
Chapter 6

The quantum Berezin transform

We now introduce the second key ingredient in the analysis of the quantum met-
ric structure of SUq.2/, namely an analogue of the classical Berezin transform (see
e.g. [73] and references therein) in this context. The Berezin transform was already
essential in Rieffel’s seminal results in [71], where he proves that the 2-sphere can
be approximated by matrices. The Berezin transform also played a pivotal role in the
analysis of the quantum metric structure on the Podleś spheres S2q , q 2 .0; 1�, in [3,4].
In the present context it will serve to firstly establish the fact that the maximal and
minimal Lip-norm, Lmax

t;q and Lt;q introduced in Definition 4.3.5, actually give rise to
the same quantum metric structure (see Corollary 6.4.2 below). Secondly, the Berezin
transform provides us with finite dimensional quantum metric spaces which we will
show approximate quantum SU.2/ in a suitably uniform manner. This, in turn, will
be the key to our main continuity result, Theorem D.

6.1 Definition of the Berezin transform

Throughout this section, we fix the deformation parameter q 2 .0; 1�. The other para-
meter t 2 .0; 1� is irrelevant in this section, since we are currently only concerned
with the C �-algebras and not the Lip-norms. For each N;M 2 N0 we then define the
element

�MN WD
1

p
M C 1

NCMX
rDN

ar �
p
hr C 1iq 2 O.SUq.2//; (6.1)

and consider the state �MN W C.SUq.2// ! C given by �MN .x/ WD h..�MN /
�x�MN /.

That �MN is indeed a state follows from the formulae in (3.15) since un00 D .a�/n

for all n 2 N0. In order to analyse these states in more detail, it is convenient to
first introduce a new circle action. Consider again the left and right circle actions �L
and �R on C.SUq.2// defined on generators by

�L.z;a/ WD za; �L.z;b/ WD zb and �R.z;a/ WD za; �R.z;b/D z
�1b: (6.2)

A direct computation shows that

�.z; x/ WD �R
�
z; ��1L .z; x/

�
z 2 S1; x 2 C.SUq.2//

defines a strongly continuous circle action onC.SUq.2//which preserves O.SUq.2//,
and we let …�

m, m 2 Z, denote the spectral projections associated with � (cf. Sec-
tion 5.2). The circle action � is relevant in connection with the states �MN and � since,
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as we will see below, these only detect its fixed point algebra. We first determine the
fixed point algebra in terms of the standard linear basis of O.SUq.2//.

Lemma 6.1.1. The fixed point algebra of the circle action � on C.SUq.2// agrees
with the norm closure of the linear span

spanC

®
.b�b/m.a�/k; ak.b�b/m

ˇ̌
k;m 2 N0

¯
:

Proof. Since � fixes a, a� and b�b, it is clear that the span in the statement of the
lemma is contained in the fixed point algebra. For the opposite inclusion, one may use
the standard linear basis (3.1) together with the spectral projection…�

0 WC.SUq.2//!
C.SUq.2//. Indeed, it holds that

…�
0 .�

klm/ D

´
�klm for m D l

0 for m ¤ l

Lemma 6.1.2. Let N;M 2 N0. We have that � D � ı…�
0 and �MN D �

M
N ı…

�
0 .

Proof. This follows immediately since �.�.z;x//D �.x/ and �MN .�.z;x//D �
M
N .x/

for all z 2 S1 and x 2 C.SUq.2//. In the case of � it suffices to check the relevant
identity on the generators a and b and in the case of �MN the relevant identity follows
since �.z; �MN / D �

M
N and h.�.z; x// D h.x/.

Lemma 6.1.3. We have the convergence result limN;M!1 �
M
N D � with respect to

the weak� topology on �.C.SUq.2///.

Proof. By Lemmas 6.1.1 and 6.1.2, we only need to treat elements of the form

.b�b/m.a�/k and ak.b�b/m; for k;m 2 N0:

Since states preserve the involution and

.b�b/m.a�/k D q�2km.a�/k.b�b/m

it is enough to check the claim on elements of the form .a�/k.b�b/m. But since

spanC

®
.b�b/m

ˇ̌
m 2 N0

¯
D spanC

®
.a�/nan

ˇ̌
n 2 N0

¯
;

we may, equivalently, verify the convergence on elements of the form .a�/kCnan. Let
now k; n 2 N0 be given. We are left with the task of showing that

lim
N;M!1

�MN
�
.a�/kCnan

�
D �

�
.a�/kCnan

�
D 1:
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Let us recall the inner product formulae from (3.15) as well as the fact that .a�/m D
um00 for all m 2 N0. For each N;M 2 N0 with M > k we may thus compute as
follows:

�MN
�
.a�/kCnan

�
D

1

M C 1

NCMX
i;jDN

hi C 1i1=2q hj C 1i
1=2
q h

�
.a�/iCkCnanCj

�
D

1

M C 1

NCM�kX
iDN

hi C 1i1=2q hi C k C 1i
1=2
q h

�
.a�/iCkCnaiCkCn

�
D

1

M C 1

NCM�kX
iDN

hi C 1i
1=2
q hi C k C 1i

1=2
q

hi C k C nC 1iq
:

Let now " > 0 be given. Since lims!1
hsiq
hlCsiq

D 1 for all l 2 N0 we may choose
N0 2 N0 such that ˇ̌̌̌

hi C 1i
1=2
q hk C i C 1i

1=2
q

hnC k C i C 1iq
� 1

ˇ̌̌̌
< "=2

for all i > N0. Furthermore, we may choose M0 > k such that k
MC1

< "=2 for all
M > M0. For all M > M0 and N > N0 we then estimate that

ˇ̌
�MN

�
.a�/kCnan

�
� 1

ˇ̌
6

1

M C 1

NCM�kX
iDN

ˇ̌̌̌
hi C 1i

1=2
q hi C k C 1i

1=2
q

hi C k C nC 1iq
� 1

ˇ̌̌̌
C

ˇ̌̌̌
M � k C 1

M C 1
� 1

ˇ̌̌̌
< "=2C "=2 D ":

This proves the proposition.

We are now ready to introduce the analogue of the Berezin transform in our q-
deformed setting:

Definition 6.1.4. The quantum Berezin transform in degree N;M 2 N0 is the com-
pletely positive unital map ˇMN WC.SUq.2//! C.SUq.2// given by

ˇMN .x/ WD
�
1˝ �MN

�
�.x/:

Remark 6.1.5. In [3], a quantum Berezin transform was introduced for the stand-
ard Podleś sphere S2q in a manner very similar to the one above; see also [31] for an
alternative and much more general construction of a Berezin transform on quantum
homogeneous spaces. In [3], the states defining the Berezin transform were denoted
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hN , N 2 N0, and given by hN .x/ WD hN C 1iqh..a�/NxaN / for all x 2 C.S2q / �
C.SUq.2//. We therefore have that hN D �0N jC.S2

q /
. In particular, the restriction of

ˇ0N toC.S2q / agrees with the Berezin transform ˇN introduced in [3]. When qD 1, we
recovered the usual Berezin transform on the classical 2-sphere; see [3, Section 3.2]
for details on this. Note also that a Berezin transform for quantum homogeneous
spaces was introduced in [72] in the setting of Kac-type quantum groups. Since
SUq.2/ is only of Kac-type when q D 1 the constructions in [72] unfortunately do
not apply directly in our context. However, as we shall see below, the more ad hoc
definition above shares a number of properties with the construction in [72].

