
Chapter 7

Continuity results

In this chapter we embark on our final goal of the memoir, which is to prove that
the family of compact quantum metric spaces .C.SUq.2//; Lt;q/t;q2.0;1� varies con-
tinuously in the quantum Gromov–Hausdorff distance; see Theorem D. The result
in Corollary 6.4.2 shows that we may choose to work exclusively with the Lip-
normLt;q , meaning that the domain equals the coordinate algebra O.SUq.2//. Indeed,
the corresponding continuity result for the Lip-norm Lmax

t;q with domain equal to the
Lipschitz algebra Lipt .SUq.2// follows automatically. In effect, this allows us to cir-
cumvent a lot of analysis and work at a purely (Hopf-)algebraic level. We begin by
providing a rough outline of the mains steps in the proof of continuity at a point
.t0; q0/ 2 .0; 1� � .0; 1�:

(1) We fine tune the result in Corollary 6.4.4 by showing that locally around
.t0;q0/ the fuzzy approximations approach quantum SU.2/ in a uniform man-
ner.

(2) Utilising the finite dimensionality of the fuzzy approximation we show that
these vary continuously.

(3) Piecing together these approximation results, we arrive at the main continuity
statement in Theorem 7.3.1 below.

7.1 Continuity of the fuzzy approximations

We begin by addressing point (2) in the above list.

Proposition 7.1.1. LetK;N 2N0. The 2-parameter family of compact quantum met-
ric spaces .FuzzN .BKq /; Lt;q/t;q2.0;1� varies continuously in the quantum Gromov–
Hausdorff distance.

Proof. Fix a ı 2 .0; 1/. We aim to apply [70, Theorem 11.2], and must therefore
provide a fixed finite dimensional real vector space V with a distinguished vector e, a
continuous family .k � kt;q/t;q2Œı;1� of norms and a continuous family .Mt;q/t;q2Œı;1�
of seminorms such that .V; e; k � kt;q;Mt;q/ is an order unit compact quantum metric
space isomorphic to�

FuzzN .BKq /sa; 1; k � k; Lt;q
�

for all t; q 2 Œı; 1�:

We are going to apply the unital continuous field of C �-algebras over Œı; 1� with
total space C.SU�.2// and with fibre C.SUq.2// for every q 2 Œı; 1� which was
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introduced in Section 3.7. For each q 2 Œı; 1�, we recall that evqW C.SU�.2// !
C.SUq.2// denotes the unital �-homomorphism which evaluates at the point q.

We recall that O.SU�.2// � C.SU�.2// denotes the smallest unital �-subalgebra
containing C.Œı; 1�/ and the generators a� and b�. Notice also that O.SU�.2// is a
free C.Œı; 1�/-module with basis given by the elements

�klm� WD

´
ak�b

l
�.b
�
� /
m k > 0

bl�.b
�
� /
m.a�� /

�k k < 0;

for k 2 Z and l; m 2 N0.
For each q 2 Œı; 1� we obtain a linear basis for the coordinate algebra O.SUq.2//

by applying the evaluation map to the linearly independent subset ¹�klm� j .k; l;m/ 2

Z �N0 �N0º � C.SU�.2//. In particular, we obtain that

evqW spanC

®
�klm�

ˇ̌
.k; l;m/ 2 Z �N0 �N0

¯
! O.SUq.2//

is an isomorphism of vector spaces over C. By an application of Corollary 6.2.8, we
may choose a finite subset J � Z �N0 �N0 satisfying that

evq
�
spanC

®
�klm�

ˇ̌
.k; l;m/ 2 J

¯�
D FuzzN .BKq /

for all q 2 Œı; 1�. We apply the notation

W WD spanC

®
�klm�

ˇ̌
.k; l;m/ 2 J

¯
� C.SU�.2//

and record thatW becomes a finite-dimensional operator system (indeed, it holds that
�� 2 W whenever � 2 W and clearly 1 2 W as well). We put V WD Wsa and record
that the isomorphism

evqWW ! FuzzN .BKq /

induces an isomorphism of real vector spaces evqW V ! FuzzN .BKq /sa for all q 2
Œı; 1�. For each t; q 2 Œı; 1� we equip V with the unique order unit space structure
such that evqW V ! FuzzN .BKq /sa becomes an isomorphism of order unit spaces.
We emphasise that this order unit space structure does not depend on the parameter
t 2 Œı; 1�. Moreover, we may introduce the seminorm

