:csu,(2)—
C(SUy,(2)) denotes the spectral projection defined in (5.5) associated with the circle
action or,.

Lemma 5.3.1. For any x € C(SU,(2)) and any m € Z it holds that

ey = | Dot gm0
m - [m| ¢ |m| y* L{(, Iml|
Zinio(“ﬁm) - (uirlnml x) m<0

In particular, we obtain that AZ‘ is finitely generated and projective as a right module
over Ag = C(S(f).

Proof. By continuity and density, it suffices to check the identity for x € O(SU,(2))
and by linearity we may furthermore assume that x € A]; for some k € Z.If m = 0,
then u € A,™ (cf. (3.16)) and hence ujjx € ,A)’,;_m. Hence both sides are zero if
m # k and for m = k the identity follows from the fact that 4" is a unitary matrix. The
final statement about projectivity now follows, since the identity just proven shows
that the map A7 — (Ag)ea(mﬂ) given by X — ueg - X provides an embedding of
Ay as a direct summand in a finitely generated free module. The case m < 0 follows
analogously. |

To show that (BM L7 is a compact quantum metric space, we wish to apply
Theorem 2.3.3, and we therefore need to compare the Lipschitz seminorm L;';* with
the operator norm on quantum SU(2) (see Assumption 2.3.2). This comparison takes

place in the next two lemmas.

Lemma 5.3.2. For every m € Z, it holds that A < Lip} (SU4(2)) and

_ [m/z]tx 0 m
a}’(x)_( 0 —[m/z],x) forall x € A7

Proof. Letm € Z and x € A7 be given. We then know from Lemma 3.6.3 that x is

analytic of order —log(7)/2. Letnow n,k € Z and y € Ay & A’; be given. We then
have that

UL(Z%,X)-y =t%x-ye€ A;”Jr” @ A’:Jrk C Dom(D)).

Using the relation [r + s]; — ¢~ "[s]; = t*[r];, which is valid for all 7, s € R, a direct
computation shows that

(DY or(t2.x) —or(72.x)D) )y = ([mﬂ(}t - —[m/02]t -x) .
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This proves that the twisted commutator
1 1
DtVaL(ﬁ,x) —or(t” 2, x)D,V

is well defined on the core O(SU,(2))®? for the vertical Dirac operator and that it
extends to the bounded operator [m/2]; (’5 9.). From this it follows immediately that

orL, (Z%,x) preserves Dom(D)’) and that 9V (x) = ([m/gltx —[m(/)z],x) as desired. m

Remark 5.3.3. As an aside, we remark that it is now easy to verify that the algebraic
formula for 8}/ obtained in Lemma 4.3.1 actually extends to the whole Lipschitz
algebra, in the sense that

33(x) 0 .
14
9; (x) = ( ’0 —93(x) for all x € Lip,(SUy(2)). (5.9
By Remark 4.3.4, we already know that the off-diagonal elements in ay(x) are zero
and that the upper left-hand entry is 93(x). Conjugating 9} (x) with the unitary
S = ((1) (1)) interchanges the diagonal entries, so it suffices to show that S3) (x)S =
—03Y (x). A direct computation shows that the unitaries (UL),cg defined in (5.7) sat-
isfies

L eZir 0 I3
SuL = ( 0 e—Zir) ULS forallr € R

and since 8}/()6) is diagonal it commutes with the unitary (ezo‘r 9., ) Using this, it
is not difficult to see that

LS (x)S) = STIE (Y (x))S foralln € Z.

By Lemma 5.3.2 we know that (5.9) is valid whenever x belongs to a spectral sub-
space, and since T1X commutes with 8} (see Corollary 5.2.3) we therefore obtain
that

M5 (S37 (x)S) = STy (3] (x))S = §9; (Myx)S = =3} (M x) = =Ty 3/ (x)).

Since the spectral projections separate points, it follows that $3) (x)S = —d} (x) and
hence that (5.9) holds.

Lemma 5.3.4. For each m € 7, it holds that |[m/2],| - | 1L (x)|| < L7 (x) for all
x € Lip,(SUgz(2)).