6.2 The image of the Berezin transform

In connection with our investigation of the quantum Gromov–Hausdorff continuity of
the family .C.SUq.2//; Lmax

t;q /t;q2.0;1�, a detailed understanding of the image of the
Berezin transform ˇMN turns out to be imperative. In this section we therefore describe
this image explicitly in terms of polynomial expressions in the generators a; b; a�; b�

for O.SUq.2//.
For each r; s 2 N0, we introduce the linear functional 'r;sW C.SUq.2// ! C

given by
'r;s.x/ WD h

�
.a�/sxar

�
:

These linear functionals are then related to our states �MN (see (6.1)) by the formula

�MN D
1

M C 1

NCMX
r;sDN

p
hr C 1iqhs C 1iq � 'r;s; N;M 2 N0: (6.3)

We now wish to determine the image of the Berezin transform ˇMN . To this end we
first analyse the linear functionals 'r;s in more details.

Lemma 6.2.1. Let n; r; s 2 N0 and 0 6 i; j 6 n. It holds that 'r;s.unij / > 0 and that

'r;s.u
n
ij / ¤ 0,

�
n � 2j D r � s and i D j and j 6 s

�
:

Proof. First note that by (3.14) we have the identities

'r;s.u
n
ij / D h

�
.a�/sunija

r
�
D h

�
�.ar/ � .a�/sunij

�
D q�2rh

�
ar.a�/sunij

�
:

Applying the formulae (3.11) we obtain that

ar � unij D

rX
kD0

�n;i;j .k/ � u
nC2k�r
iCk;jCk

and

.a�/s � unij D

min¹i;j;sºX
kD0

�n;i;j .k/ � u
n�2kCs
i�k;j�k

;

(6.4)
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where all the coefficients appearing are strictly positive. Now note that h.um
kl
/ D 0

for all m > 0 and h.u000/ D 1. We see from the formulae in (6.4) that if the matrix
coefficient u000 appears in the double sum expressing ar.a�/s � unij , then there are
terms of the form um00 in the sum expressing .a�/s � unij . This in turn implies that
s > j and i D j . We thus arrive at the following expressions:

h
�
ar.a�/s � unij

�
D

´
�n�2jCs;0;0.0/ � �n;j;j .j / � h

�
u
n�2jCs�r
00

�
i D j; j 6 s

0 elsewhere

D

´
�r;0;0.0/ � �n;j;j .j / i D j; j 6 s; n D r � s C 2j

0 elsewhere:

This proves the lemma.

Lemma 6.2.2. Let N;M 2 N0 and m 2 Z with jmj > M . It holds that ˇMN .x/ D 0
for all x 2 Amq .

Proof. Since ˇMN preserves the involution and Amq D .A
�m
q /� we may suppose that

m < �M . Furthermore, we may assume that x D u2j�mij for some j 2 N0 and i 2
¹0; 1; : : : ; 2j �mº since Am

q is spanned by such matrix coefficients by (3.16). It then
follows from Lemma 6.2.1 that

ˇMN .x/ D

2j�mX
kD0

u
2j�m

ik
� �MN

�
u
2j�m

kj

�
D u

2j�m
ij � �MN

�
u
2j�m
jj

�
D 0:

Indeed, for all r; s 2 ¹N; : : : ;N CM ºwe have 2j �m� 2j D�m>M > r � s.

Lemma 6.2.3. Let N;M 2 N0 and let m 2 ¹0; : : : ;M º. Let moreover j 2 N0 and
i 2 ¹0; 1; : : : ; 2j Cmº. It holds that

ˇMN
�
u
2jCm
ij

�
¤ 0, j 2 ¹0; : : : ; N CM �mº:

In this case �MN .u
2jCm
jj / > 0 and we have the formula

ˇMN
�
u
2jCm
ij

�
D u

2jCm
ij � �MN

�
u
2jCm
jj

�
:

Similarly, we have that

ˇMN
�
u
2jCm
i;jCm

�
¤ 0, j 2 ¹0; : : : ; N CM �mº:

In this case �MN .u
2jCm
jCm;jCm/ > 0 and we have the formula

ˇMN
�
u
2jCm
i;jCm

�
D u

2jCm
i;jCm � �

M
N

�
u
2jCm
jCm;jCm

�
:
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Proof. Let k 2 ¹0; : : : ; 2j Cmº be given. Using Lemma 6.2.1 together with (6.3) we
obtain that �MN .u

2jCm

kj
/¤ 0 if and only if kD j and there exist r;s 2 ¹N;: : : ;N CM º

with r � s D m and j 6 s. Since we have assumed thatM > m > 0 we then see that
�MN .u

2jCm

kj
/¤ 0 if and only if kD j and j 2 ¹0;1; : : : ;N CM �mº. In this case, we

moreover have that �MN .u
2jCm

kj
/ > 0. The first claim of the lemma (regarding u2jCmij )

therefore follows since

ˇMN
�
u
2jCm
ij

�
D

2jCmX
kD0

u
2jCm

ik
� �MN

�
u
2jCm

kj

�
D u

2jCm
ij � �MN

�
u
2jCm
jj

�
:

The remaining claim is now a consequence of the positivity of the linear maps ˇMN W
C.SUq.2//! C.SUq.2// and �MN WC.SUq.2//! C. Indeed, we know from (3.10)
that .u2jCmi;j /� D .�q/j�iu

2jCm
2jCm�i;jCm.

Lemma 6.2.4. Let N;M 2 N0 and let m 2 ¹0; 1; : : : ;M º. It holds that

ˇMN .A
�m
q / D spanC

®
u
2jCm
ij

ˇ̌
0 6 j 6 N CM �m; 0 6 i 6 2j Cm

¯
and

ˇMN .A
m
q / D spanC

®
u
2jCm
i;jCm

ˇ̌
0 6 j 6 N CM �m; 0 6 i 6 2j Cm

¯
:

The vector space dimensions are given by

dimC

�
ˇMN .A

�m
q /

�
D .N CM C 1/.N CM C 1 �m/ D dimC

�
ˇMN .A

m
q /
�
:

In particular, we have that ˇMN .A
k
q/ � Ak

q for all k 2 ¹�M;�M C 1; : : : ;M º.

Proof. We first remark that the algebraic spectral subspace A�mq is spanned by matrix
coefficients of the form u

2jCm
ij with j 2 N0 and i 2 ¹0; 1; : : : ; 2j C mº by (3.16).