Mt;qWV ! Œ0;1/ Mt;q.x�/ WD Lt;q
�
evq.x�/

�
:

In this fashion, we get that .V;Mt;q/ becomes an order unit compact quantum metric
space which is isometrically isomorphic to the order unit compact quantum metric
space .FuzzN .BKq /sa; Lt;q/. We remark that the different order unit space structures
on V yields a family of norms .k � kt;q/t;q2Œı;1� on V . This family becomes con-
tinuous since we are dealing with a continuous field of C �-algebras with total space
C.SU�.2//. Indeed, for each t; q 2 Œı; 1� we record that kx�kt;q D kevq.x�/k. We
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therefore only need to show that the family of seminorms .Mt;q/t;q2Œı;1� is continu-
ous as well.

It then follows from the discussion in Section 3.7 that we have twoC.Œı;1�/-linear
maps

@1� and @2�WO.SU�.2//! O.SU�.2//

satisfying that evq ı @1� D @
1 ı evq and evq ı @2� D @

2 ı evq . Moreover, for each t 2
.0; 1� we may define the C.Œı; 1�/-linear map

@3t;�WO.SU�.2//! O.SU�.2// @3t;�.�
klm
� / WD

�
.k C l �m/=2

�
t
� �klm� :

By construction we obtain evq ı @3t;� D @
3
t ı evq . Moreover, for each x� 2O.SU�.2//,

we note that the map .0; 1�! C.SU�.2// defined by t 7! @3t;�.x�/ is continuous with
respect to the C �-norm on C.SU�.2//. For each t 2 .0; 1�, we may thus consider the
C.Œı; 1�/-linear map

@t;�WO.SU�.2//!M2

�
C.SU�.2//

�
@t;� WD

�
@3t;� �@2�
�@1� �@

3
t;�

�
:

We notice that M2.C.SU�.2/// is again the total space of a continuous field of C �-
algebras over Œı; 1�, this time with fibres M2.C.SUq.2/// for q 2 Œı; 1�. For each
t; q 2 Œı; 1� we moreover have that

Mt;q.x�/ D
@t;q.evq.x�//

 D evq
�
@t;�.x�/

�
for every x� 2 V . From these observations we obtain that .Mt;q/t;q2Œı;1� is a continu-
ous family of seminorms on V .

The assumptions in [70, Theorem 11.2] are thereby fulfilled, and since ı 2 .0; 1/
was arbitrary this implies the claimed continuity result.

In the following subsection we address point (1) in the road map provided in the
beginning of this chapter. This is the main technical step in the proof of Theorem D.
The uniform fuzzy approximation which we are going to establish builds on a com-
bination of the approximation results described in Chapter 6 and the continuity results
obtained earlier for the Podleś sphere in [3, 25].

7.2 Uniformity of the fuzzy approximation

The core result of this section provides a uniform estimate on the Monge–Kantorovič
distance between the states �MN , N;M 2 N0, and the counit �. This estimate takes
place on a fixed spectral band and the main part of the upper bound is given in terms
of the Monge–Kantorovič distance between states on the Podleś sphere. One of the
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relevant states is the restriction of the counit while the remaining states on S2q are all
of the following form:

hj WC.S
2
q /! C hj .x/ WD hj C 1iq � h

�
.a�/jxaj

�
j 2 N0: (7.1)