Proof. The result follows from Corollary 5.2.3 and Lemma 5.3.2 via the estimate
|0m/2]] - T ()| = 1187 (T ()| < LY (M5 (x)) < LP5 (). l

Lastly, in order to apply Theorem 2.3.3, we need to verify that Assumption 2.3.2 (5)
is satisfied, which is the contents of the following lemma.
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Lemma 5.3.5. Let v € Lip,(SU,(2)) and let M € Nyg. Then the left-multiplication
operator
m(v): B) Nker(IT§) — C(SU4(2))

is bounded with respect to the seminorm L7

Proof. We first remark that Lemma 5.3.4 shows that there exists a constant Dys > 0
such that ||x|| < Dy - Ly5*(x) for all x € BM N ker(I15). Next, it follows from
Lemmas 3.6.5 and 4.3.7 that

L7g(v-x) < [|v]

rq - Lig ) + L7 ) - [lxll:

t.q

M
< (IIv et Y (z’"/2+q’"/2)DM) L (x)

m=—

forall x € Bé” N ker(Hé). This proves the present lemma. ]

We are now in position to state and prove the main result of this section, which
shows that the spectral bands are compact quantum metric spaces. Notice that it
follows from Lemma 5.3.1 that the spectral bands are finitely generated projective
modules. In fact, with a little extra effort it can be proved that they are free (but this
does not help to ease the argumentation).

Theorem 5.3.6. Let M € No. The spectral band B M C C(SU,(2)), the conditional
expectation HL C(SU4(2)—C (S, 2) and the szschztz seminorm L7 C(SUq4(2)) —
[0, 00] satisfy Assumptions 2.3.1 and 2.3.2. In particular, it holds that the restriction
Lyg B;’I — [0, co] provides Bé"[ with the structure of a compact quantum metric
space.

Proof. 1t follows from Lemma 5.3.1 that B;” satisfies Assumption 2.3.1: indeed we
may apply the elements in C(SU,(2)), defined, foreachm € {—-M,—-M +1,..., M}
andeachi € {0,1,...,|m|}, by

Vim = ’ and Wi, 1=},

u; %, m<0

Notice in this respect that 1 = vgg = wgo and that Hé(vim) =0= HOL(wim) as soon
as (i,m) # (0,0) (cf. (3.16)). To see that conditions (1)—(5) in Assumption 2.3.2
are satisfied, notice that (1) follows from Corollary 5.2.3, while (2) follows from
Corollary 5.1.3. Condition (3) is a consequence of Lemma 5.3.4 and condition (4) is
trivially satisfied since vipm, Wim € O(SU4(2)) forallm € {—-M,-M +1,..., M}
and i € {0, 1,...,|m]}. Condition (5) is exactly the contents of Lemma 5.3.5 and
Theorem 2.3.3 therefore shows that (BM L77) is a compact quantum metric space.

[
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Knowing that the spectral bands are compact quantum metric spaces, our next
main goal will be to show that the same is true for quantum SU(2). We wish to do
so by an application of Corollary 2.1.10, but verifying that the assumptions there are
indeed fulfilled turns out to be a slightly delicate matter. One of our objectives will
be to construct an “anti-derivative” of the twisted *-derivation 9! : Lip, (SU, (2)) —
B(L?(SU,(2))®2). To this end we need the theory of Schur multipliers, and we gather
all the results needed within this context in the following section.

5.4 Schur multipliers

Let || - ||l2: £2(Z) — [0, o0) denote the usual Hilbert space norm on the Hilbert space
of ¢£2-sequences indexed by Z. The standard basis vectors in £2(Z) are denoted by e;,
i € Z. We recall the following essential result due to Grothendieck:

Proposition 5.4.1 (Grothendieck). Let H and K be Hilbert spaces and assume that
they are Z.-graded as H = ;2 _ . H; and K = @72 __, K; such that each bounded
operator T € B(H, K) is represented by a matrix (T;j); jez. Let ¢: Z x Z. — C be
given and assume that there exist a(i), b(i) € £*(Z) for everyi € 7 such that

(1) ¢(a) == sup;ez [la(@)]|2 < 0o and c(b) := sup;ez (D) [|2 < 0o,

(2) ¢(i,j) = (a(i).b(j)) foralli, j € Z.
Then for every T € B(H, K) the matrix (¢(i, j)Tij)i,jez also defines a bounded
operator from H to K and the map M(¢): B(H, K) — B(H, K), which associates
to T the bounded operator with matrix (¢(i, j)Ti;)i,j, is completely bounded with
cb-norm at most c(a)c(b).