Similarly, since Am
q D .A

�m
q /� it follows from (3.10) that Am

q is spanned by matrix
coefficients of the form u

2jCm
i;jCm with j 2N0 and i 2 ¹0;1; : : : ;2j Cmº. The first claim

regarding the images is then a consequence of Lemma 6.2.3. The relevant formula
for the dimension of the subspaces ˇMN .A

�m
q / and ˇMN .A

m
q / now follows from the

computation

dimC

�
ˇMN .A

m
q /
�
D dimC

�
ˇMN .A

�m
q /

�
D

NCM�mX
jD0

.2j CmC 1/

D .N CM �mC 1/.N CM C 1/:

The images of the spectral bands under the Berezin transforms will serve as our
finite dimensional (also known as “fuzzy”) approximations, analogous to the fuzzy
spheres from [55, 71] and their q-deformed counterparts in [3]. It will, however, also
be convenient to have a description available in terms of the generators of SUq.2/
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and we therefore opt to use this as the formal definition. To this end, recall from [3,
Definition 3.5] that the quantum fuzzy sphere in degree N 2 N0 is defined as

FuzzN .S2q /

WD spanC

®
.bb�/i .ab�/j ; .bb�/i .ba�/j

ˇ̌
i; j 2 N0; i C j 6 N

¯
� O.S2q /:

(6.5)

We now make the following definition:

Definition 6.2.5. Let N;m 2 N0. We define the fuzzy spectral subspaces as the finite
dimensional vector spaces

FuzzN .Amq / WD
mX
kD0

akbm�k � FuzzN .S2q / � Am
q and

FuzzN .A�mq / WD

mX
kD0

.a�/k.b�/m�k � FuzzN .S2q / � A�mq :

Moreover, for K 2 N0 we define the fuzzy spectral K-bands as

FuzzN .BKq / WD
KX

mD�K

FuzzN .Amq / � BK
q :

Note that since FuzzN .S2q / increases withN 2N0, the same is true for FuzzN .Amq /
for all m 2 Z. As mentioned above, the spaces just defined are intimately related to
the quantum Berezin transform as the following result shows:

Proposition 6.2.6. Let N;M;K 2 N0. It holds that ˇMN .A
m
q / D FuzzNCM�jmj.Amq /

for allm2¹�M;: : : ;M º. In particular ˇMN .B
K
q /�FuzzNCM .BKq /wheneverM >K

and FuzzN .BKq / is an operator system (without any constraints on N;K 2 N0).

Proof. Let m 2 Z with jmj 6 M be given. We focus on the case where m 2 N0

since the case where m < 0 follows from similar arguments. We begin by recalling
from [3, Lemmas 3.4 and 3.7] that

FuzzNCM�m.S2q / D spanC

®
u
2j
ij

ˇ̌
0 6 j 6 N CM �m; 0 6 i 6 2j

¯
: (6.6)

Similarly, we recall from Lemma 6.2.4 that

ˇMN .A
m
q / D spanC

®
u
2jCm
i;jCm

ˇ̌
0 6 j 6 N CM �m; 0 6 i 6 2j Cm

¯
:

FormD 0, the identity FuzzNCM�m.Amq /Dˇ
M
N .A

m
q / therefore follows immediately.

We may thus suppose that m > 0. Let us start out by proving the inclusion

FuzzNCM�m.Amq / � ˇ
M
N .A

m
q /: (6.7)
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For each l; i; j 2 N0 with i 6 2j C l it follows from (3.11) that

a � u
2jCl

i;jCl
2 spanC

°
u
2jC.lC1/

iC1;jC.lC1/
; u

2.j�1/C.lC1/

i;j�1C.lC1/

±
and

b � u
2jCl

i;jCl
2 spanC

°
u
2jC.lC1/

i;jC.lC1/
; u

2.j�1/C.lC1/

i�1;j�1C.lC1/

±
:

Hence, for all k 2 ¹0; : : : ;mº, j 2 ¹0; : : : ;N CM �mº and i 2 ¹0; : : : ; 2j º it holds
that

akbm�ku
2j
ij 2 spanC

°
u
2jCm
i;jCm

ˇ̌̌
0 6 j 6N CM �m; 0 6 i 6 2j Cm

±
D ˇMN .A

m
q /:

By definition of FuzzNCM�m.Amq /, the inclusion in (6.7) therefore follows. In order
to show that FuzzNCM�m.Amq / D ˇ

M
N .A

m
q /, it now suffices to establish that

dimC

�
FuzzNCM�m.Amq /

�
> dimC

�
ˇMN .A

m
q /
�
:

Rewriting the definition of the quantum fuzzy sphere from (6.5) slightly we obtain

FuzzNCM�m.S2q /

D spanC

®
aj bi .b�/iCj ; .a�/j biCj .b�/i

ˇ̌
i; j 2 N0; i C j 6 N CM �m

¯
:

(6.8)

From the two extremes, k D 0 and k D m, in Definition 6.2.5 we obtain that

M1 WD
®
amCj bi .b�/iCj ; .a�/j bmCiCj .b�/i

ˇ̌
i; j 2 N0; i C j 6 N CM �m

¯
� FuzzNCM�m.Amq /:

Similarly, fixing j D 0 in (6.8) and letting k vary in ¹1; : : : ; m � 1º we obtain that

M2 WD
®
akbm�kCi .b�/i

ˇ̌
1 6 k 6 m � 1; 0 6 i 6 N CM �m

¯
� FuzzNCM�m.Amq /:

Sincem > 1, we see from (3.1) that the setM1 [M2 consists of linearly independent
vectors and its cardinality is given by

.m � 1/ � .N CM �mC 1/C 2 �

 
NCM�mC1X

iD1

i

!
D .N CM �mC 1/ � .N CM C 1/;

which is exactly dimC.ˇ
M
N .A

m
q // by Lemma 6.2.4. This completes the proof of the

first part of the lemma.
The last two statements of the lemma follow from the first part. Firstly, forM >K

we have that

ˇMN .B
K
q /D

KX
mD�K

FuzzNCM�jmj.Amq /�
KX

mD�K

FuzzNCM .Amq /D FuzzNCM .BKq /:
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Secondly, for arbitrary N; K 2 N0, FuzzN .BKq / is an operator system since the
Berezin transforms are �-preserving:

FuzzN .Amq /
�
D ˇ

jmj
N .Amq /

�
D ˇ

jmj
N .A�mq / D FuzzN .A�mq /:

Corollary 6.2.7. Letm2Z andN;K 2N0. It holds that dimC.FuzzN .Amq //D .N C
jmj C 1/.N C 1/. In particular, both dimC.FuzzN .Amq // and dimC.FuzzN .BKq // are
independent of q 2 .0; 1�.

Proof. The first identity follows from Lemma 6.2.4 since FuzzN .Amq / D ˇ
jmj
N .Amq /

by Proposition 6.2.6. Since FuzzN .Amq / � Am
q one has that

dimC.FuzzN .BKq // D
KX

mD�K

dimC.FuzzN .Amq //;

and dimC.FuzzN .BKq // is therefore also independent of q 2 .0; 1�.

Inspecting the proof of Proposition 6.2.6, we obtain an explicit linear basis for the
fuzzy spectral subspaces:

Corollary 6.2.8. For eachN 2N andm2Z the fuzzy spectral subspace FuzzN .Amq /
admits a linear basis consisting of a subset of the standard linear basis (3.1) for
O.SUq.2// which is independent of the value of q. Concretely the basis can be chosen
as follows:

• For m > 0 it is given by®
ajCmbi .b�/iCj ; .a�/j biCjCm.b�/i

ˇ̌
i; j 2 N0; 0 6 i C j 6 N

¯
[
®
akbiCm�k.b�/i

ˇ̌
k 2 ¹1; : : : ; m � 1º; i 2 ¹0; : : : ; N º

¯
:

• For m D 0 it is given by®
aj bi .b�/iCj ; .a�/j biCj .b�/i

ˇ̌
j 2 ¹1; : : : ; N º; i 2 ¹0; : : : ; N � j º

¯
[
®
bi .b�/i

ˇ̌
i 2 ¹0; : : : ; N º

¯
:

• For m < 0 it is given by®
.a�/j�mbiCj .b�/i ; aj bi .b�/iCj�m

ˇ̌
i; j 2 N0; 0 6 i C j 6 N

¯
[
®
.a�/kbi .b�/i�m�k.b�/i

ˇ̌
k 2 ¹1; : : : ;�m � 1º; i 2 ¹0; : : : ; N º

¯
:

The fuzzy approximations of the 2-sphere originated in physics [29, 55, 56] and
have the feature of carrying an action of SU.2/. In the q-deformed setting fuzzy
approximations of the Podleś sphere have also been studied in the mathematical phys-
ics literature; see [5,27,28]. In some sense these ideas can be traced back to the work
of Podleś [66].
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Similarly to the quantum fuzzy spheres, our fuzzy spectral band also carries a
coaction of quantum SU.2/:

Proposition 6.2.9. For each N;K 2 N0, the operator system

FuzzN .BKq / � O.SUq.2//

is O.SUq.2//-coinvariant.