We emphasise that the state hj is the restriction of the state �0j (see (6.1)) to the
Podleś sphere C.S2q /� C.SUq.2//. We are interested in the algebraic versions of the
Monge–Kantorovič metrics on quantum SU.2/ and the Podleś sphere defined by

dt;q.�; �/ WD sup
®
j�.x/ � �.x/j

ˇ̌
x 2 O.SUq.2//; Lt;q.x/ 6 1

¯
for �; � 2 �.C.SUq.2///

and

d0q .�; �/ WD sup
®
j�.x/ � �.x/j

ˇ̌
x 2 O.S2q /; L

0
q.x/ 6 1

¯
for �; � 2 �.C.S2q //:

We recall from Proposition 5.1.2 that the seminorm L0qWO.S
2
q /! Œ0;1/ agrees

with the restriction of the seminorm Lt;qWO.SUq.2// ! Œ0;1/ to O.S2q / for all
values of t 2 .0; 1�.

Lemma 7.2.1. Let m 2 Z and t; q 2 .0; 1�. For every x 2 Am
q it holds that

L0q
�
.a�/mx

�
6 .t

1
2 C t�

1
2 C 1/Lt;q.x/ for m > 0 and

L0q
�
xa�m

�
6 .t

1
2 C t�

1
2 C 1/Lt;q.x/ for m 6 0:

Proof. We focus on the case wherem > 0 since the remaining case follows by taking
adjoints. Suppose thus that m > 0 and let x 2 Am

q . We know that .a�/mx 2 A0
q

and an application of Proposition 5.1.2 shows that L0q..a
�/mx/ D Lt;q..a

�/mx/. In
particular, we immediately obtain the relevant inequality for m D 0. We may thus
assume that m > 0. Since .a�/m D um00, it follows from (3.9) that

@e..a
�/m/ D 0 and @f ..a

�/m/ D um01 �
p
q1�mhmiq:

As a consequence of these identities, we get the estimate@Hq ..a�/m/ D q� 1
2 @f ..a

�/m/
 6
p

q�m � hmiq 6
p
m � q�

m
2 :

We moreover notice that Lemmas 5.3.4 and 5.4.2 imply the inequalities

kxk 6
1

Œm=2�t
� Lt;q.x/ 6

t1=2 C t�1=2

m
� Lt;q.x/: (7.2)

Since Lt;q..a�/mx/ D L0q..a
�/mx/ D k@Hq ..a

�/mx/k, the result of the lemma now
follows from Lemma 4.3.3 together with Lemma 3.6.3 and the estimate in (4.6):

Lt;q
�
.a�/mx

�
6
@Hq ..a�/m/ � qm=2kxk C qm=2.a�/m � @Hq .x/

6
t1=2Ct�1=2
p
m

� Lt;q.x/CLt;q.x/ 6 .t
1
2Ct�

1
2C1/ � Lt;q.x/:
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Recall from Section 6.2 the linear functionals 'r;sWC.SUq.2//! C, r; s 2 N0,
given by

'r;s.x/ D h
�
.a�/sxar

�
:

As noted in (6.3), for each N;M 2 N0, the state �MN appearing in the definition of
the Berezin transform ˇMN WC.SUq.2//! C.SUq.2// is then given by

�MN D
1

M C 1

NCMX
s;rDN

p
hr C 1iqhs C 1iq � 'r;s: (7.3)

We first describe the linear functionals 'r;s in terms of the states hj on the Podleś
sphere introduced in (7.1).