Under the hypotheses of the theorem above, the map ¢ is called a Schur multi-
plier. For a more elaborate treatment of the theory of Schur multipliers the reader
is referred to [65], but for the readers’ convenience we sketch the proof of Proposi-
tion 5.4.1 here.

Proof. Defining a: H — (*(Z)®H = @,z (> (Z)®H; by a((£):) := (a(i) ® &);
and b: K — (2(Z)QK by b((n;)i) := (b(i) ® n;)i, one sees that @ and b are bounded
with |la|| < c(a) and ||b|| < c(b). Moreover, one verifies that M (¢)(T) =b*(1 ® T)a
and hence we get |M(¢)| < c(a)c(b). The same argument works over matrices, so
we indeed obtain that | M (¢)||e < c(a)c(b). [

For each ¢, g € (0, 1], we wish to construct an anti-derivative of

87 : Lip, (SU,(2)) — B(L2(SU,(2))®?),
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which will be given in terms of a Schur multiplier ¢;: Z x Z — C defined by the
formula

; .

@u(i. j) = { =D 1 (5.10)
0 i=j

In order to show that ¢;: Z x Z — C is indeed a Schur multiplier we start out by

recording a well-known lemma on g-numbers (including the proof for lack of a good
reference):

Lemma 5.4.2. It holds that [n/2], = M’Wﬁ)r allg € (0,1] and n € N.

Proof. Let n € N be given. The inequality clearly holds for ¢ = 1, so assume that
q € (0,1). We first notice that [n],; = n. Indeed, for n = 2k even this inequality follows
since
[2k]q — 2k = (q—2k+1 + q2k—1 —-2)+ (q—2k+3 + q2k—3 -2)
+ot @ +g-2)20

and for n = 2k + 1 odd we obtain the inequality since

2k + 1], — Ck + 1)
:(q—2k+q2k_2)+(q—2k+2+q2k—2_2)+___+(q—2+q2_2)

‘We then obtain that
qn/2 _ q—n/2 [I’l]ql/z n

[n/2]q = G2 —g—12) (g2 ¥ g-1/2) = Q2+ g 127 g2 g2 "

Lemma 5.4.3. Lett € (0, 1]. The function ¢;: Z x Z. — C is a Schur multiplier and

we have the estimate
w2 42

/3

on the cb-norm of the associated completely bounded operator.

[M(@) b <

Proof. In order to apply Proposition 5.4.1, we define the sequences

o0

a(i):= Y @:i(i.k)-ex and b(i):=e¢

k=—00
for all i € Z and note that ¢,(i, j) = {(a(i), b(j)). For each i € Z, we then apply
Lemma 5.4.2 to obtain the estimate

Z (tl/2 +Z 1/2)2 2([1/2 —|—t—1/2)2
[k/2 3

la@)3 = lla(0)]I3 =
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on the Hilbert space norm. Since we moreover have that ||b(i)||3 = 1 forall i € Z,
the relevant estimate on the cb-norm now follows from Proposition 5.4.1:

w12 41712
M@)o < sup la(@)ll2 < : n

V3
We shall also need a systematic method for approximating elements in C(SU,(2))
by elements in the spectral bands Bé” , M € Npy. This approximation will also take
place by means of Schur multipliers. For each M € Ny, we define the function
ym:Z x Z — C by the formula

M+1-]i—j| li—jl<M
Lo M+1 JI=
Mm@, j) = (5.11)
ym(. J) {0 li—j|> M.
Lemma 5.4.4. For each M € Ny, the function yyr: Z x 7 — C is a Schur multiplier
and we have the estimate

IM(yar)lleo <1

on the cb-norm of the associated completely bounded operator.