Proof. For every x 2 FuzzN .BKq / we need to show that

�.x/ 2 O.SUq.2//˝ FuzzN .BKq /:

Let m 2 ¹�K;�K C 1; : : : ; Kº. We shall in fact see that

�.x/ 2 O.SUq.2//˝ FuzzN .Amq /

whenever x 2 FuzzN .Amq /. Indeed, since FuzzN .Amq / D ˇ
jmj
N .Amq / by Proposition

6.2.6, the relevant inclusion follows from Lemma 6.2.4 together with the formula for
the coproduct on matrix coefficients.

Remark that for q D 1, the comultiplication on O.SU.2// is dual to the group
multiplication. Letting � denote the left regular action of SU.2/ on O.SU.2// and
evg WO.SU.2//! C denote the evaluation at a point g 2 SU.2/, we have the formula
�g�1f D .evg ˝ 1/�.f / for all f 2 O.SU.2//. Thus, in this case the coinvariance
in Proposition 6.2.9 does indeed correspond to invariance of FuzzN .BK1 / under the
left regular action of SU.2/.

In the section to follow, we need to apply the Berezin transform, which is at
the moment only defined on C.SUq.2//, to elements in the von Neumann algebra
L1.SUq.2//. Since � extends to a normal �-homomorphism at the von Neumann
algebraic level and each �MN is normal (being a vector state in the GNS repres-
entation), the slice map formula .1 ˝ �MN /�.x/ also makes sense at the level of
L1.SUq.2//. We could therefore simply extend the Berezin transform ˇMN to
L1.SUq.2// using the same formula. However, it will be important to view this
extension as a composition of a finite-dimensional projection and the original Berezin
transform and we therefore take this point of view as our point of departure.

For each finite dimensional subspace F � O.SUq.2// we let PF WL2.SUq.2//!
L2.SUq.2// denote the orthogonal projection with image ƒ.F / � L2.SUq.2//. We
then define the linear map ˆF WB.L2.SUq.2///! O.SUq.2// by the formula

ƒ.ˆF .T // WD PF .T �ƒ.1// for all T 2 B.L2.SUq.2///: (6.9)

We record that Im.ˆF / D F and that ˆF is WOT-norm continuous, where we recall
that WOT refers to the weak operator topology on B.L2.SUq.2///. Notice, moreover,
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that ˆF0
ˆF1
D ˆF1

ˆF0
D ˆF0

when F0; F1 � O.SUq.2// are finite dimensional
subspaces with F0 � F1. For each N;M 2 N0, we have that ˇMN .B

M
q / � BM

q �

O.SUq.2// is a finite-dimensional subspace and we apply the notation

ˆMN WD ˆˇM
N
.BM

q /WB
�
L2.SUq.2//

�
! O.SUq.2//

for the associated linear map. Recalling from Proposition 6.2.6 that

ˇMN .B
M
q / � FuzzNCM .BMq /;

we now define the extended Berezin transform žMN WL
1.SUq.2//! FuzzNCM .BMq /

by setting
žM
N .x/ WD ˇ

M
N .ˆ

M
N .x// for all x 2 L1.SUq.2//: (6.10)

Lemma 6.2.10. Let N;M 2 N0. The extended Berezin transform žMN is ucp (unital
completely positive) and satisfies that žMN .x/ D ˇ

M
N .x/ for all x 2 C.SUq.2//.

Proof. We will start by showing that the extended Berezin transform does indeed
extend the Berezin transform. By norm-density and linearity, it suffices to verify that
ˇMN .ˆ

M
N .u

n
ij // D ˇ

M
N .u

n
ij / for all n 2 N0 and i; j 2 ¹0; : : : ; nº. If unij is not one of

the matrix coefficients spanning ˇMN .B
M
q /D

PM
mD�Mˇ

M
N .A

m
q / then we obtain from

Lemmas 6.2.2, 6.2.3 and 6.2.4 that both sides of the claimed identity are equal to zero
(recall here that the different matrix coefficients are orthogonal to one another when
embedded in L2.SUq.2//). Conversely, if unij 2 ˇ

M
N .B

M
q /, it holds that ˆMN .u

n
ij / D

unij , and the relevant identity therefore holds trivially.
We now focus on showing that žMN is completely positive. We first note that this

is indeed the case for the Berezin transform ˇMN , being defined as the composition
of the unital �-homomorphism � with the slice map induced by the state �MN . Let
x 2 L1.SUq.2//˝Md .C/ be given. Then there exists a net .x˛/˛ in C.SUq.2//˝
Md .C/ converging in the strong operator topology to x. The net .x�˛x˛/˛ therefore
converges in the weak operator topology to x�x and sinceˆMN is WOT-norm continu-
ous we obtain the net ..ˇMN ˝ 1d /.x

�
˛x˛//˛ converges in norm to . žMN ˝ 1d /.x

�x/.
Since each .ˇMN ˝ 1d /.x

�
˛x˛/ is positive and the positive cone is norm closed we may

conclude that . žMN ˝ 1d /.x
�x/ is positive. This proves that the extended Berezin

transform is completely positive.

6.3 Estimates on the Berezin transform

Our next aim is to analyse the interplay between the Berezin transforms and the twis-
ted derivations defining the Lip-norms Lmax

t;q . At the algebraic level, i.e. with Lt;q
instead of Lmax

t;q , this analysis is slightly less complicated (see the remarks preceding
Proposition 6.3.4), but at the analytic level things are more subtle. In the first series of
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lemmas below, we show how one may, nevertheless, reduce certain questions to the
algebraic setting by means of the projections ˆF introduced in (6.9).

Throughout this section, we fix the two parameters t and q in .0; 1� unless expli-
citly stated otherwise.

Lemma 6.3.1. Let �; � 2 O.SUq.2//˚2. Then there exists a finite-dimensional sub-
space F0 � O.SUq.2// such that˝

�; @Hq .x/�
˛
D
˝
�; @Hq .ˆF .x//�

˛
and

˝
�; @Vt .x/�

˛
D
˝
�; @Vt .ˆF .x//�

˛
whenever F � O.SUq.2// is a finite-dimensional subspace with F0 � F and x 2
Lipt .SUq.2//.