Lemma 7.2.2. Let r; s 2 N0. For every x 2 C.SUq.2// it holds that

'r;s.x/ D

´
1

hrC1iq
� hr

�
.a�/s�r �…L

s�r.x/
�
s > r

1
hsC1iq

� hs
�
…L
s�r.x/ � a

r�s
�

r > s:

Proof. By continuity and linearity, we may assume that x 2 Amq for some m 2 Z.
Since the Haar state hWC.SUq.2//! C vanishes on all but the zeroth spectral sub-
space and .a�/sxar 2 AmCr�sq we then have that 'r;s.x/ ¤ 0 if and only if m C
r � s D 0. Since …L

s�r.x/ also vanishes for m C r � s ¤ 0, we may assume that
m D s � r . For m > 0 we have that

'r;s.x/ D h
�
.a�/sxar

�
D h

�
.a�/r.a�/mxar

�
D

1

hr C 1iq
hr
�
.a�/mx

�
:

Likewise, for m 6 0 we get that

'r;s.x/ D h
�
.a�/sxar

�
D h

�
.a�/sxa�mas

�
D

1

hs C 1iq
hs.xa

�m/:

This proves the present lemma.

Inspired by Lemma 7.2.2, for each m 2 N0, we now define the bounded operator
PmWC.SUq.2//! C.S2q / by the formula

Pm.x/ WD

´
.a�/m…L

m.x/C…
L
�m.x/a

m m > 0

…L
0 .x/ m D 0:

Indeed, for every s; r 2 N0 with r < s we get from Lemma 7.2.2 that

's;r.x/C 'r;s.x/D
1

hr C 1iq
� hr

�
Ps�r.x/

�
and 'r;r.x/D

1

hr C 1iq
� hr.P0.x//;

(7.4)
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for all x 2 C.SUq.2//. Note also that Pm.x�/D Pm.x/� since…m.x
�/D…�m.x/

�

for all x 2 C.SUq.2// and m 2 N0. For each N;M 2 N0 we may then express the
state �MN WC.SUq.2//! C in terms of the bounded operators Pm, m 2 N0, and the
states hr WC.S2q /! C, r 2 N0:

Lemma 7.2.3. Let N;M 2 N0. For every x 2 C.SUq.2//, it holds that

�MN .x/ D
1

M C 1

NCMX
rDN

NCM�rX
mD0

s
hmC r C 1iq

hr C 1iq
� hr

�
Pm.x/

�
:

Proof. Using (7.3) and (7.4), we obtain the desired result from the computation

.M C 1/ � �MN D

NCMX
rDN

hr C 1iq � 'r;r

C

NCMX
rDN

NCMX
sDrC1

p
hr C 1iqhs C 1iq � .'s;r C 'r;s/

D

NCMX
rDN

NCMX
sDr

s
hs C 1iq

hr C 1iq
� .hr ı Ps�r/:

In order to estimate the distance between the counit � and the state �MN for dif-
ferent values of N;M 2 N0 we introduce the linear functional  MN WC.SUq.2//! C
defined by

 MN .x/ D
1

M C 1

NCMX
rDN

NCM�rX
mD0

s
hmC r C 1iq

hr C 1iq
� �
�
Pm.x/

�
for all x 2 C.SUq.2//. The next two lemmas serve as preparation for Proposition
7.2.6, where we provide a uniform upper bound on the Monge–Kantorovič distance
between the states � and �MN on a fixed spectral band.

Lemma 7.2.4. Let n 2 Z. It holds thatˇ̌
 MN .x/ � �.x/

ˇ̌
6
�

1

N C 1
C

1

M C 1

�
� .t

1
2 C t�

1
2 / � Lt;q.x/ (7.5)

for all t; q 2 .0; 1�, all x 2 An
q and all N;M 2 N0 with M > jnj.

Proof. Since  MN and � respect the adjoint operation and Lt;q is �-invariant, it suf-
fices to treat the case n > 0. For n D 0, the estimate in (7.5) clearly holds since the
left-hand side of the inequality is equal to zero. Suppose therefore that n > 0, and let
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q 2 .0; 1� be given. For each r 2 N0 we start out by remarking thatˇ̌̌̌p
hnC r C 1iqp
hr C 1iq

� 1

ˇ̌̌̌
6
hnC r C 1iq

hr C 1iq
� 1 D q2.rC1/

hniq

hr C 1iq

6 n � q2
1Pr

iD0 q
�2i

6
n

r C 1
: (7.6)