Proof. We are going to apply Proposition 5.4.1. Let M € Ny be given, and define,
for each i € Z, the sequences

1 i+M
a(i) =>b() = ———- ek.
(i) =b(0) NiES ; k
We record that ||a(i)||3 = 1 = ||b(i)||3. Let now i, j € Z be given, and assume first

thati < j. We then compute that

i+M J+M 1+M S
+ M

.,b . ’ M+IZ J X1
0000 = g T )= Jeiy

M+1

M+i—j+1 ] —i<M ( )
=vm(,Jj).
0 j—i>M v /

For j <i we get from the above identities that (a(i),b(j))={(a(j),b(@))=ym(j,i)=
vum (i, J). The proof is therefore complete. |

For each number § € (0, 1) we define the null-sequence of positive real numbers
(e(8, M))$7—, by putting

M 1\’
(8, M) =27 . (32 +8") ((M+1)2+ Z k_z) for all M € N.
k=M+1
(5.12)
m-(81/24571/2)

In particular, we record that &(8, 0) = 7
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Lemma 5.4.5. Let 6 € (0, 1). It holds that
IM(@) (1 = M(yan)|, < €(8, M)
forall M € Ngand all t € [§,1].

Proof. Let M € Ny and ¢ € [4, 1] be given. We are going to apply Proposition 5.4.1
to the function p; pr: Z x Z — C given by the formula

li—jl ; i
oo O<li—JilsM
P j) =@, j) - (1—ym(@, j)) =40 li—Jjl=0
o li—j|> M.

[G—)/2]:

For each i, j € 7Z we define the sequences

a(i):= Y pem(i.k)-ex and b(j) =¢;.

k=—00

Applying Lemma 5.4.2, we may estimate the Hilbert space norm of a (i) as follows:

la@)II3 = a3 = > 1o (0.5)

k=—00
oo 1 2 M k2
=7. Z >+ Z 3
k=M+1 [k/2; (M +1)? k=1 [k /217
o0
1 _1\2 1 2M 1 1.2
<2(t2 +172) ( > —2)+—2-(t2+t 2)
k=M+1k (M +1)
1 1.2 M — 1 2
§2(82+8 2) (m+ Z k—z)ZS(S,M) :
k=M+1

This shows that p; ps is a Schur multiplier satisfying the estimate ||M(pz,a1)lcb <
£(8, M) on the cb-norm of the associated completely bounded operator. The result of
the present lemma now follows by noting that M (o, ar) = M(g;) - (1 — M(ya)) by
construction. ]

We end this subsection by re-introducing spectral projections in the context of
Schur multipliers. For each n € Z we define the Schur multiplier

Sw:Z X T —C  8,(i,j) = Spij. (5.13)

The associated operator M(§,,) is then completely contractive and can be interpreted

in terms of spectral projections. To explain this, suppose that H = @Sr?:—oo Hpisa
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Z-graded Hilbert space and define the unitary operator V,: H — H by

Vr( i em-gm) = i em - eMEy

m=—0o0 m=—00

for every r € R. This yields a 2w -periodic strongly continuous one-parameter unitary
group (V;)rer and it holds that

1 2 )
(& MG (D) = 5 /0 V. TV myei™dr

forall T €e B(H) and &, € H. Thus, M(§,) is the n-th spectral projection associated
with our 27 -periodic strongly continuous unitary group (V;),er; cf. (5.4).

5.5 Projecting onto the spectral bands

Throughout this section we again fix the parameters ¢, ¢ € (0, 1]. We are going to
apply the theory of Schur multipliers to the Z-grading
[e.e]
L*SU,2)% = P (H) ' e HI ). (5.14)

m=—00

This Z-grading is simply the spectral subspace decomposition associated with the
circle action on L?(SU,(2))®? induced by the 27 -periodic strongly continuous one-
parameter unitary group (UrL)re]R introduced in (5.7). For M € Ny and n € Z, we
consider the Schur multipliers yas, 6,: Z x Z — C introduced in (5.11) and (5.13)
and apply the following notation for the completely bounded operators they induce:

Efpi=M(yny), M5 :=M(Sn):B(L*(SU4(2)®?) — B(L*(SU4(2))%?).