Proof. First consider y; z 2 O.SUq.2// and let F � O.SUq.2// be any finite dimen-
sional subspace containing the vector y � �.z/� 2 O.SUq.2//. Using that the Haar
state is a twisted trace (see (3.13)), we then have that

hy; x � zi D hy � �.z/�; xi D hy � �.z/�; ˆF .x/i D hy;ˆF .x/ � zi (6.11)

for all x 2 C.SUq.2//.
Let us now focus on the case of the horizontal Dirac operator. The argument is

similar for the vertical Dirac operator. Let x 2Lipt .SUq.2// and �;�2O.SUq.2//˚2.
By definition of @Hq .x/ and by Lemma 3.6.4 we have that˝

�; @Hq .x/�
˛
D
˝
�;DH

q �L.q
1
2 ; x/�

˛
�
˝
�; �L.q

� 1
2 ; x/DH

q �
˛

D hDH
q �; �

�1
q x�q�i � h�; �qx�

�1
q DH

q �i

D h��1q DH
q �; x�q�i � h�q�; x�

�1
q DH

q �i:

Since the unbounded operators�q ,��1q DH
q both preserve the subspace O.SUq.2//˚2

we obtain the result of the lemma by applying the observation from (6.11) and running
the last computation backwards.

Lemma 6.3.2. Let n; i; j 2 N0 satisfy that i; j 6 n. It holds that unij 2 ˇ
M
N .B

M
q /

for all N;M 2 N0 with N CM > n and M > j2j � nj. In particular, for any finite
dimensional subspace F � O.SUq.2// we may choose a K0 2 N0 such that F �
ˇK0 .B

K
q / for all K > K0.

Proof. Let N;M 2 N0 with N CM > n and M > j2j � nj be given. Put m WD
j2j � nj so that M > m. Suppose first that m D n � 2j . We then have that unij D
u
2jCm
ij and it follows from Lemma 6.2.4 that unij 2 ˇ

M
N .A

�m
q / � ˇMN .B

M
q /, since

j 6 2j D n �m 6 N CM �m. Suppose next that m D 2j � n. Put k WD j �m
and notice that k > 0 since k D n� j . We then have that unij D u

2j�m
ij D u2kCm

i;kCm
and

it again follows from Lemma 6.2.4 that unij 2 ˇ
M
N .A

m
q / since k D j �m 6 n�m 6

N CM �m.
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We define the linear map ıWLipq.SUq.2//!M2.L
1.SUq.2/// by putting

ı.x/ WD u � @q;q.x/ � u
� for all x 2 Lipq.SUq.2//:

Note that ı does indeed take values in the von Neumann algebra M2.L
1.SUq.2///

since @q;q D @Vq C @
H
q takes values here by Corollary 4.5.5. We moreover remark that

ı extends the twisted �-derivation

ı D

�
ı3 �ı2

�ı1 �ı3

�
WO.SUq.2//!M2

�
O.SUq.2//

�
as can be seen by an application of Proposition 4.7.4.

Lemma 6.3.3. For each N;M 2 N0 there exists a K0 2 N0 such that

(1) ˆMN ı.x/ D ˆ
M
N ı.ˆ

K
0 .x// for all x 2 Lipq.SUq.2// and K > K0.

(2) ˆMN @
V
t .x/ D ˆ

M
N @

V
t .ˆ

K
0 .x// for all x 2 Lipt .SUq.2// and K > K0.

Proof. We will only carry out the argumentation for ı since the remaining case fol-
lows by a similar but slightly easier argument.

Consider the finite dimensional subspace ˇMN .B
M
q / � O.SUq.2// and let d 2 N

denote its dimension. Let us choose a subset ¹�k j k D 1; 2; : : : ; dº � ˇMN .B
M
q /

so that ¹ƒ.�k/ j k D 1; 2; : : : ; dº constitutes an orthonormal basis for the subspace
ƒ.ˇMN .B

M
q // � L

2.SUq.2//. The map ˆMN is then given by the expression

ˆMN .T / D

dX
kD1

�k
˝
ƒ.�k/; Tƒ.1/

˛
T 2 B

�
L2.SUq.2//

�
:

For every vector � 2 L2.SUq.2// we apply the notation

�0 WD

�
�

0

�
and �1 WD

�
0

�

�
2 L2.SUq.2//˚2;

and let eij 2M2.C/ denote the standard matrix units for i; j 2 ¹0; 1º. The linear map
ˆMN can then be described at the level of 2 � 2-matrices by the expression

ˆMN .T / D

1X
i;jD0

dX
kD1

eij � �k
˝
ƒ.�ik/; Tƒ.1/

j
˛

for all T 2M2

�
B.L2.SUq.2///

�
:

In particular, we have that

ˆMN .ı.x// D

1X
i;jD0

dX
kD1

eij � �k
˝
ƒ.�ik/; ı.x/ƒ.1/

j
˛

D

1X
i;jD0

dX
kD1

eij � �k
˝
u�ƒ.�ik/; @q;q.x/u

�ƒ.1/j
˛
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for all x 2 Lipq.SUq.2//. It therefore follows from Lemma 6.3.1 that we may choose
a finite-dimensional subspace F0 � O.SUq.2// such that

ˆMN .ı.x// D ˆ
M
N

�
ı.ˆF .x//

�
for all finite dimensional subspaces F � O.SUq.2// with F0 � F and all x 2
Lipq.SUq.2//. The result of the present lemma is now a consequence of Lemma 6.3.2.

Let N;M 2 N0 be given. Recall that the Berezin transform ˇMN WC.SUq.2//!
C.SUq.2// is defined by slicing the coproduct � on the right tensor-leg with a state,
while endomorphisms of the form ı� with � 2 Uq.su.2// are defined by slicing the
coproduct on the left tensor-leg. An application of the coassociativity of � therefore
shows that ˇMN .ı�.x// D ı�.ˇ

M
N .x// for all x 2 O.SUq.2// and � 2 Uq.su.2//. In

particular, we obtain that

ˇMN .ı.x// D ı.ˇ
M
N .x// for all x 2 O.SUq.2//: (6.12)

Furthermore, for each element x belonging to an algebraic spectral subspace Am
q for

some m 2 Z, we get from Lemmas 4.3.1, 6.2.2 and 6.2.4 that

ˇMN
�
@Vt .x/

�
D

�
Œm=2�tˇ

M
N .x/ 0

0 �Œm=2�tˇ
M
N .x/

�
D @Vt .ˇ

M
N .x// for all t 2 .0;1�:

We may thus conclude that

ˇMN .@
V
t .x// D @

V
t .ˇ

M
N .x// for all x 2 O.SUq.2//:

As a consequence of the analysis carried out above, we shall now see that these iden-
tities remain valid also at the level of the Lipschitz algebra. Recall, in this connection,
that žMN denotes the extension of ˇMN to L1.SUq.2// introduced in (6.10).

Proposition 6.3.4. For M;N 2 N0, the following identities are valid:

(1) ı.ˇMN .x// D ž
M
N ı.x/ for all x 2 Lipq.SUq.2//;

(2) @Vt .ˇ
M
N .x// D

žM
N @

V
t .x/ for all x 2 Lipt .SUq.2//.

Proof. We focus on proving the identity regarding the map ı. A similar argument-
ation applies to the twisted �-derivation @Vt . Let x 2 Lipq.SUq.2// be given. By
Lemmas 6.3.2 and 6.3.3, we may choose a K 2 N0 such that ˇMN .B

M
q / � ˇ

K
0 .B

K
q /

and such that
ˆMN ı.x/ D ˆ

M
N ı
�
ˆK0 .x/

�
:

We now remark that ˆK0 .x/ 2 O.SUq.2// and that ˆMN ˆ
K
0 D ˆ

M
N .