Fix now N;M 2 N0 with M > n. From the above inequalities we obtain thatˇ̌̌̌
ˇ1 � 1

M C 1

NCM�nX
rDN

p
hnC r C 1iqp
hr C 1iq

ˇ̌̌̌
ˇ

6
ˇ̌̌̌
1 �

M C 1 � n

M C 1

ˇ̌̌̌
C

1

M C 1

NCM�nX
rDN

ˇ̌̌̌p
hnC r C 1iqp
hr C 1iq

� 1

ˇ̌̌̌
6

n

M C 1
C

n

N C 1
:

Let furthermore x 2 An
q be given. Since �.a�/ D 1 D �.a/ (and since � is a unital

�-homomorphism) we know that

�.Pm.x// D ın;m � �.x/ for all m 2 N0:

From this identity, we then get that

 MN .x/ D
1

M C 1

NCMX
rDN

NCM�rX
mD0

p
hmC r C 1iqp
hr C 1iq

� �.Pm.x//

D
1

M C 1

NCM�nX
rDN

p
hnC r C 1iqp
hr C 1iq

� �.x/:

Combining the above estimates we get

ˇ̌
 MN .x/ � �.x/

ˇ̌
D

ˇ̌̌̌
ˇ
 
1 �

1

M C 1

NCM�nX
rDN

p
hnC r C 1iqp
hr C 1iq

!
�.x/

ˇ̌̌̌
ˇ

6
�

n

M C 1
C

n

N C 1

�
j�.x/j:

Let finally t 2 .0; 1� be given. The result of the lemma then follows from the above
computations together with the estimate

j�.x/j 6 kxk 6
1

Œn=2�t
Lt;q.x/ 6

t1=2 C t�1=2

n
Lt;q.x/;

see Lemmas 5.3.4 and 5.4.2.
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Lemma 7.2.5. Let n 2 Z. The following inequality holdsˇ̌
�MN .x/ �  

M
N .x/

ˇ̌
6
�
1C

jnj

N C 1

� 1
2

� .t
1
2 C t�

1
2 C 1/ � sup

N6r6NCM

d0q
�
hr ; �jC.S2

q /

�
� Lt;q.x/

for all t; q 2 .0; 1�, all x 2 An
q and all N;M 2 N0 with M > jnj.

Proof. Let t; q 2 .0; 1�, x 2 An
q and N;M 2 N0 with M > jnj be given. Since  MN

and �MN preserve the adjoint operation and Lt;q is �-invariant we may, without loss
of generality, assume that n > 0. As in (7.6) we have that

hnC r C 1iq

hr C 1iq
6 1C

n

r C 1
for all r 2 N0:

Remark moreover that Pm.x/D ın;m � .a�/nx for allm 2N0. An application of these
observations together with Lemma 7.2.3 yield the following inequalities:

ˇ̌
�MN .x/ �  

M
N .x/

ˇ̌
D

1

M C 1

ˇ̌̌̌
ˇNCM�nX
rDN

p
hnC r C 1iqp
hr C 1iq

�
�
hr.Pn.x// � �.Pn.x//

�ˇ̌̌̌ˇ
6

1

M C 1

NCM�nX
rDN

�
1C

n

r C 1

� 1
2

d0q
�
hr ; �jC.S2

q /

�
� L0q.Pn.x//

6
�
1C

n

N C 1

� 1
2

� sup
N6r6NCM

d0q
�
hr ; �jC.S2

q /

�
� L0q.Pn.x//:

The result of the present lemma now follows by noting that Lemma 7.2.1 entails the
inequality L0q.Pn.x// 6 .t

1
2 C t�

1
2 C 1/ � Lt;q.x/.