This notation is compatible with our already existing notation for spectral projections
by the remarks at the end of Section 5.4. We emphasise that both H,’; and £ AL,[ induce
operators on C(SU,(2)) via the relations

NE(n(x)) = (ML (x)) and  Ejf;(n(x)) = n(Eg(x))

for all x € C(SUy(2)). Notice in this respect that
% MA1—|m|
5 M+l T,

The aim of this subsection is to prove that EL a 1s an LyZ*-contraction onto the
spectral M -band BM and that £, L approximates the 1dent1ty map on the L' -unit
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ball better and better as M grows, thus setting the stage for an application of Corol-
lary 2.1.10.
We are also interested in the completely bounded operator

v
/ :B(L*(SU,4(2))®%) — B(L*(SU4(2))®?)

defined by the formula
14
/ T :=M(p)(y-T), (5.15)
t

where we recall that y := (§ %) € B(L?(SU,(2))®?) and that ¢;: Z x Z — C was
introduced in (5.10). Remark that the Schur multiplier M (¢, ) is also defined relative
to the spectral subspace decomposition given in (5.14). We record that Mi(¢; ) induces
a bounded operator on C(SU,(2)): indeed, for each m € Z and x € Ay we have the
formula

m#0

L
M x) = ¢ m/2k ,
(1) (x) 0 m=0

from which it follows that M (¢, ) preserves @ (SU,(2)) and hence also C(SU,(2))
by boundedness. We start out by proving that |, tV serves as an anti-derivative with
respect to 8}/ providing a non-commutative analogue of the fundamental theorem of
calculus.

Proposition 5.5.1. It holds that

.
/ 3/ (x) = (1 —TI§)(x)  forall x € Lip,(SUg(2)).

Proof. Let x € Lip,(SU4(2)) be given. First note that if x € Lip,(SU,4(2)) N A7’ for
some m € Z, then the statement follows from Lemma 5.3.2: indeed, in this case we
have that

|4 14
o= [ (M ) = /2 M = 0= i,

To prove the general statement, it suffices to show that
14
nk (/ a,V(x)) =51 -T15)(x) foralln € Z.
t

Let thus 1 € Z be given. Since both TTZ and M(¢,) are Schur multipliers with respect
to the same Z-grading on L2(SU,(2))®2, they commute. Moreover, we notice that the
grading operator y preserves the spectral subspace H;" ™! @ H]'~! € L*(SU,(2))®?
for all m € Z and hence it holds that left multiplication with y commutes with H,f.
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The relevant identity therefore becomes a consequence of Corollary 5.2.3 through the
following computation:

v v
mi( [ ar o) = [ aratn = o - nhmke = nba - mheo. s
t t
The next step is to prove that £ 1%1 is a contraction for L7'2*, thus verifying part of

IE
the hypotheses in Corollary 2.1.10.

Lemma 5.5.2. Let M € Ny and x € Lip,(SUg(2)). It holds that EL (x) € Bé‘l N
Llpt(SU (2)) and LmaX(EL (x)) Lmax(x)

Proof. We start out by recalling that EL = Zm:— M M;};l‘mlHL It therefore fol-

lows from Lemma 5.4.4 and Corollary 5.2.3 that EAL,I (x) € Lip,(SUz(2)) N BM nd
that

LY (Eyp () = 10,4 (Epp ()N = 1 Epp Beq (DN < 192,g (0] = LY (x). =

We now show that the sequence of L77*-contractions (E )3 =0 approximates
the identity map on the Ly *-unit ball, thus verifying the last hypothesis in Corol-
lary 2.1.10. In fact, this approximation can be obtained uniformly in the deformation
parameters ¢, g € (0, 1]. For each § € (0, 1) we recall the definition of the null-sequence
of positive real numbers (e(8, M ))3;_, from (5.12).

Proposition 5.5.3. Let § € (0, 1). It holds that
Ix = Egz (o)l < (8, M) - L5 (x)
forall M € Ny, (t,q) € [8,1] x (0, 1] and x € Lip,(SUy4(2)).