Applying these facts together with (6.12) and Lemma 6.2.10 we obtain the desired
result:

žM
N ı.x/Dˇ

M
N ˆ

M
N ı.x/Dˇ

M
N ˆ

M
N ı
�
ˆK0 .x/

�
Dı

�
ˇMN ˆ

M
N ˆ

K
0 .x/

�
Dı

�
ˇMN .x/

�
:
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In the special situation where t D q we have the identity u � @q;q � u� D ı and,
as we saw above, the map ı commutes with the Berezin transform. As the following
result shows, this has the effect that the Berezin transform becomes a contraction for
the associated Lip-norm Lmax

q;q . There is no reason to expect this to be the case when
t ¤ q, but Proposition 6.3.10 below provides an estimate on how far away the Berezin
transform is from being a contraction for the Lip-norm Lmax

t;q .

Corollary 6.3.5. Let N;M 2 N0. The Berezin transform

ˇMN WLipq.SUq.2//! O.SUq.2//

is a Lip-norm contraction for Lmax
q;q ; i.e. we have the inequality

Lmax
q;q

�
ˇMN .x/

�
6 Lmax

q;q .x/

for all x 2 Lipq.SUq.2//.

Proof. Let x 2 Lipq.SUq.2//. By Corollary 4.5.5, we have that

ı.x/ D u � @q;q.x/ � u
�
2M2

�
L1.SUq.2//

�
and by Lemma 6.2.10 the map žMN WL

1.SUq.2//! C.SUq.2// is ucp, and hence
a complete contraction. Using this together with Proposition 6.3.4, we obtain the
relevant inequality:

Lmax
q;q

�
ˇMN .x/

�
D
ı.ˇMN .x// D  žMN .ı.x// 6 kı.x/k D Lmax

q;q .x/:

We now return to the general setting, and will prove that the Berezin transform
suitably approximates the identity operator on the Lip-unit ball. Most of the results
below will be needed in two versions: one version for all of quantum SU.2/ and one
version which is fine tuned to hold on the spectral bands. ForK 2N0, we will also use
dt;q and dmax

t;q to denote the metrics on the state space �.BKq / arising from the restric-
tion of the seminorms Lt;q and Lmax

t;q to the spectral band BKq having domains BK
q

and BKq \ Lipt .SUq.2//, respectively. Hence, for �; � 2 �.C.SUq.2/// we specify
that

dmax
t;q .�; �/ WD sup

®
j�.x/ � �.x/j

ˇ̌
x 2 C.SUq.2//; Lmax

t;q .x/ 6 1
¯

dmax
t;q .�jBK

q
; �jBK

q
/ WD sup

®
j�.x/ � �.x/j

ˇ̌
x 2 BKq ; L

max
t;q .x/ 6 1

¯
;

and similarly for dt;q . Note that by Lemma 5.3.2 it holds that the domain of the
restricted seminorm Lmax

t;q jBK
q

is independent of t , in that we have

Lipt .SUq.2// \ BKq D LipH .SUq.2// \ BKq ; (6.13)

where LipH .SUq.2// is the algebra of horizontally Lipschitz elements introduced in
Definition 4.3.2.
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Proposition 6.3.6. Let N;M;K 2 N0. It holds that

kˇMN .x/ � xk 6 dmax
t;q

�
�MN ; �

�
� Lmax

t;q .x/ for all x 2 C.SUq.2// and

kˇMN .x/ � xk 6 dmax
t;q

�
�MN jBK

q
; �jBK

q

�
� Lmax

t;q .x/ for all x 2 BKq :

Proof. When proving the two statements we may focus on the case where x belongs
to Lipt .SUq.2// or Lipt .SUq.2// \ BKq since the seminorms on the right-hand side
otherwise take the value infinity. Notice first that for every y 2 C.SUq.2// it holds
that

kyk D sup
®
j��;�.y/j

ˇ̌
�; � 2 L2.SUq.2//; k�k; k�k D 1

¯
; (6.14)

where we recall that ��;� denotes the linear functional x 7! h�; �.x/�i. Let now
x 2 Lipt .SUq.2// be given and let �; � 2 L2.SUq.2// be unit vectors. Using the
identity (6.14), it suffices to show thatˇ̌

��;�.ˇ
M
N .x/ � x/

ˇ̌
6 dmax

t;q .�
M
N ; �/ � L

max
t;q .x/:

This inequality follows from Proposition 4.6.6 and the Fubini Theorem for slice maps
[76] via the estimates:ˇ̌

��;�.ˇ
M
N .x/ � x/

ˇ̌
D
ˇ̌
.�MN � �/.��;� ˝ 1/�.x/

ˇ̌
6 dmax

t;q .�
M
N ; �/ � L

max
t;q

�
.��;� ˝ 1/�.x/

�
6 dmax

t;q .�
M
N ; �/ � L

max
t;q .x/:

This proves the first part of the statement.
If x 2 BKq then �.x/ 2 C.SUq.2//˝min B

K
q since each of the algebraic spectral

subspaces is a left comodule for O.SUq.2//. In the last computation in the proof
above we therefore have .��;� ˝ 1/�.x/ 2 BKq , and hence the rest of the argument
carries over to prove the remaining inequality.

As indicated above, we now wish to estimate how far the Berezin transform is
from being a contraction for the Lip-norm Lmax

t;q . In general, there is no hope to com-
mute the Berezin transform directly past the operation u � @t;q � u� as we could when
t D q. However, as Proposition 6.3.6 shows, the Berezin transform approximates the
identity operator well on the Lip-unit ball, and this makes it possible to obtain strong
estimates nevertheless. The analytic norm k � kt;q introduced in Section 3.6 will be
used as a tool in the analysis below, and we first provide an estimate on its values on
the entries of the fundamental unitary u 2M2.O.SUq.2///. We denote these entries
by uij , i; j D 0; 1.

Lemma 6.3.7. For every i; j 2 ¹0; 1º, it holds that

kuij kt;q D ku
�
ij kt;q 6 q�

1
2 C t�

1
2 and

Lmax
t;q .uij / D L

max
t;q .u

�
ij / 6 Œ1=2�t C q

� 1
2 :
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Proof. Let i; j 2 ¹0;1º be given. Using that �L.s
1
2 ;uij /D s

j� 1
2uij for all s 2 .0;1/,

the result of the lemma follows from the estimate

ku�ij kt;q D kuij kt;q 6 max
®
qj�

1
2 C tj�

1
2 ; q�jC

1
2 C t�jC

1
2

¯
6 q�

1
2 C t�

1
2

together with the estimates

Lmax
t;q .u

�
ij / D L

max
t;q .uij / D

@Vt .uij /C @Hq .uij /
6 k@3t .uij /k Cmax

®
q

1
2 k@e.uij /k; q

�1=2
k@f .uij /k

¯
6 Œ1=2�t C q

� 1
2 ;

where the last inequality follows from (3.3).

In the following lemma we recall that…L
0 WC.SUq.2//!C.S2q / denotes the spec-

tral projection onto the Podleś sphere; see (3.17).

Lemma 6.3.8. Let x 2 ker.…L
0 /. We have the estimate

kxk 6
� � .t1=2 C t�1=2/

p
3

� Lmax
t;q .x/:

Proof. Without loss of generality, we may assume that x 2 ker.…L
0 /\ Lipt .SUq.2//

since the right-hand side of the desired inequality is equal to infinity otherwise. By
Proposition 5.5.1 we then get that x D

R V
t
@Vt .x/. It thus follows from Lemma 5.4.3

and the definition of
R V
t

from (5.15) that

kxk 6 k
Z V

t

k � k@Vt .x/k 6
� � .t1=2 C t�1=2/

p
3

� Lmax
t;q .x/:

With the above auxiliary results at our disposal, we may now start estimating
the error arising when commuting the Berezin transform past conjugation with the
fundamental unitary. This will be relevant when estimating the Lmax

t;q -operator norm
of the Berezin transform. An important point of the following lemma is that we are
able to control the error term by means of a continuous function in t and q. For the
statement, we recall that  WD

�
1 0
0 �1

�
.