Proposition 7.2.6. Let K 2 N0 and ı 2 .0; 1/. There exist a constant C > 0 and a
positive null sequence ."N;M /1N;MD0 such that

dt;q
�
�MN jBK

q
; �jBK

q

�
6 C � sup

N6r6NCM

d0q
�
hr ; �jC.S2

q /

�
C "N;M

for all .t; q/ 2 Œı; 1� � .0; 1� and all N;M 2 N0 with M > K.

Proof. We define the constant C > 0 by putting

C WD .2K C 1/ � .1CK/
1
2 � .ı

1
2 C ı�

1
2 C 1/;

and the null sequence ."N;M /1N;MD0 by putting

"N;M WD .2K C 1/ �

�
1

N C 1
C

1

M C 1

�
� .ı

1
2 C ı�

1
2 /
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for all N;M 2 N0.
Let now .t; q/ 2 Œı; 1� � .0; 1� be given and let x 2 BK

q satisfy that Lt;q.x/ 6 1.
For every N;M 2 N0 with M > K, an application of Lemmas 7.2.4 and 7.2.5 then
shows thatˇ̌

�MN .x/ � �.x/
ˇ̌

6
ˇ̌
�MN .x/ �  

M
N .x/

ˇ̌
C
ˇ̌
 MN .x/ � �.x/

ˇ̌
6

KX
nD�K

ˇ̌
�MN .…

L
n .x// �  

M
N .…

L
n .x//

ˇ̌
C

KX
nD�K

ˇ̌
 MN .…

L
n .x// � �.…

L
n .x//

ˇ̌
6 .2K C 1/

�
1C

K

N C 1

� 1
2

.t
1
2 C t�

1
2 C 1/

� sup
N6r6NCM

d0q
�
hr ; �jC.S2

q /

�
� Lt;q.…

L
n .x//

C .2K C 1/ �

�
1

N C 1
C

1

M C 1

�
� .t

1
2 C t�

1
2 / � Lt;q.…

L
n .x//

6 C � sup
N6r6NCM

d0q
�
hr ; �jC.S2

q /

�
C "N;M ;

where the last estimate follows from Corollary 5.2.3. This proves the present propos-
ition.

The next proposition follows by an application of the estimate from Proposi-
tion 7.2.6 together with the core technical result from [3].

Proposition 7.2.7. Let ı 2 .0; 1/, q0 2 .0; 1� andK 2N0. For every " > 0 there exist
an open interval I containing q0 and N0;M0 2 N0 with M0 > K such that

dt;q
�
�
M0

N0
jBK

q
; �jBK

q

�
< "

for all q 2 I \ Œı; 1� and all t 2 Œı; 1�.

Proof. By [3, Lemma 4.11], for every r 2 N0, we may choose a continuous function
Hr W Œı; 1�! Œ0;1/ such that

d0q
�
hr ; �jC.S2

q /

�
6 Hr.q/ for all q 2 Œı; 1�:

Moreover, by [3, Lemma 4.12] we may arrange that limr!1Hr.q0/ D 0.
Let us choose the constant C > 0 and the positive null sequence ."N;M /1N;MD0

according to Proposition 7.2.6 with ı 2 .0; 1/ andK 2N0 as given in the statement of
the present proposition. Let now " > 0 be given. ChooseN0 >K such that "N;M < "

2

for all N;M > N0 and Hr.q0/ < "
4C

for all r > N0. Since the function Hr is con-
tinuous for all r 2 N0, we may choose our open interval I containing q0 such thatˇ̌
Hr.q0/ �Hr.q/

ˇ̌
<

"

4C
for all q 2 I \ Œı; 1� and all r 2 ¹N0; N0 C 1; : : : ; 2N0º:
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We now put M0 WD N0 and it then follows from Proposition 7.2.6 that

dt;q
�
�
M0

N0
jBK

q
; �jBK

q

�
6 C � sup

N06r62N0

Hr.q/C "N0;N0
< "

for all q 2 I \ Œı; 1� and all t 2 Œı; 1�.