Proof. We apply Proposition 5.5.1 in combination with Lemma 5.4.5 to obtain that
v
1= Exp)ll = (0 = Ezp) (1 = TIg) ()| = H(l ~ Exp) / 07 (x)

< (1 =M@a))M(@o) | - lly - 87 ()l < (8, M) - L2 (x)

forall M € Ny, t € [§, 1] and x € Lip,(SUq4(2)). [

5.6 Quantum SU(2) as a compact quantum metric space

We are now ready to show that quantum SU(2) becomes a compact quantum metric
space when equipped with the Lipschitz seminorm Ly7*: C(SU4(2)) — [0, oc].

Theorem 5.6.1. The pair (C(SUq(2)), Lyy") is a compact quantum metric space for
allt,q € (0,1].
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Proof. For each M € Ny we know from Theorem 5.3.6 that the spectral band Bé"f
becomes a compact quantum metric space when equipped with the restricted Lipschitz
seminorm L7 Bé"[ — [0, oc]. We may then apply Corollary 2.1.10 using the com-
pact quantum metric spaces (BM, LyF), together with the unital linear maps E AL,I:
C(SU4(2)) — B é"[ and the inclusions ¢p;: Bé” — C(SU,4(2)). That the assumptions
in Corollary 2.1.10 are indeed met by this data follows from Lemma 5.5.2 and Pro-

position 5.5.3. ]

Corollary 5.6.2. The pair (C(SU,4(2)), L;.4) is a compact quantum metric space for
allt,q € (0,1]

Proof. Since the L; 4-unit ball is contained in the L77*-unit ball this follows from
Theorems 5.6.1 and 2.1.5. n

We can also show that the spectral bands converge towards quantum SU(2) in the
quantum Gromov—Hausdorff distance. In fact, as the following theorem shows, the
convergence can even be obtained in a uniform manner with respect to the deform-
ation parameters ¢, q € (0, 1]. For each § € (0, 1) we recall the definition of the
null-sequence of positive real numbers (¢(8, M))5;_, from (5.12).

Theorem 5.6.3. Let § € (0, 1). It holds that

distq ((C(SU4(2)), LT4); (BY, LT)) < &(8, M)

forall M € Ny and (t,q) € [8,1] x (0, 1]. Moreover, for all i, v € $(C(SU4(2))) it
holds that

A (1, v) < 2+ 68, M) + dPS gy vl )

forall M € Ny, all (¢,q) € [8, 1] x (0, 1].
Proof. By Lemma 5.5.2 and Proposition 5.5.3, the unital positive operator
Ef;:C(SU4(2)) — BY

satisfies the assumptions in Corollary 2.2.5 with D = 0 and ¢ = &(§, M). The first
statement therefore follows from Corollary 2.2.5 and the second from Corollary 2.2.7.
]

We may also provide an estimate on the diameter (see Definition 2.1.4) of quantum
SU(2) in terms of the diameter of the Podles sphere.

Proposition 5.6.4. Forallt,q € (0, 1] it holds that

27 - (112 4 171/2)

diam(C(SUg(2)), L) < 7

+ diam(C(S7), Ly™).
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Proof. By [70, Proposition 5.5] we have that

diam(C(SU,(2)), L75) = 2 - disto((C(SU4(2)). LT%): (C, 0)).

Using the triangle inequality for the quantum Gromov—Hausdorff distance we then
obtain that
diam(C(SUq(2)), L)
< 2-disto((C(SUy (2)). LI™): (C(S2). LI™) + diam(C(S2), LG™).

The result of the proposition now follows from Corollary 5.1.3 and Theorem 5.6.3 in
the case where M = 0. ]

Remark 5.6.5. In [3, Theorem 4.18] we proved that the family of Podles$ spheres
(c(s (?), Lg’ma"))qe(o’l] varies continuously in the quantum Gromov—Hausdorff dis-
tance, and thus, in particular, that the function

(0.1] 3 ¢ = diam(C(S7), Lg™) = 2 - distq((C(S7). Ly™™): (C.0))

is continuous. An application of Proposition 5.6.4 therefore shows that the function

(t,q) = diam(C(SUgq(2)), L75) is bounded on compact subsets of (0, 1] x (0, 1].