Lemma 6.3.9. Let K 2 N0. There exists a continuous, positive function gK W .0; 1� �
.0; 1�! .0;1/ such thatˇMN .uxu�/ � uˇMN .x/u� 6 gK.t; q/ � d

max
t;q

�
�MN jBK

q
; �jBK

q

�
� Lmax

t;q .x/

for all N;M 2 N0, all t; q 2 .0; 1� and all x 2 BKq \ ker.…L
0 /.

Proof. Without loss of generality we may focus on the case where x2Lipt .SUq.2//\
BKq \ ker.…L

0 /, since the right-hand side is otherwise equal to infinity. An application



The quantum Berezin transform 98

of Proposition 6.3.6 shows that the following inequalities hold for allN;M 2N0 and
all t; q 2 .0; 1�; notice in this respect that uijxu�kj 2 B

K
q for all i; j; k 2 ¹0; 1º:ˇMN .uxu�/ � uˇMN .x/u�

6
1X

i;j;kD0

ˇMN .uijxu�kj / � uijˇMN .x/u�kj
6

1X
i;j;kD0

ˇMN .uijxu�kj / � uijxu�kjC 1X
i;j;kD0

uij .x � ˇMN .x//u�kj
6 dmax

t;q

�
�MN jBK

q
; �jBK

q

�
�

1X
i;j;kD0

�
Lmax
t;q .uijxu

�
kj /C L

max
t;q .x/

�
:

Applying Lemmas 4.3.7 and 6.3.7 we estimate that

Lmax
t;q .uijxu

�
kj / 6 Lmax

t;q .uij / � kxkt;q � kukj kt;q C kuij kt;q � L
max
t;q .x/ � kukj kt;q

C kuij kt;q � kxkt;q � L
max
t;q .ukj /

6 2
�
Œ1=2�t C q

� 1
2

�
.q�

1
2Ct�

1
2 / � kxkt;qC.q

� 1
2Ct�

1
2 /2 � Lmax

t;q .x/:

The result of the lemma is now a consequence of Lemmas 3.6.5 and 6.3.8: indeed,
we have that

kxkt;q 6
KX

mD�K

.t
m
2 C q

m
2 / � kxk

6
KX

mD�K

.t
m
2 C q

m
2 / �

� � .t1=2 C t�1=2/
p
3

� Lmax
t;q .x/:

Proposition 6.3.10. Let K 2 N0. Then, there exists a continuous positive function
hK W .0; 1� � .0; 1�! .0;1/ satisfying that

(1) hK.q; q/ D 0 for all q 2 .0; 1� and;

(2) the following estimate holds

Lmax
t;q

�
ˇMN .x/

�
6
�
1C hK.t; q/ � d

max
t;q

�
�MN jBK

q
; �jBK

q

��
� Lmax

t;q .x/

for all N;M 2 N0, all t; q 2 .0; 1� and all x 2 Lipt .SUq.2// \ BKq .

Proof. We start out by choosing the continuous positive function gK W .0;1�� .0;1�!
.0;1/ according to Lemma 6.3.9. We then define the continuous positive function
hK W .0; 1� � .0; 1�! .0;1/ by putting

hK.t; q/ WD 2 �

KX
mD1

ˇ̌
Œm=2�t � Œm=2�q

ˇ̌
� gK.t; q/

and note that hK.q; q/ D 0 for all q 2 .0; 1� as desired.
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LetN;M 2N0 and t; q 2 .0; 1� be given. Let moreover x 2 Lipt .SUq.2// \ BKq ,
and remark that by (6.13), x 2 Lipq.SUq.2// \ BKq as well. We define the element
yD @3t .x/� @

3
q.x/ and notice that y 2BKq \ ker.…L

0 / by Lemma 5.3.2. We moreover
emphasise the identities

@t;q.x/ � @q;q.x/ D @
V
t .x/ � @

V
q .x/ D y; where  D

�
1 0
0 �1

�
:

Using Propositions 4.7.4 and 6.3.4 we now compute as follows:

u � @t;q
�
ˇMN .x/

�
� u�

D u � .@Vt � @
V
q /
�
ˇMN .x/

�
� u� C ı

�
ˇMN .x/

�
D u � ˇMN

�
.@Vt � @

V
q /.x/

�
� u� C žMN

�
ı.x/

�
D u � ˇMN .y/ � u

�
� ˇMN .uyu

�/C ˇMN
�
u � .@t;q � @q;q/.x/ � u

�
�
C ž

M
N

�
ı.x/

�
D u � ˇMN .y/ � u

�
� ˇMN .uyu

�/C žMN
�
u � @t;q.x/ � u

�
�
:

Combining the above computation with Lemma 6.3.9, recalling that žMN is a complete
contraction by Lemma 6.2.10, we obtain that

Lmax
t;q

�
ˇMN .x/

�
6
u � ˇMN .y/ � u� � ˇMN .uyu�/C Lmax

t;q .x/

6 gK.t; q/ � d
max
t;q

�
�MN jBK

q
; �jBK

q

�
� Lmax

t;q .y/C L
max
t;q .x/:

The result of the present proposition follows from the equality yD
PK
mD�K.Œm=2�t �

Œm=2�q/ �…
L
m.x/ so that

Lmax
t;q .y/ 6

KX
mD�K

ˇ̌
Œm=2�t � Œm=2�q

ˇ̌
� Lmax

t;q .…
L
m.x//

6 2

KX
mD1

ˇ̌
Œm=2�t � Œm=2�q

ˇ̌
� Lmax

t;q .x/;

where the last inequality follows from Corollary 5.2.3.

6.4 Approximation in the quantum Gromov–Hausdorff distance

As a result of the analysis carried out in this section, we shall see that the quantum
Gromov–Hausdorff distance between the two compact quantum metric spaces
.C.SUq.2//;Lmax

t;q / and .C.SUq.2//;Lt;q/ is in fact equal to zero; cf. Corollary 6.4.2
below. When considering the quantum Gromov–Hausdorff convergence questions in
Chapter 7, this result will allow us to work exclusively at the algebraic level, which
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will simplify matters significantly. We start out with a technical estimate, from which
a number of our main results will follow.

Proposition 6.4.1. Let ı 2 .0; 1/. For every " > 0 there exists a K0 2 N0 and a
constant C > 0 such that

distQ
�
.ˇMN .B

K0
q /; Lt;q/I .C.SUq.2//; Lmax

t;q /
�

6 dmax
t;q

�
�MN jBK0

q

; �j
B

K0
q

�
� C C "

for allN;M 2N0 and all t; q 2 Œı; 1�. Moreover, ifX � C.SUq.2// is a sub-operator
system such that Dom.Lmax

t;q / \ X is norm-dense in X and ˇMN .B
K0
q / � X , then it

holds that

distQ
�
.X;Lmax

t;q /I .C.SUq.2//; Lmax
t;q /

�
6 dmax

t;q

�
�MN jBK0

q

; �j
B

K0
q

�
� C C "

for all t; q 2 Œı; 1�.