7.3 Continuity of quantum SU.2/

We are now ready to assemble all the information gathered in the previous sections to
obtain a proof of our main continuity result, Theorem D from the introduction.

Theorem 7.3.1. The 2-parameter family of compact quantum metric spaces�
C.SUq.2//; Lt;q

�
.t;q/2.0;1��.0;1�

varies continuously in the quantum Gromov–Hausdorff distance.

As noted earlier, since

distQ
�
.C.SUq.2//; Lt;q/; .C.SUq.2//; Lmax

t;q /
�
D 0

by Corollary 6.4.2, the above theorem also holds true for Lmax
t;q instead of Lt;q .

Proof. Let .t0; q0/ 2 .0; 1� � .0; 1� and " > 0 be given and put ı WD min¹q0=2; t0=2º.
By Proposition 6.2.6, ˇMN .B

K
q /� FuzzNCM .BKq / for allN;M;K 2N0 withM >K.

Applying Proposition 6.4.1, we may chooseK0 2 N0 and a constant C > 0 such that

distQ
�
.FuzzNCM .BK0

q /; Lt;q/I .C.SUq.2//; Lmax
t;q /

�
6 dmax

t;q

�
�MN jBK0

q

; �j
B

K0
q

�
� C C

"

6

for all N;M 2 N0 with M > K0 and all t; q 2 Œı; 1�. By Corollary 6.4.3 and Pro-
position 7.2.7, there exist N0;M0 2 N0 with M0 > K0 and an open interval I with
q0 2 I such that

dmax
t;q

�
�
M0

N0
j
B

K0
q

; �j
B

K0
q

�
D dt;q

�
�
M0

N0
j
B
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q

; �j
B

K0
q

�
<
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for all q 2 I \ Œı; 1� and all t 2 Œı; 1�. Hence

distQ
�
.FuzzN0CM0

.BK0
q /; Lt;q/I .C.SUq.2//; Lmax

t;q /
�
<
"

3

for all q 2 I \ Œı; 1� and all t 2 Œı; 1�. Note, at this point, that V WD Œı; 1� � .I \

Œı; 1�/ � .0; 1� � .0; 1� is a neighbourhood of the point .t0; q0/. By Proposition 7.1.1,



Continuity of quantum SU.2/ 113

the compact quantum metric spaces .FuzzN0CM0
.BK0
q /; Lt;q/t;q2.0;1� vary continu-

ously in the quantum Gromov–Hausdorff distance, so we may choose a neighbour-
hood U of .t0; q0/ 2 .0; 1� � .0; 1� such that

distQ
�
.FuzzN0CM0

.BK0
q /; Lt;q/I .FuzzN0CM0

.BK0
q0
/; Lt0;q0

/
�
<
"

3

for all .t; q/ 2 U . An application of the triangle inequality for the quantum Gromov–
Hausdorff distance [70, Theorem 4.3], now yields the estimate

distQ
�
.C.SUq.2//; Lmax

t;q /I .C.SUq0
.2//; Lmax

t0;q0
/
�
< "

for all .t; q/ 2 U \ V , thus completing the proof.

As a last remark we single out the following special case of the above theorem: As
the deformation parameter q tends to 1, the quantum metric spaces SUq.2/ converge
towards SU.2/ equipped with its classical round metric rescaled with a factor 2. To
make this statement precise, recall from Section 4.4, that we denote by dS3 the usual
round metric on SU.2/Š S3. We then have the Lip-norm LLip which to any continu-
ous function f WSU.2/!C assigns the Lipschitz constant with respect to the rescaled
metric 2 � dS3 . Comparing with Theorem 4.4.1, the special case of Theorem 7.3.1 then
reads as follows:

Corollary 7.3.2. As .t; q/ 2 .0; 1� � .0; 1� tends to .1; 1/, the quantum metric spaces
.C.SUq.2//;Lt;q/ converge to .C.SU.2//;LLip/ in quantum Gromov–Hausdorff dis-
tance.