Proof. Let " > 0 be given and choose K0 2 N0 such that ".ı; K0/ 6 "; see (5.12)
for the definition of ".ı; K/ for K 2 N0. For every N;M 2 N0 we remark that the
seminormsLt;q andLmax

t;q agree on the sub-operator system ˇMN .B
K0
q /� C.SUq.2//.

This is a consequence of Lemmas 6.2.2 and 6.2.4. By Proposition 6.3.10, we may
choose a constant C0 > 0 such that

Lmax
t;q

�
ˇMN .x/

�
6
�
1C C0 � d

max
t;q

�
�MN jBK0

q

; �j
B

K0
q

��
� Lmax

t;q .x/ (6.15)

for all N;M 2 N0, all t; q 2 Œı; 1� and all x 2 Lipt .SUq.2// \ B
K0
q . Combining

Proposition 5.6.4 with Remark 5.6.5 we may choose the constant C > 0 such that

C0 � diam
�
C.SUq.2//; Lmax

t;q

�
C 1 6 C for all t; q 2 Œı; 1�:

Let now N;M 2 N0 and t; q 2 Œı; 1� be given. Define the unital map ˆ WD ˇMN ı

ELK0
WC.SUq.2//! ˇMN .B

K0
q / and note that ˆ is positive since ELK0

DM.K0
/ is a

unital contraction (Lemma 5.4.4) and ˇMN is positive by construction. We then obtain
from Propositions 5.5.3, 6.3.6 and Lemma 5.5.2 that

kx �ˆ.x/k 6 kx �ELK0
.x/k C kELK0

.x/ � ˇMN .E
L
K0
.x//k

6 ".ı;K0/ � L
max
t;q .x/C d

max
t;q

�
�MN jBK0

q

; �j
B

K0
q

�
� Lmax

t;q .E
L
K0
.x//

6
�
"C dmax

t;q

�
�MN jBK0

q

; �j
B

K0
q

��
� Lmax

t;q .x/

for all x 2 Lipt .SUq.2//. Another application of Lemma 5.5.2 together with (6.15)
moreover shows that

Lmax
t;q .ˆ.x// 6

�
1C C0 � d

max
t;q

�
�MN jBK0

q

; �j
B

K0
q

��
� Lmax

t;q .x/

for all x 2 Lipt .SUq.2//.
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Using Corollary 2.2.5 we then see that

distQ
��
ˇMN .B

K0
q /; Lt;q

�
I
�
C.SUq.2//; Lmax

t;q

��
6 dmax

t;q

�
�MN jBK0

q

; �j
B

K0
q

�
�
�
C0 � diam

�
C.SUq.2//; Lmax

t;q

�
C 1

�
C "

6 dmax
t;q

�
�MN jBK0

q

; �j
B

K0
q

�
� C C ":

This proves the first part of the present proposition. The second part of our proposition
now follows from Remark 2.2.6.

Corollary 6.4.2. Let t; q 2 .0; 1�. The metrics dt;q and dmax
t;q agree on the state space

�.C.SUq.2///. In particular, it holds that

distQ
�
.C.SUq.2//; Lt;q/I .C.SUq.2//; Lmax

t;q /
�
D 0:

Proof. Let �; � 2 �.C.SUq.2///. We trivially have that dt;q.�; �/ 6 dmax
t;q .�; �/, so

we need to prove the opposite inequality.
For every K;N;M 2 N0 we recall that the seminorms Lt;q and Lmax

t;q agree on
the sub-operator system ˇMN .B

K
q / � C.SUq.2// (see Lemmas 6.2.2 and 6.2.4). We

thereby obtain that the two metrics dt;q and dmax
t;q agree on the state space �.ˇMN .B

K
q //.

Let " > 0 be given. Combining the proof of Proposition 6.4.1 with Corollary 2.2.7
we may choose a K0 2 N0 and a constant C > 0 such that

dmax
t;q .�; �/ 6 dmax

t;q

�
�MN jBK0

q

; �j
B

K0
q

�
� C C "=2C dt;q.�; �/

for all N;M 2 N0. Next, by Theorem 5.6.1, dmax
t;q metrises the weak� topology on

�.C.SUq.2/// and by Lemma 6.1.3 it follows that limN;M!1 d
max
t;q .�

M
N ; �/ D 0. We

may thus choose N;M 2 N0 such that

C � dmax
t;q

�
�MN jBK0

q

; �j
B

K0
q

�
6 C � dmax

t;q .�
M
N ; �/ 6 "=2:

Combining these two estimates we obtain that

dmax
t;q .�; �/ 6 "C dt;q.�; �/:

Since " > 0 was arbitrary we have proved that dmax
t;q .�; �/ D dt;q.�; �/.

The fact that the quantum Gromov–Hausdorff distance between .C.SUq.2//;Lmax
t;q /

and .C.SUq.2//;Lt;q/ is equal to zero now follows from [70, Corollary 6.4] (see also
the discussion near Theorem 2.2.3).

We also record a corollary which is an analogue to Corollary 6.4.2 for the spectral
bands. Since the proof is similar but easier than the proof of Corollary 6.4.2 we are
leaving it out.
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Corollary 6.4.3. Let K 2 N0 and let t; q 2 .0; 1�. The metrics dt;q and dmax
t;q agree

on the state space �.BKq /. In particular, it holds that

distQ
�
.BKq ; L

max
t;q jBK

q
/I .BKq ; Lt;qjBK

q
/
�
D 0:

Lastly, we single out the following consequence of Proposition 6.4.1, which shows
that our fuzzy approximations do indeed approximate quantum SU.2/ in the quantum
Gromov–Hausdorff distance.

Corollary 6.4.4. Let t; q 2 .0; 1�. It holds that

lim
N;K!1

distQ
��

FuzzN .BKq /; Lt;q
�
I
�
C.SUq.2//; Lmax

t;q

��
D 0:

Proof. Let " > 0 be given. By Proposition 6.4.1, there exist aK0 2N0 and a constant
C > 0 such that

distQ
��
ˇMN .B

K0
q /; Lt;q

�
I
�
C.SUq.2//; Lmax

t;q

��
6 C � dmax

t;q

�
�MN jBK0

q

; �j
B

K0
q

�
C "=2

for allN;M 2N0. By Theorem 5.6.1 and Lemma 6.1.3 we may chooseN0;M0 2N0

with M0 > K0 such that

C � dmax
t;q

�
�MN jBK0

q

; �j
B

K0
q

�
6 C � dmax

t;q .�
M
N ; �/ < "=2 for all N > N0 and M >M0:

For N > N0 CM0 and K > K0 we obtain from Proposition 6.2.6 that

ˇ
M0

N0
.BK0
q / � FuzzN0CM0

.BK0
q / � FuzzN .BK0

q / � FuzzN .BKq /;

and the last part of Proposition 6.4.1 therefore shows that

distQ
��

FuzzN .BKq /; Lt;q
�
I
�
C.SUq.2//; Lmax

t;q

��
< ";

for all N > N0 CM0 and all K > K0.

Remark 6.4.5. The case where t D q D 1 is of particular interest since C.SU1.2//D
C.SU.2// and the Lip-norm Lmax

1;1 computes the Lipschitz constant arising from twice
the round metric dS3 on SU.2/ŠS3�R4; see Section 4.4 for details. Corollary 6.4.4
therefore provides a finite-dimensional approximation of C.S3/ by subspaces invari-
ant under the SU.2/-action (see Proposition 6.2.9). This yields an S3-analogue of
Rieffel’s original result [71, Theorem 3.2] for the 2-sphere.


